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Abstract 

This paper describes the University of New South Wales 
system for the Interspeech 2013 ComParE emotion sub-
challenge. The primary aim of the submission is to explore the 
performance of model based variability compensation 
techniques applied to emotion classification and as a 
consequence of being a part of a challenge, to enable a 
comparison of these methods to alternative approaches. In 
keeping with this focused aim, a simple frame based front-end 
of MFCC and ΔMFCC is utilised. The systems outlined in this 
paper consists of a joint factor analysis based system and one 
based on a library of speaker-specific emotion models along 
with a basic GMM based system. The best combined system 
has an accuracy (UAR) of 47.8% as evaluated on the challenge 
development set and 35.7% as evaluated on the test set. 

Index Terms: ComParE emotion challenge, emotion 
classification, speaker normalisation, joint factor analysis. 

1. Introduction 

Emotions are expressed via speech through numerous cues, 
ranging from low-level acoustic cues to high-level linguistic 
content. Several approaches to speech-based automatic 
emotion recognition, each taking advantage of a few of these 
cues, have been explored, e.g. [1-9]. Ideally, the statistical 
properties of feature vector distributions would vary 
significantly between different emotions (emotional 
variability) and not vary due to any other reason. However, in 
reality, they also vary significantly due to differences between 
different speakers (speaker variability), due to differences in 
linguistic content (phonetic variability) and also differences in 
other paralinguistic cues. 

Typical features used in automatic emotion recognition 
systems tend to be those based on cepstral coefficients, 
spectral energy distribution, pitch and loudness. Although 
these features are extracted on a frame-by-frame basis, the 
most commonly adopted approach is to estimate statistical 
parameters (and other functionals) from feature values 
corresponding to all the frames in an utterance (turn) that is 
being evaluated. The baseline features for the challenge are a 
case in point [10]. Given that feature extraction processes do 
not add information, it is reasonable to hypothesise that the 
comparatively superior performance of this turn-based 
approach over a frame-based one is because it reduces the 
effect of speaker, phonetic and other sources of variability 
unrelated to emotions. However, the turn-based front-end is 
not the only approach to reducing these sources of variability 
and alternatives include techniques that modify the feature 
vectors directly  [11-13] and those that modify the emotion 
(class) models to either compensate for [14, 15] or adapt to  
[16, 17] these variations. This emotion sub-challenge provides 

an opportunity to indirectly test this hypothesis by comparing 
the relative performances of a number of different approaches 
adopted by different systems benchmarked on a common test 
database. In this vein, all the systems described in this paper 
will employ one or more back-end based approaches to 
dealing with variability and a common frame based front-end 
which extracts MFCCs and delta MFCCs. 

Back-ends based on Gaussian mixture models (GMMs), 
while conceptually straightforward, have been shown to be 
extremely versatile and powerful in various speech based 
classification systems including emotion classification [18]. 
Moreover, a rich variety of GMM-based model training, 
adaptation and compensation techniques exist and have been 
widely used in speaker verification systems. Therefore GMM-
based back-ends were employed in all the systems reported in 
this paper. 

2. System Description 

2.1. Basic GMM sub-system 
The basic system consists of a MFCC+ΔMFCC (12+12 
dimensions excluding ܥ଴) front-end computed with 20ms 
frames with 10ms overlap using a Hamming window. The 
back-end is based on Gaussian mixture models (GMMs) with 
a GMM, ࣡௞, trained for each class (݇) via ML (maximum 
likelihood) estimation. The basic system (Figure 1), 
abbreviated as ܤ herein, does not make use of any 
normalisation or adaptation techniques. For each utterance, ॏ, 
in addition to estimating emotional class ( ത݇஻), the sub-system 
also computes a measure of confidence of the decision 

஻ି௦௬௦௧௘௠ሺॏሻߣ) ), analogous to log-likelihood ratio, as given by eqn 
(3). Λ௄ሺॏሻ =෍logܲሺܠ௧|࣡௞ሻ்

௧ୀଵ  (1) ത݇஻ሺॏሻ = argmax௞ Λ௞ሺॏሻ (2) ߣ஻ି௦௬௦௧௘௠ሺॏሻ = max௞ Λ௞ሺॏሻ − max௞,௞ஷ௞തಳ Λ௞ሺॏሻ (3) 

Where, ܠ௧ is the feature vector corresponding to the ݐ௧௛ 
frame of the utterance ॏ, ܲሺ∙ | ∙ሻ denotes conditional 
probability and ࣡௞ is the GMM trained on the data 
corresponding to emotion ݇. 

All other systems outlined in this paper are based on this 
basic system, incorporating one or more refinements. This 
provides the best basis for the exploration of model-based 
variability compensation techniques and is in accordance with 
the previously mentioned aim of this submission to provide a 
means to compare such approaches to alternative ones that 
may be adopted by other entries to the challenge. Also, model-
based variability compensation techniques play a significant 
role in most state of the art speaker verification systems and 



have been the focus of most of the recent research in that field. 
Given the extent to which emotion recognition systems have 
borrowed techniques from speaker verification systems [14, 
19-21], a detailed investigation of model-based variability 
compensation methods is a logical course of action. 

 
Figure 1: Block diagram of basic GMM sub-system 

2.2. Acoustic UBM Seeding 
In preliminary experiments, it was observed that the 
performance of this basic system was somewhat sensitive to 
the initial conditions (seeds) chosen for the EM algorithm 
employed in GMM training. Figure 2 demonstrates this by 
showing the histogram of 12-class emotion classification 
accuracies in terms of unweight average recalls (UARs) 
obtained from 100 trials of the basic system (utilising 8-
mixture GMMs trained using 10 iterations of the EM 
algorithm) differing only in the initial seeds for GMM 
training. Specifically, the initial mixture weights were all 
initialised identically, the initial mixture covariance vectors 
(assuming diagonal covariance) were set equal to the training 
data covariance and the initial mixture means were random 
vectors drawn from a Gaussian distribution with mean and 
covariance equal to the training data mean and covariance. 
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Figure 2: Histogram of 12-class emotion recognition UAR 

from 100 trials; randomly seeded GMM (8-mixture) systems 

To counter this sensitivity, a 1024 mixture GMM was 
trained on a combination of speech databases to serve as an 
acoustic universal background model (A-UBM) of the feature 
space. The databases used to train the A-UBM are the WSJ, 
WSJCAM0 [22], TIMIT [23], IEMOCAP [24] and AMI [25] 
corpora. These databases were chosen so as to obtain a 
background model that spanned a large acoustic space, 
incorporated a diverse phonetic content and a multitude of 
speakers and channel conditions. Also, all of these databases 
consist of speech sampled at 16 kHz, matching the challenge 
database. Approximately 450 hours (310, 30, 5.5, 12.5 and 90 
hours respectively from the above mentioned databases) of 
speech data was used and apart from IEMOCAP, none of the 
other databases are ‘emotional’ speech corpora. To train an ܰ-
mixture GMM, with ܰ	 < 	1024, the weights, means and 
covariance vectors corresponding to the ‘best’ ܰ mixture 

components of the A-UBM were used as the initial seeds for 
the EM algorithm. The ‘best’ mixtures were selected based on 
occupation counts of the emotion recognition training data, 
treating the mixtures as hard clusters. The weights were 
renormalized to make their sum equal to one. Specifically, 
given a set of training data (for emotion models), ढ =ሼܠଵ, ,ଶܠ … ,  ௅ሽ, cluster membership estimates of every featureܠ
vector were used to determine mixture occupancy counts. ߱௜ሺܠ௧ሻ = ࣨ ቀܠ௧; μ୧ሺ୅ሻ, Σ௜ሺ୅ሻቁ (4) 

And, ܫఠሺ݆, ሻݐ = ൝1, ݆ = argmax௜ ߱௜ሺܠ௧ሻ0, ݆ ≠ argmax௜ ߱௜ሺܠ௧ሻ (5) 

ࣩሺ݆ሻ =෍ܫఠሺ݆, ሻ௅ݐ
௧ୀଵ , 1 ≤ ݆ ≤ 1024 (6) 

Where, μ୧ሺ୅ሻ, Σ୧ሺ୅ሻ and ݓ௜ሺ஺ሻ are the mean, covariance vector 
and weight corresponding to the ݅௧௛ mixture of the A-UBM; ߱௜ሺܠ௧ሻ denotes the estimate of cluster membership of ܠ௧ 
towards the ݅௧௛ mixture; ܫఠሺ݆,  ሻ is a binary valued indicatorݐ
function that takes the value 1 when the ݆௧௛ cluster 
membership, ௝߱ሺܠ௧ሻ, is greater than all the other cluster 
memberships of ܜܠ and the value 0 otherwise; and ࣩሺ݆ሻ is the 
occupancy count of the ݆௧௛ mixture of the A-UBM. 

The occupancy count then forms the basis of selecting ܰ 
‘best’ mixture components of the A-UBM. Let ॉ denote this 
set of ܰ ‘best’ mixture components. i.e., ॉ ⊂ ሼ1, 2, 3, … ,1024ሽ such that |ॉ| = ܰ and ࣩሺ݌ሻ > ࣩሺݍሻ, ݌∀ ∈ ॉ	ܽ݊݀	ݍ ∉ ॉ (7) 

Where, |∙| denotes the number of elements of a set. 

The set of means (ૄ), covariance vectors (Σ) and weights 
that serve as the seeds for EM training of a ܰ-mixture GMM 
on ढ are then given by: ૄ = ቄμ୧ሺ୅ሻቅ , ݅ ∈ ॉ (8) ઱ = ቄΣ୧ሺ୅ሻቅ , ݅ ∈ ॉ (9) 

ܟ = ൝ ∑௜ሺ஺ሻݓ ௜ሺ஺ሻ௜ݓ ൡ , ݅ ∈ ॉ (10) 

Unless otherwise mentioned, all GMMs used in all the 
systems described in this paper were initialised with the A-
UBM. Figure 2 shows the performance of the A-UBM 
initialised basic system. While this method of seeding the EM 
algorithm for GMM training is not a speaker variability 
compensation technique, it eliminated variability in 
development results due to sensitivity towards initial 
conditions and thus simplified the system parameter tuning 
process. 

2.3. Speaker-Emotion model library sub-system 
Previous work has shown that speaker-specific emotion 
models are more separable than models trained on data from 
multiple speakers [21]. It has also been suggested that emotion 
classification systems can be personalised towards specific 
speakers and consequently improve their performance by 
picking speaker-specific emotion models that are close to the 
target speaker from a set (library) of speaker-specific emotion 
models following by MAP adaptation with a small amount of 
development data [16]. 

For the speaker-emotion model library sub-system (Figure 
3), development data from target speakers were not available 



for adaptation. However, the core idea of using a library of 
speaker-specific emotion models (trained from multiple 
speakers) and picking the best matching models (one per 
emotion from the library of all speaker-specific models) based 
on the test utterance for classification was retained, 
abbreviated as S herein. It should be noted that the best 
matching emotion models need not all correspond to the same 
speaker. The training data were segregated into speaker-

specific datasets and a separate GMM, ࣡௞ሺ௝ሻ, was trained for 
each of the 12 emotional classes (݇) corresponding to each of 
the 10 speakers (݆) in the training dataset. For a set of frame 
based features extracted from a given test utterance, ॏ =ሼܠଵ, …,ଶܠ ,  ሽ, the emotional class, ത݇ௌ, was estimated as்ܠ
given by eqn (11) and a measure of the confidence of this 

decision, ߣௌି௦௬௦௧௘௠ሺॏሻ  was estimated as given by eqn (14). ത݇ௌሺॏሻ = argmax௞ Λ෡௞ሺॏሻ (11) Λ෡௞ሺॏሻ = max௝ Λ௞ሺ௝ሻሺॏሻ (12)

Λ୩ሺ୨ሻሺॏሻ =෍logܲ ቀܠ௧ቚ࣡௞ሺ௝ሻቁ்
௧ୀଵ  (13) 

ௌି௦௬௦௧௘௠ሺॏሻߣ = max௞ Λ෡௞ሺॏሻ − max௞,௞ஷ௞തೄ Λ෡௞ሺॏሻ (14) 

Where ܜܠ is the feature vector corresponding to the ݐ௧௛ 
frame of the utterance ॏ, ܲሺ∙ | ∙ሻ denotes conditional 

probability and ࣡௞ሺ௝ሻ is the GMM trained on the data from 
speaker ݆ corresponding to emotion ݇. 

Figure 3: Block diagram of speaker model sub-system 

2.4. Joint Factor Analysis based sub-system 
The joint factor analysis (JFA) based sub-system adopted a 
normalisation based approach to dealing with speaker 
variability, abbreviated as J herein. In particular, it utilised a 
JFA based compensation technique that has been shown to 
improve the performance of emotion classification systems 
[21]. Given a ܯ-mixture GMM, ࣡, a supervector 
representation (taking into account only means) can be defined 
as ैሺ࣡ሻ = ሾࣆଵ் ଶ்ࣆ		 ௜ࣆ ெ்ሿ், whereࣆ		… ∈ ℝ஽ is the mean of 
the ݅-th Gaussian component. The underlying assumption in 
JFA based normalisation is that ैሺ࣡ሻ can be written as ैሺ࣡ሻ = ॠ + Vߙ + Uߚ +W߳ (15) 

where ॠ ∈ ℝெ஽ is an emotion- and speaker-independent 
supervector, V ∈ ℝெ஽×ேೇ is a matrix of ‘eigen-emotions’ 
(analogous to eigenvoices), U ∈ ℝெ஽×ேೆ is a matrix of eigen-
speakers (analogous to eigenchannels), W ∈ ℝெ஽×ெ஽ is a 
diagonal matrix, ߙ ∈ ℝேೇ represents emotion factors, ߚ ∈ ℝேೆ 
represents speaker factors, ߳ ∈ ℝெ஽ is a random vector and W߳ represents the emotion variability not in the span of the 
eigen-emotions. 

At the system training stage, a background GMM, ࣡௎, is 
estimated from training data from all speakers corresponding 
to all emotions and ॠ = ሾࣆഥଵ் ഥଶ்ࣆ		  ഥ௜ is theࣆ ഥெ்ሿ், whereࣆ		…
mean of the ݅-th component of the UBM. From the zeroth and 
first order Baum-Welch statistics of the training set with 
respect to ࣡௎, the hyper-parameters, V, U and W are estimated. 

Normalisation is carried out on all feature vectors on a per 
utterance basis. Given a set of feature vectors, ሼܠଵ, …,ଶܠ  ሽ, extracted from all the frames in an utterance, ॏ, the்ܠ,
emotion and speaker factors, ߙ and ߚ, are estimated from the 
Baum-Welch statistics corresponding to ॏ with respect to ࣡௎. 
Finally, the frame-level normalised feature vectors, ܠ෤௧, are 
computed as [21]: ܠ෤௧ = ௧ܠ −෍߸௧ሺ௜ሻ ሺܸ௜ሻߙெ

௜ୀଵ , ௧ܠ	∀ ∈ ॏ (16) 

where, ܠ௧ is the raw feature vector, Vሺ௜ሻ ∈ ℝ஽×ேೇ	is a sub-
matrix of V corresponding to the ݅-th Gaussian component of ࣡ such that V = ൣVሺଵሻ் 		Vሺଶሻ் …	Vሺெሻ் ൧் and ߸௧ሺ௜ሻ is the Gaussian 
posterior probability of ܠ௧ corresponding to the ݅-th mixture of ࣡௎. 
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Figure 4: Block diagram of JFA based speaker normalised 

sub-system 

Since the emotion models (GMMs) of this sub-system are 
trained on the normalised data, they cannot be seeded from the 
A-UBM. Therefore, initial values of mixture means for the 
EM algorithm were chosen using the k-means++ algorithm 
[26] on the class specific training data. Further, since a degree 
of randomness is inherent in seeding the k-means++ algorithm 
itself, 100 instances of the JFA sub-system were trained and 
evaluated on the development set and the best performing one 
was picked for use. A measure of confidence of each 
classification decision made by the JFA sub-system, ߣ௃ି௦௬௦௧௘௠ሺॏሻ , was estimated as given in eqn (19). 

Λ෩௞ሺॏሻ =෍logܲ൫ܠ෤௧ห ሚ࣡௞൯்
௧ୀଵ  (17) ത݇௃ሺॏሻ = argmax௞ Λ෩௞ሺॏሻ (18) ߣ௃ି௦௬௦௧௘௠ሺॏሻ = max௞ Λ෩௞ሺॏሻ − max௞,௞ஷ௞ത಻ Λ෩௞ሺॏሻ (19) 



Where, ܠ෤௧ is the normalised feature vector corresponding 
to ݐ௧௛ frame of the utterance ॏ and ሚ࣡௞ is the GMM trained on 
data normalised according to (16), corresponding to emotion ݇. 

3. Sub-System Fusion 

The three individual sub-systems are sufficiently distinct to 
expect a better performance when fused. Two methods for 
sub-system fusion were employed: selective fusion and linear 
fusion. 

3.1. Selective fusion 
In the selective fusion method, for each utterance (ॏ), the 
decision made by the sub-system with the highest normalised 
confidence measure, ̅ߣ௜ሺॏሻ, was chosen as the final decision. 
Specifically, the final emotional class decision, ݇ᇱ, is 
determined as follows: ݇ᇱሺॏሻ = ത݇௠ሺॏሻ (20) ݉ = argmax௜ ௜ሺॏሻߣ̅ , ݅ ∈ ् (21) 

Where, ् ⊆ ሼܤ − ܵ			,݉݁ݐݏݕݏ − ,݉݁ݐݏݕݏ ܬ −  ሽ is݉݁ݐݏݕݏ
the set of sub-systems being fused (all three sub-systems or 
two of the three). If ु is the set of all utterances in the 
challenge development set, the normalised confidence measure 
is given by: ̅ߣ௜ሺॏሻ = ∑௜ሺॏሻߣ ु∋௜ሺܺሻ௑ߣ  (22) 

3.2. Linear fusion 
The linear fusion system accepts the class posterior 
probabilities per utterance from each of the sub-systems and 
performs linear score fusion with sub-system specific offsets. 
The linear fusion system was implemented using the FoCal 
multiclass toolkit [27]. The fusion weights were estimated on 
the challenge development dataset and used to estimate the 
classification accuracies on both development and test sets. 

4. Experimental Results 

Parameters of all three sub-systems, the basic GMM sub-
system (Section 2.1), the speaker model sub-system (Section 
2.3) and the JFA sub-system (Section 2.4) were optimised on 
the development dataset of the challenge database [10]. 
Specifically, for the basic GMM sub-system and the speaker 
model sub-system, the number of mixtures and the number of 
EM training iterations were chosen based on performance on 
the development set. For the JFA sub-system, the number of 
mixtures and the number of training iterations were set to be 
the same as the basic GMM system and number of eigen-
emotions ( ௏ܰ) and the number of eigen-speakers ( ௎ܰ	) were 
optimised. During this parameter tuning process it was 
observed that the system performance on the development set 
was somewhat sensitive to the parameter values for all three 
sub-systems (ܤ-,ܵ- and ܬ-), in a manner similar to the 
previously mentioned sensitivity to initial conditions for model 
training (Figure 2), exhibiting changes in UAR of around 4% 
to 5% with small changes in parameter values. 

The performances of the individual sub-systems on the 
development set are listed in Table 2 along with the baseline 
system UAR [10]. Five of these system configurations, 
including the 3 individual sub-systems on their own, were 
chosen for evaluation on the test set and the accuracies 

obtained in terms of UAR are listed in Table 3. Table 3 also 
lists the UARs evaluated for arousal and valence with the 12-
class labels mapped to the two binary tasks. 

Table 1: Sub-system parameters optimised on the challenge 
development dataset 

 Sub-System 
B-Sys S-Sys J-Sys 

No. of Mixtures 128 32 128 
No. of EM iteration 10 10 10 
No. of eigen-emotions - - 10 
No. of eigen-speakers - - 14 

Table 2: 12-class unweighted average recall (UAR) on the 
challenge development set 

System UAR 
Baseline [10] 40.1 % 
Basic GMM sub-system (B-sys) 41.0 % 
Speaker model sub-system (S-sys) 41.5 % 
JFA sub-system (J-sys) 43.1 % 
B-sys + S-sys (selective) 38.8 % 
B-sys + J-sys (selective) 42.1 % 
S-sys + J-sys (selective) 43.8 % 
B-sys + S-sys + J-sys (selective) 43.3 % 
B-sys + S-sys (linear) 45.6 % 
B-sys + J-sys (linear) 42.4 % 
S-sys + J-sys (linear) 47.8 % 
B-sys + S-sys + J-sys (linear) 45.6 % 

Table 3: 12-class unweighted average recall (UAR) on the 
challenge test set 

System UAR 
 12-Class Arousal Valence 

Baseline [10] 40.9 % 75.0 % 61.6 % 
Basic GMM sub-system 34.2 % 74.2 % 58.4 % 
Speaker model sub-system 33.4 % 72.7 % 59.8 % 
JFA sub-system 34.8 % 73.4 % 60.3 % 
S-sys + J-sys (selective) 34.2% 70.8 % 60.0 % 
S-sys + J-sys (linear) 35.7 % 73.9 % 59.5 % 

5. Conclusion 

This paper describes our submission to the Interspeech 2013 
ComParE emotion sub-challenge. The systems were developed 
with the specific aim of enabling comparisons between model 
based approaches to other methods for dealing with speaker 
variability. As can be seen from the results included in section 
4, all three individual systems outperform the baseline on the 
development database and the best fused system outperforms 
the baseline system by a significant margin. The system 
accuracies as evaluated on the test set, however, are worse 
than the baseline system accuracy suggesting that the systems 
have been somewhat over-trained towards the development 
set. Since the development set was never used in the system 
training phases except to evaluate the linear fusion weights, 
the mismatch is almost certainly a consequence of ‘over-
tuning’ of the system parameters, specifically the number of 
mixtures, training iteration, eigen-emotions and eigen-
speakers, and not over-fitting of the back-end models in the 
conventional sense. It is also noteworthy that the results 
suggest that the best system is a combination of the S-system 
and the J-system, which each take complementary model 
based approaches to dealing with speaker variability. 
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