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ABSTRACT 

None of the features commonly utilised in automatic emotion 
classification systems completely disassociate emotion-specific 
information from speaker-specific information. Consequently, this 
speaker-specific variability adversely affects the performance of 
the emotion classification system and in existing systems is 
frequently mitigated by some form of speaker normalisation. 
Speaker adaptation offers an alternative to normalisation and this 
paper proposes a novel bootstrapping technique which involves 
selecting appropriate initial models from a large training pool, 
prior to speaker adaptation of emotion models in the context of 
GMM based emotion classification as an alternative to speaker 
normalisation. Evaluations on the LDC Emotional Prosody and the 
FAU Aibo corpora reveal that an emotion classification system 
based on the proposed bootstrapping method outperforms systems 
based on speaker normalisation as long as a small amount of 
labelled adaptation data is available. It also outperforms speaker 
adaption from common initial models estimated from all training 
speakers. 

Index Terms— Speaker adaptation, emotion classification, 
speaker normalisation, bootstrapping  

1. INTRODUCTION 

Human speech is a rich source of information. Apart from the 
actual linguistic component comprising a sequence of phonetic 
units conveying a message, speech also contains paralinguistic 
cues such as those specific to the speakers and those that express 
emotions. Systems that recognize these cues, such as emotion 
classification systems, are therefore generally designed to function 
in two broad stages: a front-end that extracts features intended to 
be characteristic of these paralinguistic cues and a back-end that 
recognises the emotion based on these features. Ideally, the only 
source of variability in the extracted features would be due to 
differences in the emotions being expressed. However, variability 
in features extracted from speech arises due to numerous other 
reasons as well, including linguistic content (due to differences 
between what is being said) and speaker identity (due to 
differences between who is saying it). These additional sources of 
variability in turn degrade classification performance [1]. 

Back-ends based on Gaussian mixture models (GMMs), while 
conceptually straightforward, have been shown to be extremely 
versatile and powerful in various speech based classification 
systems including emotion classification [2]. Since GMMs model 
the probability distributions of each emotion independent of other 
sources of variability, these sources affect all the models 
indiscriminately. While linguistic and speaker variability would 
most probably be the two most significant influences on an 
emotion classification system, they may not affect performance in 
the same way. It has been suggested that speaker variability is a 
more significant issue [3]. 

Typically some sort of speaker normalisation is utilised to 
reduce speaker specific variability in the features prior to 

modelling and testing, and this has been shown to result in 
significant gains in terms of classification accuracy [4]. A range of 
techniques include mean normalisation, cumulative distribution 
mapping [4] and joint factor analysis [5] have been employed for 
this purpose. All of these techniques attempt to remove the effect 
of speaker variability in the feature (or model) space. However, 
none of these methods for separating the effects of speaker 
variability from that of emotion variability are completely accurate 
and hence in practical scenarios result in some unintentional loss of 
emotion-specific information or in some residual speaker-specific 
information remaining. This observation is supported by the 
observation that speaker independent emotion classification 
systems do not perform as well as speaker dependent ones even if 
they incorporate speaker normalisation. Rather than normalise the 
features in order to minimise the mismatch between trained models 
and the test speaker, an alternative approach is to adapt the 
emotion-specific models of the back-end towards a target speaker. 
This is potentially superior to normalisation since it does not 
remove any information from the feature space. An adaptation 
approach can adapt initial emotion models estimated from training 
speakers’ data to match the target speaker. Typically, adaptation 
such is performed using an initial model trained on multiple 
speakers [6], however such a model would already be affected by 
speaker variability. 

This paper investigates a speaker adaptation approach where 
the initial emotion models are chosen from a large set of speaker 
specific emotion models (from a single speaker so that the models 
are not affected by speaker variability) and compares it with a 
speaker normalisation one for a GMM based emotion classification 
system. 

2. EMOTION RECOGNITION SYSTEM 

2.1. Front-End 
Since the aim of the study is to compare speaker adaptation with 
speaker normalisation, the choice of features is not as critical as the 
fact that the same features are used in all experiments. The 
conventionally employed MFCCs were chosen as features in all 
experiments. The front-end used 20ms frames with Hamming 
window and 50% overlap to extract 12 MFCCs per frame. This 
was followed by a VAD to discard unvoiced frames and only 
features from voiced frames in each utterance were used.  

2.2. Speaker Normalisation 
Feature warping, or cumulative distribution mapping, is a 
technique that maps each feature to a predetermined distribution, 
originally suggested as a method to provide robustness against 
channel mismatch and nonlinear noise effect. Previously, we have 
used a modified feature warping technique as a means of speaker 
normalisation [4] and have utilised it for the same purpose in some 
of the experiments reported in this paper. 

2.3. Back-End 
Almost all current automatic emotion classification systems utilise 
statistical machine learning back-ends such as Gaussian mixture 



models [2], hidden Markov models [7], support vector machines 
[8], neural networks [9]. While some studies that suggest that a 
multi-stage approach, akin to those used in speaker verification 
systems, may give good results [2, 5], there are still no studies that 
strongly indicate any one approach is superior to others. 

Given that the aim of the experiments reported in this paper is 
to compare a speaker adaptation approach to a speaker 
normalisation one, a Gaussian mixture model (GMM) based back-
end was chosen. The main reasons for this choice were that MAP 
adaptation of GMMs is well established [10] and GMM-UBM 
approaches have been used in many speech based classification 
systems. 

2.4. Databases 
The English LDC Emotional Prosody speech corpus [11] and the 
German FAU Aibo Emotion Corpus [12] were used in the 
experiments reported in this paper. The LDC corpus consists of 
speech from professional actors trying to express emotions while 
reading short phrases consisting of dates and numbers. The entire 
database consists of 7 actors expressing 15 emotions for around 10 
utterances each. Data from five emotions, namely anger, sadness, 
happiness, boredom and neutral (no emotion) were used in all 
experiments, set up as 5-class classification problems. For speaker-
dependent systems, 70% of all utterances from each speaker for 
each of the 5 emotions were used as training data and the 
remaining 30% as test data. The systems were trained and tested 7 
times (once per speaker) and the seven results averaged to obtain 
the final accuracies. In all other systems (speaker-independent), a 
7-fold leave-one-out type cross validation was carried out with data 
from 6 speakers used as training and the data from the 7th split in a 
2:8 ratio for use as adaptation and evaluation data in each fold. The 
results of the seven folds were averaged to obtain final accuracies. 

The German Aibo corpus consists of spontaneous emotionally 
coloured children’s speech with recordings of 51 German children 
aged between 10 and 13 from two different schools. This database 
was used in the INTERSPEECH-09 Emotion Challenge [13] for a 
5-class classification task, and data from children of one school 
were used as the training set and data from children of the other 
one as the test set. The unweighted average recall (UAR) was used 
as the evaluation metric in the challenge. In the experiments 
reported in this paper, the same 5-class task was retained along 
with UAR as the evaluation metric. In addition to the UAR, the 
paper also reports the weighted average recall (WAR). The training 
set was also identical to the one defined for the emotion challenge. 
The test set was however, split further into adaptation and 
evaluation sets. 10% of all speech chunks from each speaker in the 
test set were allocated to the adaptation set and the remaining 90% 
to the evaluation set. Further, unlike the LDC corpus, the data from 
the Aibo corpus were not used in speaker-dependent systems since 
the initial training and test set division did not allow for common 
speakers. All speaker-independent systems reported in this paper 
that were tested on the Aibo corpus were evaluated only on the 
evaluation set (90% of the original test set), regardless of whether 
the system used the adaptation data or not. This was done to ensure 
the results could be compared to each other. 

2.5. Baseline Speaker-Independent System 
The speaker-independent (S-IND) systems used in the experiments 
reported in this paper used a GMM to model the feature 
distributions of each emotion. These GMMs were trained on 
labelled data from multiple speakers from the training set and 
tested on data from speakers not included in the training set. When 
carried out, speaker normalisation was applied to the features prior 

to training and testing, and no adaptation was performed. Table 1 
reports the performance of the speaker-independent system with 
and without speaker normalisation when evaluated on the LDC 
database while Table 2 reports the performance obtained when 
evaluated on the Aibo corpus. The small drop in UAR when 
normalisation is carried out is most likely due to the unbalanced 
nature of the database. 

2.6. Baseline Speaker-Dependent System 
The configuration of the speaker-dependent (S-DEP) system used 
is almost identical to the speaker-independent system, with one 
difference. Namely, the training and test data came from the same 
speaker. The two sets (train and test) were still distinct in that no 
utterances occurred in both. Table 1 reports the classification 
accuracies obtained when the speaker-dependent system was 
evaluated on the LDC corpus. Given that speaker normalisation is 
redundant in a speaker-dependent system, it is not surprising to see 
that its use only results in a small drop in performance. 

Table 1: Classification accuracies for baseline systems (LDC corpus). 

 
System 

Overall Classification Accuracy (%) 

with 
normalisation 

without 
normalisation 

Speaker-Dependent 81.9 % 83.8 % 
Speaker-Independent 55.1 % 51.6 % 

Table 2: Classification accuracies for baseline systems (Aibo corpus). 

System 

Recall  (%) 

with normalisation without 
normalisation 

Speaker-
Independent 

UA WA UA WA 

35.7 % 27.7 % 37.7% 35.5 % 

3. SPEAKER ADAPTATION 

3.1. Motivation 
Comparing the classification accuracies of the speaker-dependent 
system to those of the speaker-independent system (without 
normalisation) in Table 1 makes it clear that speaker variability 
plays a significant role in emotion classification systems and needs 
to be addressed. If the feature vectors corresponding to different 
emotions can be thought of as occupying different regions of the 
feature space (with the amount of overlap being proportional to the 
confusability between the overlapping emotions), the distribution 
of these regions is speaker-specific to some degree. Therefore 
models trained on data from one (or more) speaker(s) may not 
coincide with the regions corresponding to another and hence 
result in lower classification accuracy. 

 
Figure 1: Conceptual illustration of speaker normalisation approach 

Speaker normalisation attempts to address this issue by 
modifying the feature vectors for each speaker in a manner such 



that the emotion regions for different speakers align in the 
modified feature space (dashed ellipses in Figure 1). Speaker 
adaptation on the other hand uses models trained on one (or more) 
speaker(s) and attempts to modify the model to match the regions 
of the target speaker (Figure 2). Typically, these initial models are 
trained on speech from multiple speakers to create a common set of 
models that are then adapted to match each of the target speakers. 
In this scenario however, the initial models are affected by the 
speaker variability present in the training data and this may affect 
the accuracy of the adapted models. The proposed technique aims 
to overcome this issue. 

 
Figure 2: Conceptual illustration of speaker adaptation approach 

3.2. Proposed Speaker Bootstrapping 
Given sufficient training data, it is possible to train speaker-
dependent models (without speaker normalisation) for each 
emotion, giving rise to one model per speaker per emotion. It is 
reasonable to suppose that for a target test speaker, some of these 
models will be a better match than the others. The proposed 
bootstrapping technique involves using a small amount of 
adaptation data (labelled) from a test speaker, selecting the closest 
emotion model set from the trained speaker-dependent model sets 
and using MAP adaptation [10] to further improve them (with 
respect to the target speaker) as shown in Figure 3. These adapted 
models can then be used for emotion recognition. 

 
Figure 3: Block diagram outlining the proposed bootstrapping 

technique 

In order to determine the best set of emotion models for 
adaptation, for each emotion the likelihoods of all speaker-specific  
models (estimated from training data) given the speech 
corresponding to that emotion from the adaptation data (for the 
target speaker) were computed. For emotion then, the trained 

speaker-dependent model(s) with the highest likelihood were then 
selected for MAP adaptation. It should be noted that the models 
selected for adaptation for the each of the different emotions may 
correspond to a different training speaker. i.e., 

ࣅ ൌ argmax
ࣅ
ሺሻ
ܲ ቀ܆ቚࣅ

ሺ	ሻቁ (1) 

where, ࣅ is the speaker dependent model corresponding to 
emotion ݅ chosen as the initial model for adaptation, ࢄ denotes the 

adaptation data corresponding to emotion ݅, and ࣅ
ሺሻ denotes the 

model of emotion ݅ estimated from data from speaker ݆. 

In some cases, it is possible that none of the training speakers’ 
models match the target speaker particularly well, or more than one 
training speaker’s models provide a good match. In both cases, it 
may be more suitable to select the n-best matches for each emotion 
and adapt the hybrid model. Such a hybrid model can be created by 
training a new GMM using all the data that went into training the 
n-best selected GMMs for that emotion. 

4. EXPERIMENTAL RESULTS 

The proposed speaker bootstrapping technique from the single best 
initial model was first tested on the LDC corpus. Training, 
adaptation and evaluation datasets were set up as outlined in 
section 2.4. The classification accuracies obtained are given in 
Table 3. Bootstrapping from n-best models was not attempted on 
the LDC corpus due to the small number of speakers available. 
Comparing the accuracy of the system employing speaker 
normalisation (55.1 %) to that employing the proposed 
bootstrapping technique (70.4 %), it is clear that an adaptation 
based approach is potentially superior to a normalisation based on, 
even though it still is not as good as a speaker dependent system 
(83.8 %). 

Table 3: Confusion Matrix corresponding to system employing 
bootstrapping from 1-best model (LDC corpus) 

 Neutral Anger Sad Happy Bored 
Neutral 64.1 % 0.0 % 10.3 % 5.1 % 20.5 % 
Anger 0.0 % 91.2 % 1.8 % 5.3 % 1.8 % 
Sad 1.8 % 3.5 % 59.7 % 12.3 % 22.8 % 
Happy 1.6 % 21.9 % 9.4 % 54. 7 % 12.5 % 
Bored 2.9 % 1.4 % 8.6 % 7.1 % 80.0 % 

Overall Classification Accuracy = 70.4% 

As an alternative to the proposed bootstrapping technique, a 
system that adapted speaker independent emotion models towards 
the target speaker was also implemented and found to have an 
overall accuracy of 66.2 %. The lower performance relative to the 
proposed system is most likely because in this case the initial 
speaker independent models are affected by speaker variability. 
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Figure 4: Five-class emotion classification accuracy as a function of the 

amount of adaptation data (LDC corpus) 



Finally, it is reasonable to expect that the performance of the 
proposed technique will improve with increasing amounts of 
adaptation data. In order to do this, a different adaptation-
evaluation split was utilised, namely 70% of the test speakers data 
was used for adaptation and the remaining 30% for evaluation. The 
classification accuracies obtained are graphed in Figure 4.  

As expected, the system performance is observed to increase 
with the size of the adaptation dataset. However, this graph should 
only be considered indicative of the expected trend and the 
accuracies not compared directly to the other results since the 
evaluation dataset is different. 

Following the tests on the LDC corpus, the proposed system 
was validated on the FAU Aibo corpus. The training and test sets 
were separated as suggested for the INTERSPEECH-09 Emotion 
Challenge and the evaluation and adaptation sets split as outlined 
in section 2.4. Bootstrapping from several n-best initial models was 
evaluated, as listed in Table 4. It should be noted that since the 
INTERSPEECH-09 Emotion Challenge did not define an 
adaptation dataset, these results cannot be directly compared with 
the results based on the challenge guidelines. This was unavoidable 
since the proposed technique requires adaptation data from the 
target speaker. 

Table 4: UARs for systems employing bootstrapping from n-best 
models (Aibo corpus) 

 Recall (%) 
n UA WA 
1 36.6 % 47. 5 % 

2 37.7 % 45.1 % 

3 38.5 % 44.5 % 

4 37.7 % 44.1 % 

5 36.7 % 42.9 % 

From the accuracies reported in Table 4, it can be seen that 
bootstrapping from more than one model can in fact provide an 
improvement in performance when compared with bootstrapping 
from just one model. The best performance (in terms of UAR) in 
this case turns out to be from the system that bootstraps off 3 
speakers per emotion. The confusion matrix corresponding to this 
system is reported in Table 5. Also, as was done for the LDC 
corpus, a system that adapted speaker-independent emotion models 
(instead of n-best speaker specific models) was evaluated on the 
Aibo corpus and was found to exhibit an UAR of 37.4% (WAR of 
42.1%). While the system based on the proposed technique 
exhibits a much smaller improvement over the one based on 
speaker normalisation when testes on the Aibo corpus as opposed 
to the LDC corpus, this is probably due to the imbalance in the 
adaptation data, which contains more neutral speech than speech 
representing other emotion classes. Further, this imbalance affects 
the speaker normalisation process even more severely than it does 
the proposed bootstrapping technique. It should finally be noted 
that the proposed technique is limited by the fact that a small 
amount of emotionally labelled adaptation data from the target 
speaker is required. 

Table 5: Confusion matrix corresponding to system employing 
bootstrapping from 3-best models (Aibo Corpus) 

 Angry Emphatic Neutral Positive Rest 
Angry 47.5 % 31.5 % 10.8 % 1.3 % 8.9 % 

Emphatic 21.7 % 59.3 % 12.1 % 1.4 % 5.5 % 

Neutral 18.1 % 26.2 % 43.4 % 2.6 % 9.8 % 

Positive 9.9 % 6.6 % 44.0 % 24.7 % 14.8 % 

Rest 17.5 % 24.0 % 36.9 % 4.0 % 17.7 % 

6. CONCLUSION 

This paper has shown that speaker adaptation is a viable and 
potentially superior alternative to speaker normalisation in the 
context of emotion classification. While a normalisation based 
approach, by its nature, always results in some information being 
lost, an adaptation based approach faces no such constraint and its 
performance is bounded only by that of a speaker-dependent 
system. In fact, given sufficient adaptation data, the system 
employing the proposed bootstrapping technique seems to 
converge to a speaker dependent system, even though this situation 
would rarely ever occur in practice. The experimental results 
included in this paper show that systems based on the proposed 
technique consistently outperform those based on normalisation. 
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