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ABSTRACT 

All features commonly utilised in speech based emotion 
classification systems capture both emotion-specific information 
and speaker-specific information. This paper proposes a novel 
method to gauge the effect of speaker-specific information on 
emotion modelling based on two measures: a Monte Carlo 
approximation to KL divergence and an estimate of feature 
variability based on diagonal covariance matrices. In addition, a 
novel speaker normalisation technique based on joint factor 
analysis is also proposed. This method is analogous to channel 
compensation in speaker verification systems, with one significant 
extension. The model domain compensation is mapped back to 
frame-level features, allowing for use in a wider range of emotion 
classification frameworks and in conjuncture with other 
normalisation techniques. Preliminary evaluations on the 
IEMOCAP database suggests that the proposed technique 
improves the performance of GMM based classification systems 
based on widely employed features such as pitch, MFCCs and 
deltas. 

Index Terms— KL divergence, joint factor analysis, 
speaker normalisation, emotion classification 

1. INTRODUCTION 

Systems that recognise paralinguistic cues based on speech, such 
as emotion classification systems, generally operate in two broad 
stages. A front-end that extracts features characteristic of the 
paralinguistic information of interest and a back-end that makes 
classification decisions based on these features. Almost universally 
features tend to be vector representations of speech signals and 
back-end classification decisions are based on differences in the 
statistical properties of the distributions of the feature vectors. 
Consequently the performance of speech based emotion 
classification systems depends on two factors, namely, the degree 
to which the underlying statistical properties of the feature vector 
distributions estimated from speech corresponding to different 
emotions differ and the accuracy with which these differences can 
be modelled by the back-end. The first factor determines an upper 
bound on the classification accuracy of any emotion classification 
system given a set of features, while the second factor leads to 
differences in the classification accuracies of the different systems. 

Ideally, the statistical properties of feature vector distributions 
would vary significantly between different emotions (herein 
referred to as emotional variability) and not vary due to any other 
reason. However, in reality, they also vary significantly due to 
differences between different speakers (speaker variability), due to 
differences in linguistic content (phonetic variability) and also 
differences in other paralinguistic cues. These additional sources of 
variability in turn affect the ‘classification rules’ inferred by the 
back-end and degrade classification performance [1-3]. While 
phonetic and speaker variability would most probably be the two 
most significant influences on an emotion classification system, it 

has been suggested that speaker variability is a more significant 
issue in many commonly utilised features [4]. 

Approaches to compensate for speaker variability in emotion 
classification systems can be broadly categorised into those that 
explicitly personalise the systems towards a target speaker or those 
that alter the feature vectors or models of their distributions to 
minimise the effect of speaker variability on them. The former 
category includes systems with back-ends trained exclusively on 
data from the target speaker [5] and those with a generic back-end 
that is then suitably adapted towards target speakers [6, 7]. The 
latter category consists of techniques, referred to herein as speaker 
normalisation techniques, which aim to reduce speaker variability 
either in the feature domain or in the domain of models of feature 
distributions. Feature domain and model domain techniques are 
both designed to minimise the effect of speaker variability on the 
statistical properties of the feature vector distributions. 
Specifically, feature domain techniques modify feature vectors 
directly [8-10] while model domain techniques modify 
representation of models (such as supervectors) [11, 12]. In almost 
all cases, the speaker normalisation techniques have shown 
improved performance (to varying degrees) but there has been little 
work analysing in detail how speaker variability affects the feature 
distributions in the first place. Such analyses may help motivate 
speaker normalisation techniques designed to improve them. This 
paper attempts such an analysis and presents a normalisation 
technique leading from the analysis. 

2. RELATION TO PRIOR WORK 

While studies have shown that speaker variability has a 
negative impact on the performance of emotion classification 
systems [2] and have proposed speaker normalisation techniques 
that improve performance [8-12], there is a dearth of analyses on 
how this speaker variability manifests itself. This paper reports a 
novel investigation of both the nature and the extent of the effect of 
speaker variability on feature vector distributions. Further, based 
on this analysis, it proposes a novel speaker normalisation 
approach based on joint factor analysis (JFA) to compensate for 
some of the effects identified (and roughly quantified). A Speaker 
ID system adapted for emotion classification [13] had included 
JFA (applied in the model domain on supervectors) as part of the 
framework but was used with restricted modelling ability (small 
number of parameters) and concluded the improvements were 
negligible. The technique proposed in this paper differs from 
speaker ID type approaches [14-16] by applying a model domain 
JFA based normalisation and extending it by mapping the 
compensation back to the feature domain. Such an approach also 
allows it to be used in a wider range of systems. 

3. DATABASE 

The IEMOCAP (Interactive emotional dyadic motion capture) 
database [17] was used in all the work reported in this paper. The 
database consists of audio-visual recordings of five sessions of 



dyadic mixed-gender pairs of actors in either improvised affective 
scenarios or scripted scenarios. The recorded dialogues have been 
manually segmented into utterances, each of which have been 
categorically annotated with emotion. In the work reported in this 
paper, the manually segmented audio recordings from all 10 
speakers associated with the emotional categorical labels anger, 
happiness, excitation, neutrality and sadness were used. Further, 
the classes of happiness and excitation were merged into a single 
class (happiness) to create a 4 emotional class scenario as in [11]. 

Half the utterances from each speaker, corresponding to each 
of the 4 emotional classes, were used as a training set and the other 
half as a test set in all experiments. This approach was taken 
instead of the somewhat more common leave-one-out cross-fold 
validation since the focus of the paper is on speaker variability and 
training data from all 10 speakers was used to learn the 
normalisation parameters. It should be noted that the all 
classification experiments reported were still carried out in a 
speaker-independent manner using data from all the speakers 
together without identifying individual speakers in both training 
and testing phases. It has been suggested that JFA parameters, such 
as those in the proposed technique, are not estimated accurately 
with small amounts of data [13] and IEMOCAP is one of the few 
publically available databases that contains a reasonable large 
amount of speech data from each speaker for each emotion. 

4. SPEAKER AND EMOTIONAL VARIABILITY 

This section presents a novel analysis of the effect of emotion 
variability and speaker variability on a feature space. Specifically, 
it compares models of probability distributions of features 
estimated from speech corresponding to different speakers and 
different emotions. Gaussian mixture models (GMMs) are used to 
model probability distributions on the feature space and symmetric 
KL divergence is used as an estimate of dissimilarity between 
models. All features were extracted from 20ms frames (except 
pitch) with shifts between consecutive frames. Only voiced frames 
(voicing determined by the pitch extraction algorithm [18]) were 
used in all analyses and by all classification systems. 

4.1 Symmetric KL Divergence 
Given an ܦ-dimensional (real-valued) feature vector, ܠ ∈ Թ, let ࢄ 
denote the feature space and च denote the space of probability 
density functions defined on ࢄ. For two probability density 
functions, ଵܲ, ଶܲ ∈ च, the Kullback-Leibler (KL) divergence of ଶܲ 
from ଵܲ is defined as [19]: 

ሺܫ  ଵܲ| ଶܲሻ 	ൌ න ଵܲሺܠሻ ln ቆ
ଵܲሺܠሻ

ଶܲሺܠሻ
ቇ ܠ݀

ࢄ
 (1) 

As ܫ is an asymmetric divergence measure, i.e., 
ሺܫ ଵܲ| ଶܲሻ ് ሺܫ ଶܲ| ଵܲሻ, a symmetric KL divergence is defined as 
[19]: 

ௌሺܫ  ଵܲ, ଶܲሻ ൌ
1
2
ሺܫ| ଵܲ| ଶܲሻ  ሺܫ ଶܲ| ଵܲሻ| 

(2) 

Given two GMMs, ࣡ଵ, ࣡ଶ ∈ च, the symmetric KL divergence 
between them cannot be computed in closed form. Typically an 
approximation based on MAP adapted GMMs (from a suitable 
UBM) is utilised [20, 21]. In this work, the GMMs are not obtained 
via MAP adaptation and hence a Monte-Carlo approximation of 
the symmetric KL divergence, ܫመௌ,  is used based on 

න݂ሺܠሻܲሺܠሻ݀x
ࢄ

→ lim
ே→ஶ

1
ܰ
݂ሺܠ௧ሻ

ே

௧ୀଵ

, ܰ	ݏܽ → ∞ (3) 

where ܲ ∈ च and the samples ܠ௧ are assumed to be drawn 
from ܲሺܠሻ. Thus, 

,መௌሺ࣡ଵܫ ࣡ଶሻ ൌ
1
2ܰ

ቮ ln࣡ଵሺܠሻ
భ࣡~ܠ

െ  ln࣡ଶሺܠሻ
భ࣡~ܠ

  ln࣡ଶሺܠሻ
మ࣡~ܠ

െ  ln࣡ଵሺܠሻ
మ࣡~ܠ

ቮ 

(4) 

where ܠ~ܲ denotes that ܠ are i.i.d samples drawn from the 
probability density function ܲሺܠሻ ∈ च and ܰ is the number of data 
samples drawn from ࣡ଵሺܠሻ and ࣡ଶሺܠሻ.  

4.2 Estimating Variability – KL Divergence 
Given a set of GMMs, ॳ ൌ ሼ࣡ ∶ 1  ݅   ሽ, we define the KLܭ
model separability, Γሺॳሻ, as the average pairwise KL divergence 
between all possible pairs of GMMs from the set ॳ. i.e., 

 Γሺॳሻ ൌ
1

ܭሺܭ െ 1ሻ
  ,መௌ൫࣡ܫ ࣡൯

,ஷ

 (5) 

It can be seen that a set of GMMs that perform well as a 
classifier will have a large degree of mutual dissimilarity and 
consequently a large KL model separability when compared with a 
set of GMMs that are more similar to each other. (It should be 
noted that the converse is not true, i.e., a large KL model 
separability does not necessarily imply the set of GMMs will 
perform well as a classifier). 

From the training dataset (as outlined in section 2), speaker-

dependent GMMs, ࣡
ሺሻ, were trained on data from each speaker ݆ 

(10 speakers) corresponding to each emotion ݇ (4 emotions). From 
these GMMs, the speaker specific-emotion model separability 
scores, ߛ, were estimated from each set of speaker specific 
emotion models and the emotion-specific speaker model 
separability scores, ߛ௦, from each set of emotion specific speaker 
models. 

ሺ݆ሻߛ  ൌ Γ൫ॳ
ሺሻ൯ and ௦ሺ݇ሻߛ ൌ Γ ቀॳ௦

ሺሻቁ (6) 

where ॳ
ሺሻ ൌ ቄ࣡

ሺሻ ∶ 	 ∀݇ቅ and ॳ௦
ሺሻ ൌ ቄ࣡

ሺሻ ∶ 	 ∀݆ቅ. 

A comparison of ߛ with the speaker-independent emotion 
model separability score, ߛഥ , obtained from a set of emotion 
specific GMMs trained on data from all speakers (i.e., speaker 
independent models) can be used to estimate the effect of speaker 
variability on the ability to distinguish between different emotional 
classes based on the statistical properties of the feature space as 
modelled by the GMMs. Similarly a comparison of ߛ௦ with the 
emotion independent speaker model separability score, ߛ௦ഥ , can be 
used to estimate the effect of emotion variability in the feature 
space on distinguishing between speakers. 

ഥߛ  ൌ Γሺॳሻ and	ߛ௦ഥ ൌ Γሺॳ௦ሻ (7) 

where ॳ ൌ ሼ࣡ ∶ 	 ∀݇ሽ, ॳ௦ ൌ ൛࣡ሺሻ ∶ ∀݆ൟ, ࣡ is the GMM 
trained on data from all speakers corresponding to emotion ݇ and 
࣡ሺሻ is the GMM trained on data from speaker ݆ corresponding to 
all emotions. 

The four panels of Fig. 1 compare ߛ and ߛ௦ with ߛഥ  and ߛ௦ഥ  for 
two different feature spaces: MFCCs alone and pitch + MFCC + 
ΔMFCCs (concatenated). 
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Figure 1: Emotion model separability comparison for (A) MFCC (C) 

pitch + MFCC + ઢMFCC and speaker model separability comparison 
for (B) MFCC (D) pitch + MFCC + ઢMFCC. Difference between ࢋࢽ 

and ࢋࢽതതത estimates the effect of speaker variability on emotion 
classification and vice versa for ࢙ࢽ and ࢙ࢽതതത 

4.3 Estimating Variability – Model Covariance 
In addition to quantifying the effect of variability using model 
separability, an alternative measure may be estimated from the 
covariance matrices of mixture components of GMMs that model 
class-conditional probability densities on the feature space. Given a 
GMM, ࣡, with mixtures constrained to have diagonal covariance 
matrices, we define the average local variance of the GMM, Λሺ࣡ሻ, 
as 

 
Λሺ࣡ሻ ൌ

1
ܯ ∙ ܦ

tr ൭ΣିଵΣ

ெ

ୀଵ

൱ (8) 

where, trሺ∙ሻ denotes the matrix trace, ܦ is the dimensionality 
of the feature space, ܯ is the number of mixtures in ࣡, Σ is the 
diagonal covariance matrix corresponding to the ݅-th mixture 
component and Σ is the covariance matrix corresponding to a 
single mixture GMM, መ࣡, trained on the same data as ࣡ was trained 
on. Σ is used to compensate for differences in scale across the 
different dimensions of the feature space. 

Since the different mixture components of a GMM generally 
take significant (i.e., not almost zero) values on different localised 
regions of the feature space, the average local variance of a GMM, 
Λሺ∙ሻ, can be thought of as an estimate of the spread of data 
modelled by the GMM, within clusters in the feature space. This 
suggests a straightforward way to compare the change in data 
variability in one model (GMM) compared with another by taking 
the ratio of their average local variances. Hence, to estimate the 
effect of speaker variability on emotion models, we estimate the 
emotion-specific average local variability ratio for each speaker 
with respect to speaker independent models. We then take the 
average value across all models as a measure of overall change in 
localised data spread corresponding to emotion models due to 
speaker variability, ߟ. Since this measure is a ratio, a value greater 
than one indicates an increase in local spread and vice versa. A 
similar measure can also be obtained to quantify the change in 
localised data spread corresponding to speaker models due to 
emotion variability, ߟ௦. 

 
ߟ ൌ

1

௦ܰ ∙ ܰ


Λቀ࣡
ሺሻቁ

Λሺ࣡ሻ

ேೞ

ୀଵ

ே

ୀଵ

 

௦ߟ ൌ
1

௦ܰ ∙ ܰ
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ୀଵ

ே

ୀଵ

 

(9) 

 
 

(10) 

where, ௦ܰ is the number of speakers, ܰ is the number of 

emotions, ࣡
ሺሻ is the GMM trained on data from speaker ݆ 

corresponding to emotion ݇, ࣡ is the GMM trained on data from 
all speakers corresponding to emotion ݇ and ࣡ሺሻ is the GMM 
trained on data from speaker ݆ corresponding to all emotions. 

Table 1 gives the ݊ and ߟ௦ values estimated from the training 
dataset (as outlined in section 2) for the two feature spaces: 
MFCCs and pitch+MFCC+ΔMFCC  (concatenated).  

Table 1: ࢋࣁ and ࢙ࣁ values estimated on training set 

Feature Space ࢙ࣁ ࢋࣁ 
MFCC 0.728 0.801 
Pitch + MFCC + ΔMFCC 0.912 0.937 

4.4 Speaker Variability in Feature Space Clustering 
It is reasonable to assume that the data corresponding to each 
emotion are distributed in the feature space in clusters (since a lack 
of any cluster-like structures would suggest there is little or no 
information contained in the distribution and that the feature is 
unsuitable for the classification problem at hand). The results 
reported in Figure 1 and Table 1 lend strong support to the 
hypothesis that speaker variability affects the distribution of data in 
the feature space which, in terms of the clusters in the feature 
space, can mean some combination of shifting of clusters, resizing 
of clusters and destruction/creation of clusters. If a further 
assumption is made that the underlying structure of the clusters is 
representative of the generic acoustic space and that emotion and 
speaker specific variability manifests as variations to this structure 
(akin to the assumption made in GMM-UBM based approaches to 
speaker verification), it is reasonable to expect that most of the 
variability would manifest as shifting and resizing of clusters. 

In order to estimate the relative magnitudes of both effects 
(shifting and resizing) due to speaker variability on emotion 
classification, speaker specific-emotion model separability scores, 

ෝߛ ሺ݆ሻ ൌ Γ ቀॳ
ሺሻቁ were estimated from speaker specific sets of 

emotion models with mixture covariances artificially scaled to 
match the average local variance of the corresponding speaker 

independent emotion model. Here, ॳ
ሺሻ ൌ ቄ࣡

ሺሻ
: ∀݇ቅ and ࣡

ሺሻ
 is 

identical to ࣡
ሺሻ, with the exception that all its covariance matrices 

are scaled by the factor 
ஃሺ࣡ೖሻ

ஃቀ࣡ೖ
ሺೕሻቁ

. 
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Figure 2: Comparison of ࢋࢽ (black), ࢋࢽෞ (blue) and ࢋࢽതതത (red) for: (a) 

MFCC; (b) pitch+MFCC+ઢMFCC 



Comparing ߛ and ߛෝ  to ߛഥ  in Figure 2 suggests that a 
significant component of the total effect of speaker variability 
(difference between ߛ and ߛഥ ) is due to shifts in clusters 
(difference between ߛෝ  and ߛഥ ). In particular, for 
pitch+MFCC+ΔMFCC (Figure 2b), the magnitude of the effect of 
cluster resizing is small compared to that of cluster shifting. 

5. SPEAKER NORMALISATION 

The observations made in section 3 suggest that one significant 
effect of speaker variability on feature vectors is the translation of 
clusters in the feature space. Hence, one approach to speaker 
normalisation can be thought of as an attempt to shift these clusters 
to a location common for all speakers. Joint Factor Analysis (JFA) 
based channel compensation techniques in speaker verification are 
designed to exploit similar assumptions regarding speaker and 
channel variability, and motivate the approach employed here. 

Given a ܯ-mixture GMM, ࣡, a supervector representation 
(taking into account only means) can be defined as ैሺ࣡ሻ ൌ
ሾࣆଵ

ଶࣆ		்
் ெࣆ		…

் ሿ், where ࣆ ∈ Թ is the mean of the ݅-th Gaussian 
component. The underlying assumption in JFA based 
normalisation is that ैሺ࣡ሻ can be written as 

 ैሺ࣡ሻ ൌ ॠ  Vߙ  Uߚ W߳ (11) 

where, ॠ ∈ Թெ is an emotion and speaker independent 
supervector, V ∈ Թெൈேೇ is a matrix of ‘eigenemotions’ 
(analogous to eigenvoices), U ∈ Թெൈேೆ  is a matrix of 
eigenspeakers (analogous to eigenchannels), W ∈ Թெൈெ is a 
diagonal matrix, ߙ ∈ Թேೇ represents emotion factors, ߚ ∈ Թேೆ  
represents speaker factors, ߳ ∈ Թெ is a random vector and W߳ 
represents the emotion variability not in the span of the 
eigenemotions. 

In the training phase for the proposed speaker normalisation 
scheme, a Universal Background Model (UBM), ࣡, is estimated 
from the training set and ॠ ൌ ሾࣆഥଵ

ഥଶࣆ		்
் ഥெࣆ		…

் ሿ், where ࣆഥ is the 
mean of the ݅-th component of the UBM. From the zeroth and first 
order Baum-Welch statistics of the training set with respect to the 
UBM, the hyper-parameters, V, U and W are estimated. 

Normalisation is carried out on all feature vectors on a per 
utterance basis. Let ॏ ൌ ሼܠଵ, ,ܠ … ,  ሽ be the set of features܂ܠ
vectors extracted from all the frames in an utterance. The emotion 
and speaker factors, ߙ and ߚ, are estimated from the Baum-Welch 
statistics corresponding to ॏ with respect to ࣡. Finally, the frame-
level normalised feature vectors, ܠܜ, are computed as: 

 
ܜܠ ൌ ܜܠ െ߸௧

ሺሻ
ሺܸሻߙ

ெ

ୀଵ

, ܜܠ	∀ ∈ ॏ (12) 

where, ܜܠ is the raw feature vector, Vሺሻ ∈ Թൈேೇ	is a sub-
matrix of V corresponding to the ݅-th Gaussian component of ࣡ 

such that V ൌ ൣVሺଵሻ
் 		Vሺଶሻ

் …	Vሺெሻ
் ൧

்
 and ߸௧

ሺሻ is the Gaussian 
posterior probability of ܜܠ corresponding to the ݅-th mixture of ࣡. 

While the training phase of the proposed speaker 
normalisation technique is identical to the estimation of JFA hyper-
parameters in speaker verification systems, the normalisation phase 
differs. Specifically, in the proposed technique the model 
(supervector) domain normalisation is mapped back to the feature 
space, allowing for any machine learning paradigm to be applied 
on the normalised feature space. This mapping process is similar to 
the mapping process of the feature domain Weiner nuisance 
modelling [22]. It also allows for other feature domain 

normalisation techniques to be applied, both before and after the 
proposed technique if desired. Additionally, mapping to the feature 
level also means any back-end that operates on frame based 
features or their derivatives/functionals may be employed in the 
back-end. 

6. EXPERIMENTAL RESULTS 

Preliminary emotion classification experiments were carried out 
with a standard GMM back-end (256 mixture components) to 
validate the proposed speaker normalisation technique. Only 
voiced frames were used in both training and testing phases, with 
voicing being determined by the pitch extraction algorithm [18]. 
All accuracies reported in this section are unweighted average 
recall (UAR) of the four emotional classes (cf. section 2 for 
classes). 

The proposed technique has, at the highest level, three 
controllable parameters: the number of eigenemotions, ܰ, and the 
number of eigenspeakers, ܰ and the number of mixtures in the 
UBM, ܯ. For all the feature spaces on which classification results 
are reported, ܰ and ܰ were varied between 2 and 12, taking even 
numbered values, and ܯ was varied among 64, 128 and 256; from 
these the highest accuracies are reported in Table 2. From these 
results it can be seen that the proposed speaker normalisation 
technique improves the performance of a GMM-based emotion 
classification systems on all the features vectors that were tested. 

 Table 2: Unweighted average recall (UAR) for different front-
ends with and without the proposed JFA based normalisation. 

Feature Space 
UAR (%) 

Without 
Norm. 

With 
Norm. 

Pitch + Energy (64=ܯ, ܰ=8, ܰ=2) 40.4 % 40.5 % 
MFCC (128=ܯ, ܰ=6, ܰ=6) 53.0 % 54.3 % 
Pitch + MFCC (128=ܯ, ܰ=8, ܰ=12) 52.8 % 54.6 % 
MFCC + ΔMFCC (64=ܯ, ܰ=10, ܰ=2) 54.4 % 55.3 % 
Pitch + MFCC + ΔMFCC (128=ܯ, ܰ=4, ܰ=4) 53.3 % 55.3 % 

7. CONCLUSIONS 

This paper has presented a novel analysis of the effect of speaker 
variability on emotion specific feature vector distributions. The 
results of the analysis suggest that a significant component of the 
effects manifests as shifts in clusters of feature vectors. Reversing 
these shifts can therefore serve as speaker normalisation and the 
idea forms the core of the proposed JFA based technique. Joint 
factor analysis in a GMM supervector space provides a framework 
for modelling translations of clusters in the feature space from an 
initial model (UBM). Parameters of this framework (JFA hyper-
parameters) can be estimated from training data to distinguish 
translations due to speaker variability from translations due to 
emotion variability. It is proposed that this framework then be 
applied to models of any utterance to compensate for any estimated 
cluster translations due to speaker variability. Furthermore, this 
model domain compensation is mapped back to the feature domain 
so that the JFA framework does not place any constraints on any 
other component of the emotion classification system. 
Experimental results included in the paper suggest that the 
proposed technique consistently improves classification 
performance. 
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