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Abstract 

This paper focuses on speech based emotion classification 

utilizing acoustic data. The most commonly used acoustic 

features are pitch and energy, along with prosodic information 

like the rate of speech. We propose the use of a novel feature 

based on the phase response of an all-pole model of the vocal 

tract obtained from linear predictive coefficients (LPC), in 

addition to the aforementioned features. We compare this 

feature to other commonly used acoustic features based on 

classification accuracy. The back-end of our system employs a 

probabilistic neural network based classifier. Evaluations 

conducted on the LDC Emotional Prosody speech corpus 

indicate the proposed features are well suited to the task of 

emotion classification. The proposed features are able to 

provide a relative increase in classification accuracy of about 

14% over established features when combined with them to 

form a larger feature vector. 

 

Index Terms: emotion detection, group delay, linear 

predictive coefficients, probabilistic neural networks 

1. Introduction 

One significant difference between human-human interaction 

and human-machine interaction is the lack of emotional 

intelligence on part of the machine. Salovey et al. [1] defined 

emotional intelligence as having four branches: perception of 

emotion, emotions facilitating thought, understanding 

emotions and managing emotions. The focus of this paper is 

on the first of these four branches, to build a system that is 

able to detect the emotional state of a person based on speech. 

Automatic emotion detection of humans has a broad range of 

applications and as such has attracted considerable attention 

from researchers in the last few years. The range of 

applications extends from tele-monitoring of patients to 

computer based tutoring systems to call centre services where 

angry customers are automatically transferred to trained 

human representatives [2]. Depending on the application, the 

emotion classification system may have different 

requirements. For example, in the case of a system for tele-

monitoring patients the target speaker is always the same 

person and the system can be speaker-dependent. However, a 

system designed for the aforementioned call centre 

application would have to be speaker-independent since every 

caller is a target speaker. 

This paper looks at an emotion detection system that does 

not utilize semantic or linguistic information. Such systems 

do not require any language models, and rely solely on 

prosodic and/or spectral features. Based on these features, 

classifiers such as neural networks, hidden Markov models 

(HMM), Gaussian mixture models (GMM) and support vector 

machines (SVM) are used to detect the emotional state of the 

speaker [2-6]. Among the acoustic features used, those 

derived from pitch and energy, are the most popular. However 

both these features characterise only the vocal chords’ state. A 

feature vector that can characterise the vocal tract as well as 

the vocal chords could further improve classification 

accuracy. 

In this paper, we propose the use of a novel feature vector 

based on the all-pole filter model of speech production that 

forms the basis of LPC analysis. More specifically, the feature 

vector is extracted from the phase characteristics of the all-

pole filter obtained from a speech segment. 

Group delay has been used as a feature for phoneme 

recognition by Murthy et al. [7], however they compute it 

from the Fourier transform of the signal and not from the LPC 

coefficients. The advantage of the method proposed in this 

paper when compared to their approach is that the excitation 

component is separated from the vocal tract characteristics by 

the LPC algorithm. 

2. Proposed Group Delay Feature 

The all-pole filter model of speech production describes 

speech signal as the response of an all-pole when excited by 

either a pulse train (voiced speech) or random noise 

(unvoiced speech). The excitation signal characterises the 

vocal chords’ while the filter characterises the vocal tract of 

the speaker. We believe the commonly used pitch and energy 

based features depend on the excitation signal and 

consequently characterise the state of the vocal chords. The 

features proposed in this paper are an effort to describe the 

state of the vocal tract. The magnitude responses of the all-

pole filters provide important information about formant 

locations which determine the phoneme and have been used 

as features in speech recognition and speaker verification 

problems. However, the phase response has rarely been 

studied as a feature. We believe the group delay of the all-

pole filter characterising the vocal tract contains information 

that can help determine the emotional state of the person. 

The formant positions, which can be obtained from the 

magnitude response of the all-pole filter, determine the sound 

(phoneme) produced. However, when the same phoneme is 

uttered by a person in different emotional states, formant 

positions may not be very different. Figure 1 shows the 

formant positions obtained from the phoneme /a:/ in the word 

‘thousand’ which was uttered by the same person in different 

emotional states. It can be observed that while locations of the 

first three formants are not very different, the formant 

bandwidths are very different and produce the difference in 

the sounds that help distinguish between the two emotions. 

This change in bandwidth is reflected in the group delays of 
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the corresponding all-pole filters (shown in Figure 2). The 

magnitude of the group delay increases with a reduction in the 

formant bandwidth and the positions of the group delay’s 

local minima reflect the formant locations. 
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Figure 1: Formant locations for /a:/ for two emotions 

spoken by the same person. 
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Figure 2: Group delay for /a:/ for two emotions 

spoken by the same person. 

In order to see the relationship between formant bandwidths 

and the group delay value at the formant frequency, we 

examine the transfer function of the all-pole filter that 

characterises the vocal tract. It can be considered to be a 

cascade of second order resonators with conjugate poles, with 

each resonator producing a formant. Setting ωjez =  gives the 

frequency response of the all-pole filter. 
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Where V(ω) is the transfer function of the all-pole vocal tract 

filter, Hi(ω) is the transfer function of the ith 2-pole resonator 

which produces the ith formant, ω ∈ [-π,π] and M is the total 

number of formants. 

 

The group delay of the all-pole filter can thus be written as 

the sum of group delays of the resonators 
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Thus, studying the relationship between the group delay value 

at the resonant frequency and the formant bandwidth for the 

2-pole resonators should be adequate. In order to do so, 

consider the frequency response of a 2-pole resonator. 
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Where αi is the formant (resonant) frequency and ij
re

α±
are 

the poles of the system. From (4), the squared magnitude 

response, and consequently the formant bandwidth are 

computed as follows: 
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When the poles are near the unit circles, i.e., r is close to but 

less than 1, the formant bandwidth, ∆ω, can be approximated 

as 

( )r−≈∆ 12ω  (6) 

 

Also from (4), the phase response of the system can be 

computed as: 
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The group delay is obtained by differentiating the phase 

response with respect to frequency. For the 2-pole resonator, 

the group delay obtained is as follows: 

 

( )

( )
( )

( )
( )




















+−+

+−
+

−−+

−−

=

i

i

i

i

g

rr

rr

rr

rr

αω

αω

αω

αω

ωτ

cos21

cos

cos21

cos

2

2

2

2

 (8) 

 

At the resonant frequency αi, the group delay takes the 

following value: 
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It can be seen that as the value of r approaches 1, the group 

delay function’s value at the formant frequency takes an 

increasingly negative value since the magnitude of the first 

term in (9) is always larger than the magnitude of the second 

term for all r > 0.2361. 

From equations (6) and (9) it can be seen that a reduction 

in the formant bandwidth is reflected by an increasingly larger 

negative value of the group delay at the formant frequency. 

Since the overall group delay of the all-pole filter is the sum 

of the group delays of the resonators, we can expect the group 

delay to have negative spikes at formant locations, with the 

magnitudes of these spikes reflecting the formant bandwidths. 

In order to estimate the group delay, the all-pole filter 

parameters are estimated using the LPC algorithm. For our 

experiments we used a 15 pole filter to model the vocal tract. 

The phase response of this filter is estimated from the first 

1024 samples of the impulse response and the group delay is 

calculated by differentiating this phase response with respect 

to frequency. Alternately, equation (9) gives the contribution 

of each complex conjugate pole pair to the overall group 

delay, which can thus be estimated by adding the 

contributions of all the poles present in the vocal tract  filter. 
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The group delay computed this way is a vector with a 

large number of components. In order to represent it 

compactly, we perform a discrete cosine transform (DCT) on 

the sequence and pick the first 10 coefficients (β0 – β9) as the 

elements of our feature vector. The following figure shows the 

steps involved in computing the LPC group delay feature 

vector. 

 

 

Figure 3: LPC group delay feature extraction. 

3. The Emotion Detection System 

3.1. The Front-End 

For our system (Fig. 2) we use the LPC group delay feature 

vector along with the features used by Huang et al. [6]. Thus, 

the 10 group delay features were concatenated with pitch, 

energy, zero crossing rate (ZCR) and energy slope to give a 

total of 14 features per frame. The YIN estimator [8] was used 

to estimate pitch. Similar to the definition in [6], the energy 

slope was calculated as the ratio of the energy contained in 

the low frequency band (0–1 kHz) to that in the higher 

frequency band (2 – 11 kHz; a sampling rate of 22 kHz was 

used in this study). 

 

 

Figure 4: System overview 

All features were computed within frames of 40ms 

duration (minimum duration for reliable pitch estimation) 

obtained using a rectangular window with consecutive frames 

overlapping by 30 ms. The 14 dimensional feature vectors 

estimated from 10 consecutive frames were then concatenated 

to form a larger feature vector which was then passed to the 

back-end. This concatenation of features from 10 consecutive 

frames was done so that information contained in temporal 

variations of the features was taken into account by the non-

sequential classifier used in the back-end of our system. Thus 

the classifier makes a decision based on 130ms of speech. 

3.2. Feature Warping 

Feature warping, or cumulative distribution mapping, is a 

technique that maps each feature to a predetermined 

distribution, originally suggested as a method to provide 

robustness against channel mismatch and non-linear noise 

effects [9]. It has also been suggested that warping the 

features to a normal distribution provides better matching to 

GMM-based back-ends [10]. In our preliminary studies we 

observed that feature warping resulted in a slightly improved 

clustering of data in a feature space and was able to improve 

the performance of any classifier. For our system, feature 

warping improves the accuracy by about 1%-4% (depending 

on the feature used). 

 

Figure 5: Overview of feature warping 

3.3. The Back-End 

Any one of the numerous available classifiers can be used at 

the back end of an emotion detections system. However it has 

been suggested that sequential classifiers (such as HMM-

based classifiers) are better suited to this task as they take in 

account temporal variations in the features [6]. An alternative 

may be to modify the feature vector to contain temporal 

information and use a non-sequential classifier. In this paper 

we follow the second approach and use a probabilistic neural 

network (PNN) as our back end. An important reason for this 

choice is that in our preliminary studies we found that a PNN 

is able to generalise better when using a smaller data set for 

training as opposed to HMM or GMM based classifiers. 

While it is generally true a GMM based classifier can train on 

a much smaller database when compared to a HMM based 

one, in our case the GMMs would model a 140 dimensional 

feature space as opposed to the HMMs, which would model 

only a 14 dimensional feature space (Figure 4). Consequently 

the GMMs would require a large number of training vectors 

to reliably estimate the feature distributions. This assumption 

was borne out by our preliminary studies where using a PNN 

resulted in a higher accuracy when compared to both GMM 

and HMM based classifiers. 

4. Experiments 

For our experiments we used the LDC Emotional Prosody 

Speech corpus [11]. It consists of speech from professional 

actors trying to express emotions while reading short phrases 

consisting of dates and numbers. There is therefore no 

semantic or contextual information available. The entire 

database consists of 7 actors expressing 15 emotions. When 

recording the database, the actors were instructed to repeat a 

phrase as many times as necessary until they were satisfied the 

emotion was expressed and then move onto the next phrase. 

Only the last instance of each phrase was selected for this 

experiment. 

The system described in section 3 (Figure 4) was 

implemented with different features in order to judge the 

performance of the proposed features. All experiments were 

repeated 7 times, using 60% of the phrases from each of the 7 

speakers as the training data set and the other 40% as the test 

data set for a speaker dependent system. Experiments for a 

five-emotion classification problem involving Neutral, Anger, 

Happiness, Sadness and Boredom were performed. 

Four different feature sets were used in all experiments in 

order to do a comparative study. The first one consisted of the 

same features used by Huang et al. [6] namely, pitch, energy, 
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zero-crossing rate and energy slope (ZEPS). The second 

feature set was the 10 dimensional LPC group delay feature 

proposed in this paper. The third feature set was a 

combination of the first two obtained by concatenating them 

to form a 14 dimensional vector, and the final feature set used 

was a vector composed of 12 Mel frequency cepstral 

coefficients. For all the experiments, the phrases were divided 

into sequences of 10 consecutive frames (each of duration 

40ms with a 30ms overlap) and each sequence was evaluated 

independently in order to facilitate scoring. Feature warping 

was used in all cases. The results of these experiments are 

given in Tables 1 and 2 below. 

Table 1. Emotion classification accuracy for the five-

class problem. 

Test 

Speaker 

ZEPS Group 

Delay 

(GD) 

ZEPS 

+ GD 

MFCC 

(12) 

1 35.5% 28.4% 32.4% 29.2% 

2 49.8% 53.0% 58.9% 50.6% 

3 47.0% 35.1% 43.3% 45.7% 

4 53.5% 56.7% 65.7% 54.5% 

5 70.5% 68.7% 81.6% 76.0% 

6 63.2% 72.3% 78.9% 70.9% 

7 40.1% 40.8% 50.3% 45.2% 

Mean 51.4% 50.7% 58.7% 53.2% 

 

It can be seen that the LPC group delay features, when 

added to the ZEPS feature set proposed by Huang et al. [6], 

give the highest accuracy for the five-emotion classification 

problem. We found that combining the MFCCs with the 

ZEPS feature set does not provide as significant an 

improvement as the group delay (55% as opposed to 59%). 

This is probably because MFCCs and ZEPS are more 

correlated than ZEPS and group delay. The following table 

lists the average accuracies (across all 7 speakers) for the five 

emotions. 

Table 2. Average class accuracy for five-emotion 

classifier. 

Emotion ZEPS Group 

Delay 

(GD) 

ZEPS 

+ GD 

MFCC 

(12) 

Neutral 69.0% 74.2% 84.8% 74.7% 

Anger 52.0% 43.9% 57.6% 53.5% 

Sadness 31.2% 41.7% 48.6% 52.2% 

Happiness 49.6% 43.5% 52.3% 45.4% 

Boredom 44.2% 42.7% 49.7% 42.8% 

Mean 51.4% 50.7% 58.7% 53.2% 

 

From this table it is clear that the combination of ZEPS 

feature set [6] and the proposed LPC group delay features 

exhibit the highest accuracies for each of the five emotions. 

Moreover none of the accuracies are significantly lower than 

the other four and all of them are much higher than the 

accuracy for random guessing (20%). This indicates the 

proposed features are able to characterise all five emotions 

reasonably well. 

5. Conclusion 

This paper presents a novel feature to increase the accuracy a 

multi-class emotion detection system. We estimate the group 

delay of the all-pole filter from its phase response. A discrete 

cosine transform is then used to represent this group delay 

compactly as a feature vector. The group delay is able to 

characterise both formant locations and formant bandwidths 

and thus provides a reasonable good model of the vocal tract 

state of the speaker which in turn is dependent on his or her 

emotional state. The results included in the paper show that 

for a five emotion classification problem, the addition of the 

proposed features results in a relative increase in accuracy of 

about 14% over established features. Preliminary tests have 

indicated that the proposed features are not as effective for a 

speaker independent system where training and testing data 

are from different speakers as they are for a speaker 

dependent system. We believe this is because the difference 

between vocal tract parameters of different speakers is much 

greater and hence overshadows the variations caused due to 

change in emotional state. Currently work is underway on an 

attempt to normalise this feature between speakers so as to 

use it in a speaker independent system. 
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