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Abstract 

In this paper we investigate the performance of different 

classification paradigms, testing each with a range of acoustic 
features, to find a system that is well suited to speaker likeability 

classification. We introduce a Sparse Representation Classifier 

for paralinguistic classification and explore the role of training 

data selection for a GMM classifier. Results demonstrate that (1) 
Single dimensional features of pitch direction, shimmer and 

spectral roll-off were the most suitable features found when 

testing on the development set but we were unable to reproduce 

their performance in the final classification task, (2) Using UBM 
training data selection increased accuracy of MFCC's and (3) 

Sparse Representation showed promise as a paralinguistic 

classifier with results comparable to that of SVM. 

Index Terms: Likeability, single and multi-dimensional feature 
selection, Sparse Representation Classifier, UBM data selection. 

1. Introduction 

The paralinguistic component of speech communication 

contains information that can be used to infer a wide range of 

information about the speaker. Previous Interspeech challenges 
have targeted traditional paralinguistic fields of emotions, age, 

gender or speaker states such as sleepiness, intoxication. The 

2012 challenge focuses on more abstract speaker traits including 

personality, likeability and pathology. Herein, we describe a 
system and related experiments submitted to the likeability sub-

challenge.  

     The concept of likeability is difficult to define; popular 

definitions often include adjectives such as ‘agreeable’, 
‘pleasant’ and ‘easy to like’. For this paper the definition of 

likeable is set by the constraints of the database and its 

annotation. The database is a subset of the Agender database, 

used in the 2010 paralinguistic challenge. The likeability ratings 
were established by listeners ranking utterances on a seven point 

Likert scale, the results of which were discretised into ‘likeable’ 

and ‘not likeable’ classes - for further information see [1].  

     There has been some recent work examining the effect of 
social behaviours such as friendliness, flirtiness and personality 

types such as extroversion and pleasantness on speech. These 

traits have analogies with likeability. Mairesse et al. link 

extroversion to positive affect and show that prosodic features 
including high speech rate, greater vocal intensity and high pitch 

variability can be used to describe extroverted speech [2]. 

Jurafsky, Ranganath and McFarland analysed recordings taken 

during speed dating and found that men identified as friendly 
voices that had lower intensity and a lower and less varied pitch. 

Women who were identified as friendly had voices with a higher 

pitch but lower and less varied intensity [3]. Recently Pinto-
Coelho et al. used a wide range of prosodic and voice quality 

features to identify pleasantness [4]. 

     In the last two years there have been a small number of 

papers trying to find correlates between acoustic parameters and 
likeability. Weiss and Burkhardt showed that both prosodic and 

spectral features can be used to assess speaker likeability [5]. 

They showed that stereotypically likeable males have lower, 

deeper voices, which can be reflected in pitch patterns. Likeable 

women have bright, youthful sounding voices with energy 
spread over the spectrum. Using a binary decision tree classifier, 

an accuracy of 62.9% in likeability classification was achieved 

[5], albeit on a smaller database (10 speakers). Gravano et al. 

found that likeable speech from both genders had higher 
intensity, lower shimmer and lower pitch  with a more reduced 

range [6]. They also showed that males, when trying to sound 

likeable, will lower their vocal intensity and expand pitch range. 

On the other hand, women will raise their pitch when trying to 
be liked by a male and lower pitch and increase intensity when 

speaking to a female.  

     A benchmark has been set by the challenge organisers of an 

unweighted binary classification accuracy of 58.5% using a 
support vector classifier [7]. A higher classifier accuracy was 

obtained by an initial investigation [1], which was able to 

achieve an unweighted classification accuracy of 67.6% using a 

binary tree classifier. Their work also shows that spectral, 
prosodic and voice quality features are suited to the 

classification task, whilst cepstral features, used on their own, 

give classification near chance level. 

     The 2012 likeability challenge is to the classify  a speaker 
into either a likeable class or a non-likeable class through the 

use of acoustic features and a learning algorithm [7]. This 

involves finding acoustic patterns that correlate well with the 

subjective listener rankings given by the challenge organizers. 
Our approach to this task is to trial five different gender 

dependent feature/classifier systems, applying each to both 

baseline openSMILE features and selected other spectral 

features, with a view to outperforming the Challenge benchmark 

set and the classifier accuracy measured in [1]. 

2. Feature Extraction 

2.1 Voice Activity Detection 

To isolate the voiced sections of the likeability database we used 

openSMILE’s voiced probability measure, which employs the 
autocorrelation function and cepstrum field to calculate the 

probability of a frame representing voiced speech. Unless 

specifically stated, the voicing cut-off we used was the default 

setting of 55%. 

2.2 Single-dimensional Feature Extraction  

The Single dimensional features we used in our  testing were 

extracted using openSMILE1, and included prosodic measures 

such as frequency (F0), intensity and pitch direction score 
(F0ds) which represents whether the pitch of a pseudo syllable is 

falling, flat, or rising. Voice Quality measures such as jitter and 

shimmer were also extracted and a wide range of broad spectral 
measures such as zero crossing rate (ZCR), spectral bands and 

roll-off coefficients. All pitch based features were extracted 

using a 40ms frame, extracted every 10ms, whilst all other 

features used a 20ms frame extracted every 10ms. Work 
reported in [1, 5, 6] shows the potential of prosodic, voice 

quality and spectral measures features in likeability 

classification. 

1. http://opensmile.sourceforge.net/ 



 

 

 
 

2.3 Multi-dimensional Feature Extraction 

A range of detailed cepstrum and spectral features were tested 
for their suitability to the classification task. These include the 

mel frequency cepstral coefficients (MFCC), perceptual linear 

predictive cepstral coefficients (PLP) and line spectral pairs 

(LSP), all extracted using openSMILE. We also tested linear 
prediction cepstral coefficients (LPCC) and the spectral centroid 

frequencies and amplitudes (SCF / SCA). The LPCC were 

extracted using VoiceBox2, and the reader is referred to [8] for 

the extraction method of the spectral centroid measures. All 
features were extracted using a 20ms frame with 10ms overlap. 

Work reported in [1] shows that detailed spectral features are 

potentially suitable for likeability classification whilst [5] shows 

the potential of the cepstral features. 

3. Classification Approach and 

Experimental Setup 

3.1 Classification Systems 

Three different classifiers were trialed during our initial testing; 

Gaussian Mixture Models (GMM) and Support Vector 

Machines (SVM), together with a newer system, Sparse 
Representation Classification (SRC). The aim of this testing is 

to find the most suitable learning algorithm to use in our final 

system configuration. 

     Both GMM’s and SVM’s are popular classification 
techniques and have been shown to work in many different 

paralinguistic classification tasks so should be suitable for 

likeability classification. SRC is a newer classification approach 

in speaker recognition and can be thought of as somewhat 
complementary to an SVM classifier [9]. We were motivated to 

use the challenge as an opportunity to compare the performance 

of SRC as a paralinguistic classification method against a range 

of different learning systems. Section 3.2 gives a brief outline of 
the sparse classification process.  

     Given the results in [5, 6] we hypothesize that males and 

females encode likeability differently, so we train and test with 

separate models for both genders throughout. 

3.2 Sparse Representation Classification 

In recent years, sparse representation based classifiers have 

begun to emerge for various applications, and experimental 

results indicate that they can achieve comparable or better 
performance than other classifiers [9, 10]. Motivated by [9], 

herein we propose the use of vector–based (a vector is 

composed of either utterance statistics or supervectors) SRC for 

paralinguistic classification, which is formulated as follows.  

First, a matrix        is defined for the entire training set as 

the concatenation of n K-dimensional likeable (L) training 

samples and m K-dimensional not-likeable (NL) training 
samples: 

                                            (1) 

where N = n + m. Then, the test sample      can be 

represented as a linear combination of all training samples as 

           (2) 

Although N > K, which corresponds to an underdetermined 

system, its unique sparsest solution, y, can be solved by ℓ1-norm 

minimization [11]. Finally for classification, a characteristic 

function,      
     , that selects the coefficients associated 

with the ith class as shown in (3) for each class i (L or NL) is 

defined [10].  

                                       
 
 

 

            
                

                   
  

(3) 

 

Using only the coefficients associated with the ith class, the 

given test vector S can be approximated as           , s was 

then assigned to the class    that gave the smallest residual 

between s and    :  
 

         
 

                                   (4) 

3.3 System Configuration 

The experimental settings (unless otherwise stated) of the 

classification system were as follows: Thirteen MFCC’s with 
the log-energy appended to MFCCs 1-12,  The reduced MFCC 

set (MFCCr) was formed from MFCCs 1-5. The delta and delta-

delta coefficients (Δ, ΔΔ) were extracted by the standard 

regression equation. Six PLP’s, comprising the log-energy 
appended to PLP’s 1-5, were employed. Eight LSP coefficients 

were computed from eight LPC coefficients. Twelve LPCC’s 

and twenty SCF/SCA coefficients were extracted.  

     HTK was used to train the GMMs. For consistency of 
comparison across all features tested, 16 mixture components 

were used and 10 EM iterations with a variance flooring 

threshold set to 0.01. SVM modeling and testing was done using 
SVMlight3 and a linear kernel. For SRC, the solution of 

equation (2) was achieved using the GPSR4 toolbox.  

     For the single-dimensional features SVM and SRC systems 

the input vectors were formed from the utterance based statistics 
of mean, max, min, standard deviation, median, first and third 

quartile, skewness and kurtosis. For the multi-dimensional SVM 

and SRC classifiers, GMM supervectors were used as the input 

to the classifiers.  

3.3 Database 

The database consists of 800 speakers and 18 utterance types 

discretised into a likeable class (L) or non-likable class (NL). For 

further details of either the ranking or partitioning of the 
database the reader is referred to [7]. 

4. Results 

4.1 Baseline 

The baseline results for the likelihood sub challenge are 

reproduced in Table 1.  

Table 1. Unweighted Accuracy Baseline for Challenge [7] 
System ACC(UW) 

SVM 58.5 

Random Trees 57.6 

4.2 Initial Testing 

The results shown in Tables 2 and 3 are a subset taken from a 
wider range of tests using the openSMILE feature set. We have 

chosen to report these features as they were above chance level 

in one of the systems for either male or female class, with the 

exception of jitter, which is included for reference. Training data 
were used to form the background data used for the initial 

testing. In this phase the results were obtained using the 

development data set using 10 fold cross validation at a 70 - 30 

training / testing split. All results reported are unweighted 
classification accuracy. 

4.2.1   Single dimensional Features 

For the GMM results, the average taken across the L and NL 

classes for both genders roughly follows what is seen in [1]. 
Spectral features were the best performing but we see voice 

quality features playing a more important role than prosodic. 

The results of shimmer match those reported in [6]. The higher 

accuracy of pitch direction could be explained through males 
and females using specific intonation and pitch patterns when 

trying to be liked [3, 6].  

     In the male classes, the poor NL F0 results could be 

explained through the results reported in [6]; males expand their 
pitch range when trying to be liked. We could hypothesize that 

NL male F0 could be a subset of the L, thus reducing class 

separation. We can also use [6] to help explain the evenness of 

the F0 and intensity results in females. Females potentially 

2. http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html 3. http://svmlight.joachims.org 

4. http://www.lx.it.pt/~mtf/GPSR 



 

 

 
 

encode likeability differently depending on the gender of the 

speaker they are talking to; this information is not available in 

the challenge database, so we are unable to test this hypothesis 

further. 
    The SVM system is the closest system we tested to that from 

which the baseline results were obtained [7], and here the 

prosodic features are the best performing. These results support 

the hypotheses in the previous paragraph. 
     The SRC results again roughly match those reported in [1], 

with spectral features performing best for both genders. 

Interestingly, prosodic features have better classification 

accuracy than voice quality. The results of the SRC are 
comparable with those of the SVM system, with the advantage 

that SRC requires no classifier training. 

4.2.2   Multi-dimensional Features 

For the GMM system, the poorer performance of the cepstral 
and detailed spectral features is not surprising given the results 

in [1], where cepstral features are the poorest performing class. 

The poorer female results are interesting as it is reported in [5] 

that likeable women have a more even energy spread over the 
spectrum. 

     The SVM results are somewhat surprising. The different 

configurations trialed all struggle to consistently break above 

chance for any feature compared across both classes for either 
gender. For the SRC, only the LPCC feature broke above chance 

across all classes in multi-dimensional systems.  

     For all three classifiers, we can see a difference in the 

performance between the two genders. This helps support the 
hypothesis that the two genders encode likeability differently. 

4.3 Improvements to Multi-dimensional Systems 

In general, MFCCs and LSPs are the most consistent features 

across not only different classification approaches but male and 
female subsets. This is not surprising as MFCCs represent their 

speaker’s acoustic space with greater reliability than the other 

features tested [12]. LSPs are also a stable and robust feature 

especially when compared with the LP coefficients. Reduced 
MFCCs didn’t perform as well, perhaps surprisingly given the 

spectral roll-off performance, although the importance of higher 

MFCC coefficients in classifying likeability is shown in [5].  

     There is a drop in performance when comparing the GMM 
classifier with both the SVM and SRC GMM supervector 

systems. This could be due the role that the covariances play 

when we model likeability; perhaps not enough of this 

information is preserved in the supervectors, or that the 

occupation counts are not very important and this is too heavily 

encoded in the supervectors. Hence, we tested MFCCs in both 

the SVM and SRC systems with different MAP relevance factor 

settings. The results of this are shown below in Table 4. 
Changing the relevance factor has minimal effect on the results 

for both systems; similar results have been reported for GMM 

speaker recognition systems [13].  

Table 4. Different MAP settings for MFCC in SVM and SRC 

Set Up 
MALE  FEMALE  

AVE 
L NL L NL 

SVM  60.71 37.69 52.31 46.15 49.22 

SVM 0.5xƮ  65.71 31.54 64.62 46.15 51.52 

SVM 2xƮ  54.29 45.38 60.77 52.48 50.73 

SRC 71.43 43.85 65.38 59.23 59.97 

Sparse 0.5xƮ  72.14 41.54 66.92 58.46 59.77 

Sparse 2xƮ 67.14 40.77 63.85 57.69 57.36 

     It has been shown in speaker recognition that better acoustic 

modeling can help improve system performance. In [12], a 
method is described for training a UBM by selecting a small 

amount of data, whilst still maintaining and even increasing 

system performance. We utilized this feature stability-based 

method to test whether UBM reduction provides a possible 
improvement. These tests were run for MFCCs, as they are a 

stable clustering feature, and the results, shown in Table 5, 

demonstrate that improvements in system performance can be 

obtained using a selective subset of training data for the UBM. 

    Table 5. GMM likeability classification based on different 

UBM training data fractions 

% of optimized  

frames used 

MALE FEMALE 
AVE 

L NL L NL 

100 57.86 67.69 83.03 45.38 63.50 

80 72.86 53.08 86.15 32.31 61.10 

60 74.29 56.15 82.31 53.85 66.65 

40 75.00 53.00 85.38 43.08 64.33 

20 72.14 36.92 82.31 56.15 61.88 

     To further test the suitability of the given training data for 
use in a UBM we tested the challenge development set with two 

different UBMs; the first formed from the personality sub 

challenge data set [7] and the second formed from the NIST 

2004 database. The overall system accuracy when using NIST 
2004 UBM was comparable to that of our regular (non-

optimized) UBM; this is not that surprising (apart from its 

American English language!) as this database is known to be 

suitable for use as background data. The results in both Tables 5 
and 6 show the potential importance of optimizing UBM data 

Table 2. Likeability classification using single-dimension features 

FEATURES 

GMM-UBM – (feature based) SVM - (utterance based  statistics) SRC - (utterance based  statistics) 

Male Female 
AVE 

Male Female 
AVE 

Male Female 
AVE 

L NL L NL L NL L NL L NL L NL 

f0 60.00 30.00 50.00 51.54 47.88 48.57 67.69 52.31 57.69 56.57 91.43 16.15 24.62 74.62 51.70 

intensity 59.29 36.92 51.54 48.46 49.05 62.14 50.77 53.08 63.08 57.27 67.86 52.31 23.85 73.08 54.28 

f0ds 57.14 60.00 53.08 51.54 55.44 60.71 46.15 52.31 53.08 53.06 72.86 24.62 39.23 80.00 54.18 

Jitter 54.29 43.85 37.69 73.85 52.42 40.00 56.92 62.31 33.08 48.08 35.00 73.85 67.69 33.85 52.60 

Shimmer 56.43 63.85 59.23 75.38 63.72 57.14 28.46 33.85 80.00 49.86 43.57 57.69 83.08 19.23 50.89 

ZCR 57.14 33.08 64.52 40.00 48.71 59.29 40.00 59.23 40.77 49.82 79.29 21.54 80.00 28.46 52.32 

SpectralRollOff25 59.29 61.54 63.85 73.08 64.44 49.29 60.00 67.69 34.62 52.90 35.00 62.31 64.62 40.77 50.67 

Spectral Flux 52.86 40.77 61.54 53.85 52.25 40.00 62.31 62.31 50.77 53.85 68.57 40.00 65.38 60.00 58.49 

 

Table 3. Likeability classification using multi-dimensional features 

FEATURES 

GMM-UBM – (feature-based) SVM – (supervector-based) SRC – (supervector-based) 

Male Female 
AVE 

Male Female 
AVE 

Male Female 
AVE 

L NL L NL L NL L NL L NL L NL 

MFCC 57.86 67.69 83.03 45.38 63.50 60.71 37.69 52.31 46.15 49.22 71.43 43.85 65.38 59.23 59.97 

MFCCr 62.86 68.46 59.23 43.85 58.60 67.86 32.31 50.00 49.23 49.85 67.86 48.46 40.00 40.77 49.27 

PLP 45.00 49.23 36.92 49.23 45.10 73.57 40.77 52.31 47.69 53.59 69.29 56.15 44.62 41.54 52.90 

LSP 52.14 59.23 56.92 49.23 54.38 60.00 47.69 44.62 52.31 51.15 78.57 21.54 63.08 52.31 53.87 

LPCC 75.00 56.92 72.31 28.46 58.17 75.00 33.82 64.62 46.92 55.10 58.57 50.00 55.38 55.38 54.84 

SCF 60.00 69.23 73.85 45.38 62.12 62.14 35.38 59.23 48.46 51.30 98.23 5.88 78.46 25.38 51.99 

SCA 52.86 55.38 59.23 37.69 51.29 80.71 29.23 61.54 63.85 58.83 53.57 49.23 63.08 53.85 54.93 

 



 

 

 
 

selection in paralinguistic classification, and whilst the overall 

average of the different systems doesn’t change greatly, 
differences in system performance can be seen when comparing 

accuracies on a per-gender / per-class basis. 

Table 6. GMM likeability classification using different UBMs  

UBM DATA 

MALE FEMALE 

AVE 
L NL L NL 

Likeability UBM (100%) 57.86 67.69 83.03 45.38 63.50 

Personality UBM 72.86 56.15 83.08 46.92 63.50 

NIST 2004 UBM 55.00 67.84 67.69 63.85 63.60 

     As reported in [3, 6], males and females use different 

intonation and pitch patterns when trying to be liked. Dynamic 
information could therefore be a useful addition to our multi-

dimensional classifier; hence we tested the GMM MFCC system 

using the 60% optimized UBM with Δ and ΔΔ coefficients, 

extracting the Δ and ΔΔ coefficients using different window 
lengths (2K-1). Our testing showed mixed results for both 

genders with an increase in NL classification but a slight 

decrease in L classification. We were able to increase male and 

female NL detection an average of 7% above our baseline (in 
relative terms) with window sizes of K = 4 and K = 9. 

     Our final test was whether normalization could be beneficial. 

We tested the GMM MFCC system using the 60% optimized 

UBM and tested mean, mean-variance and CDM normalization. 
Table 7 shows that normalization is not a useful addition. We 

can draw similar conclusions to the role of speaker 

normalization to those seen in [8]. 

Table 7. Feature Warping on MFCC’s 

Set Up 
MALE FEMALE 

AVE 
L N L N 

Un-normalized 74.29 55.38 75.38 50.77 63.96 

MEAN 70.71 36.15 96.15 30.77 58.45 

MeanVar 64.29 54.62 90.00 42.31 62.80 

CDM 76.43 40.77 84.62 53.85 63.91 

5. Challenge Systems and Results 

For our final entry to the challenge, we chose five different 

systems. The first (Sys 1) is composed by fusing the best 

performing single dimensional features; F0dr, shimmer and 

SpectralRollOff25 using a GMM back-end adapted from the 
non-optimized UBM. The second system (Sys 2) was composed 

of MFCCs using a GMM back-end adapted from the 60% 

optimized UBM and includes delta coefficients extracted with K 

= 9 for males but no delta coefficients for females. The results 
of this testing and on the fusion of the two systems (Sys 3) are 

shown in Table 8.  

Table 8. GMM likeability classification on dev. and test sets 
System Develop ACC(UW) TEST ACC(UW) 

1. 65.00 50.123 

2. 68.27 51.800 

3. 68.85 48.061 

     To test the performance of SRC we chose two system setups; 

firstly (Sys 4) employing MFCC supervectors adapted from a 

non-optimized UBM, and secondly (Sys 5) MFCC supervectors 
adapted from the 60% optimized UBM. We chose to include 

only highly scored likeable and not likeable speakers from 

development set in both dictionaries (top 20 highly scored male 

and female in both classes; 40 speakers per dictionary). Note 
that the development results in Table 9 are not cross-validated. 

Table 9. SRC likeability classification on dev. and test sets 
System Develop ACC(UW) TEST ACC(UW) 

4 64.60 54.52 

5. 64.98 52.19 

     Interestingly the best classifier on the test set was Sys 4. 

Given the abstract nature of the classification task, this result 

might be explained through the more robust nature of the sparse 

classification [10]. 

6. Conclusion 

Classifying likeability proved to be a very difficult challenge, 

seen clearly in the lack of generalization of results from 
development set to test set. This could be due in part to the fact 

that likeability and its perception is a more abstract and 

personalized speaker trait, reflected in the varying cross 

correlation scores from the listeners who ranked the likeability 
database [7]. The single dimensional features of F0dr, Shimmer 

and SpectralRollOff25 were suited to the classification task for 

the development set but we were unable to reproduce this 

performance in the final classification. Whilst it is possible that 
we tuned our classifier so that it gained optimal classification 

when tested against the development set, we were careful to 

avoid potential system overtraining by using MAP adaptation 

and training our GMM’s with a small number of parameters.  
Potentially, if we repeated the initial testing with the test set 

included, we could find another set of discriminating features. 

Given the benefits gained when testing on the development data, 

UBM optimization is worth exploring further as potential aid to 

paralinguistic classification. The 60% optimized UBM worked 

well with the development set with but not for the test set. SRC 

shows potential as a paralinguistic classifier: it gave our best 

system results on the test set and its performance on the 
development set was close to that of SVM. Future work will 

include testing both of these methodologies on other 

paralinguistic traits to further assess their suitability in this field. 
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