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Abstract 
Alterations in speech motor control in depressed individuals 
have been found to manifest as a reduction in spectral 
variability. In this paper we present a novel method for 
measuring acoustic volume - a model-based measure that is 
reflective of this decrease in spectral variability - and assess the 
ability of features resulting from this measure for indexing a 
speaker’s level of depression. A Monte Carlo approximation 
that enables the computation of this measure is also outlined in 
this paper. Results found using the AVEC 2013 Challenge 
Dataset indicate there is a statistically significant reduction in 
acoustic variation with increasing levels of speaker depression, 
and using features designed to capture this change it is possible 
to outperform a range of conventional spectral measures when 
predicting a speaker’s level of depression. 
Index Terms: Depression, Gaussian Mixture Models, Acoustic 
Volume, Monte Carlo Approximation 

1. Introduction 
Depression has a heterogeneous clinical profile which produces 
a range of different physiological effects. The effect of many of 
these symptoms, such as a reduced cognitive ability, a 
continuous negative affect, fatigue and psychomotor 
retardation, is to alter speech motor control. Reductions in 
cognitive ability affect the planning and preparation of the 
muscular commands needs to produce speech causing phonetic 
and articulatory errors [1]. Continuous negative affect, fatigue 
and psychomotor retardation affect muscle tension, altering 
both vocal tract dynamics and laryngeal coordination as well as 
constraining articulatory movement [2].  

Depressed speech is commonly described as having one or 
more of the following qualities: flat, dull, slurred, breathy or 
tense [3-7]. Despite this description, the use of pitch based 
features has seen mixed results; reductions in F0 range with 
increasing levels of depression are not uniformly reported in the 
literature [3-6]. Voice Quality features, as a result of a decrease 
in laryngeal coordination, have been shown to change 
significantly with changes in a speakers level of depression 
[6,7].  However, as in [6,7], suitable speech segments are 
required when extracting Voice Quality features to ensure 
clinically reliable results [8,9]. 

Changes in muscle tension and control, observable as a 
reduction in variability in facial features and head movement 
with increasing levels of depression [10], have consistently 
been linked with changes in vocal tract properties. Recent 
results published show that there is a lack of spectral variability 
with increasing level of depression  [6,11,12]. In the recent 
AVEC Challenge [13], spectral based features such as Mel 
Frequency Cepstral Coefficients (MFCC), formants and 
MFCC-based supervectors demonstrated a high level of 
accuracy when used to predict a speaker’s level of depression 
from a given multimedia file [14,15].  

Decreases in spectral variability, as a result of depression, 
have been shown to be present in the MFCC/Gaussian Mixture 

Model (GMM) representation of acoustic space. Cummins et al. 
report a statistically significant decrease in the correlation 
between depression severity and Average Weighted Variance 
(AWV), a measure which estimates the extent of localized 
acoustic variability present in a GMM [12]. Intuitively this 
result, combined with a lack of spectral variability, matches the 
flat or dull descriptions of speech affected by depression. 

For the purpose of this paper, we use the term ‘acoustic 
volume’ to notionally refer to the ‘size’ of the feature space 
occupied by feature vectors extracted from some speech data. It 
is reasonable to expect that the relative size of this region will 
reflect acoustic variability and consequently will vary due to 
variations in speaker characteristics, phonetic content and 
paralinguistic phenomena modulated into the speech 
utterance/segment.  

In a  recently proposed approach to estimating acoustic 
volume from a GMM of the probability distribution of the 
feature vectors extracted from an utterance by Krishnamurthy 
and Hansen, acoustic volume was found to be proportional to 
the acoustic variation in the data [16]. Their results show that as 
the number of overlapping phonemes in a speech segment 
increase, acoustic volume decreases. The authors state that this 
reduction is due to a lack of distinguishing characteristics 
between spectra of individual phoneme, i.e. a reduction in 
acoustic variation, as the number of overlapping phonemes 
increases [16]. 

Motivated by the results in [12] we presently explore the 
hypothesis that due to a lack of speech motor control there is a 
reduction in acoustic variation of speech produced under greater 
levels of depression.  

2. GMM Mean Acoustic Volume 
In this section we give a brief description of the GMM Mean 
Acoustic Volume (GM-AV) technique, taken from [16], for 
estimating acoustic volume. This method uses a set of GMM 
means to define a hyper cuboid, the volume of which is an 
indicator of the acoustic variation present in the data. For the 
complete description of the technique see [16].  

If ॸ = ,ଵࣆ} ⋯ , -mixture GMM which adequately describes the N-ܯ ெ} represents a set of mixture means of anࣆ
dimensional feature distribution of a given speech segment, 
there exists an N-dimensional hyper-cuboid minimal volume 
that contains ॸ within it. This cuboid has 2N vertices 
characterized by the set of maxima and minima points evaluated 
for each of the N dimensions separately across all vectors in ॸ. 
It is possible to estimate the volume enclosed by this set by 
identifying the set of N edges {݁ଵ, ݁ଶ, … , ݁ே} which encloses the 
cuboid. Each edge ݁ is defined by the maxima and minima 
points of the kth feature dimension:   ݁ = max(݊) −  min (݊) (1) 

where ݊  = ቄߤଵ(), ,ଶ()ߤ … ,  ()ߤ elements and ܯ ெ()ቅ is a set ofߤ
denotes the ݇௧ dimension of the ݅௧ mean vector, ࣆ ∈ ॸ. The 
volume of cuboid (GM-AV) is then given by: 



ܸ =  ݁ଵ × ݁ଶ × … .× ݁ே (2) 

It should be noted that this technique estimates acoustic 
volume using GMM mean vectors only. It has been shown for 
depressed speech classification that depression information is 
not only captured in the means but also in the covariance 
matrices and weight parameters [12]. 

3. Proposed Probabilistic Acoustic Volume 
The Acoustic Volume measure given by (2) does not take into 
account the weight of each component of the GMM when 
calculating an edge. This makes it susceptible to potentially 
significant overestimation of acoustic volume if low-weight 
mixtures with means far from feature clusters are present as 
illustrated in Figure 1. Specifically, in the example shown at the 
top of the page, the difference between the extremely low 
weight mixture 3 being centered at ܺ = 8 (Figure 1a) and being 
centered at ܺ = 3 (Figure 1b) is negligible when the overall 
probability density modelled by the GMM is considered, 
however the difference in acoustic volume (GM-AV) estimated 
using equation (2) is significant. 

-2 0 2 4 6 8 10 12 14 160

0.05

0.1

0.15

0.2

0.25

X

P(
X)

 

-2 0 2 4 6 8 10 12 14 160

0.05

0.1

0.15

0.2

0.25

X

P(
X)

 
Figure 1 (a) 1-dimensional 3-mixture GMM with low weight 
mixture 3 centered at ܺ = 8; (b) 1-dimensional 3-mixture 

GMM with low weight mixture 3 centered at ܺ = 3 

An alternative and potentially more robust estimate of 
acoustic volume may be obtained by taking a probabilistic 
approach. Specifically, given an ܰ-dimensional feature space, ܺ ∈ ℛே, if the underlying distribution of the features is denoted 
by ܲ(ܺ), an estimate of the probabilistic acoustic volume 
(PAV), ఏܸ, can be obtained as the total volume of the space 
where ܲ(ܺ) is greater than some threshold ߠ (refer Figure 2). 
i.e., 

ఏܸ = න ݂(ܺ)݀ܺ ,    ݂(ܺ) = ൜1, ܲ(ܺ) > ,0ߠ ܲ(ܺ) ≤  (3) ߠ

An alternative view of the PAV, as can be seen from Figure 
2, is that selecting a value for ߠ is akin to picking a cross-section 
of the feature distribution and ఏܸ is an estimate of the cross-
sectional volume in the feature space. Further, by defining a 
series of thresholds, ߠ for 1 ≤ ݅ ≤  an array of probabilistic ,ܮ
acoustic volumes, ܄, herein referred to as the probability 
acoustic volume profile (PAV profile), can be obtained which 
is characteristic of the ‘concentration’ of the feature vectors in 
the feature space.  
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Figure 2: Sample 1-dimensional feature distribution 

with volume of feature space corresponding to 
probability higher than a threshold -ߠ 

Given that outliers are by definition data points (feature 
vectors) of low probability, it can be expected that the PAV 
profile would not be distorted by outliers since a range of ߠ 
values are taken into consideration. Mathematically, the PAV 
profile may be defined as a set: ܄ = ൛ ఏܸ: 1 ≤ ݅ ≤  ൟ (4)ܮ

As can be seen from Figure 3 the shape of the PAV profile 
is representative of whether the feature vectors are tightly 
concentrated (Figure 3a) or spread out in the feature space 
(Figure 3b). In practice it is computationally efficient to 
approximate the underlying probability density function of the 
feature space with a GMM, which then allows for a Monte Carlo 
approach to computing ܸ ఏ. Specifically, the expression for PAV 
(eqn. 3) may be rewritten as: 

ఏܸ = න መ݂(ܺ)ܲ(ܺ)݀ܺ, (5) 

where 

መ݂(ܺ) = ቐ 1ܲ(ܺ) , ܲ(ܺ) > ,0ߠ ݁ݏ݅ݓݎℎ݁ݐ  (6) 

Consequently 

ఏܸ = ൣܧ መ݂(ܺ)൧ (7) 

where, ܧሾ∙ሿ denotes the expected value with respect to the 
probability density function  ܲ(ܺ). 

A Monte Carlo approximation of this value is given by ܸఏ = 1ܰ  መ݂(ݔ)௫~() , 1 ≤ ݅ ≤ ܰ (8) 

where ݔ denotes points in the feature space drawn from the 
probability density function ܲ (ܺ). When a GMM, ࣡ (ܺ), is used 
to approximate ܲ(ܺ) the process of drawing samples from it is 
greatly simplified. Specifically, given an ܯ-mixture GMM, ܰ 
points are drawn from it by drawing ܰ points from each 
Gaussian component such that ܰ/ܰ = ߱, where ߱ is the 



weight associated with the ݅௧ component and ∑ ܰ = ܰ. The 
PAV estimate ܸఏ, given by eqn (8), then reduces to a sum 
involving the fraction of points whose probability, elevated 
using the GMM as ࣡(ݔ), is greater than the threshold ߠ. 
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Figure 4: (a) Example 2-mixture GMM and points drawn 

from the mixtures of the GMM – black denotes points with 
probability less than θ=0.15 and blue denotes points with 

probability greater than θ=0.15. (b) Comparison of 
Probabilistic Acoustic Volume (PAV) and GMM mean 

acoustic volume (GM-AV) – Points drawn from example 2-
mixture GMM, with blue denoting the points considered in 

computing PAV. The violet box represents GM-AV computed 
from mixture means. 

Comparing the proposed probabilistic acoustic volume 
(PAV) and the GMM mean acoustic volume (GM-AV), it can 
be seen that they do not estimate the same quantity (Figure 4). 
The GM-AV is an estimate of the hypervolume spanned by all 
mixture components of a GMM. It is dependent on intermixture 
distances and the volume may contain sparse regions of the 
feature space. The PAV on the other hand is independent of 

distances between feature clusters and is dependent only on the 
size and density of feature clusters. 

4. Experimental Settings 
4.1 Depression Corpus 
All experimental results in this paper are reported on the 
Audio/Visual Emotion Challenge and Workshop (AVEC) 2013 
corpus. The full data set comprises 150 recordings, each 
labelled with a Beck Depression Inventory (BDI) score [17], 
divided into training, development and testing partitions each of 
50 files (recordings) with a mean file length of 14 min 52 sec 
containing a mix of different speech types: read speech 
including an excerpt from the novel “Homo Faber” by Max 
Frisch, free response speech and vocal exercises. Papers 
published on this corpus include [13-15,18]. 
4.2 Experimental Settings 
The experimental settings (unless otherwise stated) were as 
follows: to retain phonetic consistency whilst maintaining a 
suitably long speech segment all evaluations were performed on 
“Homo Faber” excerpts with a mean length of 3 min, 24 sec. 
This excerpt was unavailable for two speakers in the test set, for 
these files an appropriate length of continuous German speech 
was used, this approach was also used in [15]. Frame-level 
MFCC features were extracted as per [14]. All UBMs were 
trained with 10 iterations of the EM algorithm. As per [12,14], 
speaker specific GMM’s were formed using full adaption, with 
five iterations of the MAP algorithm. 

A  PAV profile, with L = 21 was extracted per file using 
100,000 points (ܰ) for the Monte Carlo approximation using 
(8). The ߠ values were chosen experimentally; if a given ߠ is 
too small the resulting ఏܸ will not contain sufficient 
discriminatory volume information, conversely if ߠ is too high 
the resulting ఏܸ will equal zero. Our ߠ values were equally 
spaced on the log probability scale between 0 and the highest 
probability found in the combined training and development set, 
using 30 values. We then removed the top 4 values and bottom 
5 values, decided experimentally on the development set, to 
reduce the effect of outliers in our tests. The resulting array was 
compressed to rescale volume estimates in order to make them 
independent of the feature space dimensionality: ܄ = ( ఏܸభ

ଵ, ⋯ , ఏܸమభ
ଵ ) (9) 

where ܦ = 39 was the dimensionality of the underlying feature 
space. 

 
 Figure 3: (a) Estimate of probability acoustic volume profile for a sample 1-dimensional feature distribution reflecting two 

small ‘highly densely concentrated’ feature clusters (b) Estimate of probability acoustic volume profile for an example 1-
dimensional feature distribution reflecting two wide low density feature clusters exhibiting a ‘low concentration’ of features.  

(a) (b) 



To gain a one-dimensional parameterization of PAVprofile 
for comparison with GM-AV, we fitted a negative linear slope 
to each of the profiles. Whilst the resulting coefficient 
(PAVslope) is not acoustic volume, in the same sense as GM-
AV, it is a measure of the spread of data in the feature space, 
the steeper this slope, the more tightly concentrated the feature 
space (Figure 3). 

The discriminatory strength of the PAVslope coefficient 
was compared with that of GM-AV in a series of correlations 
and 2-class, speaker independent t-tests with results reported in 
terms of Spearman’s rank coefficient and Hedge’s g coefficient 
for the two tests respectively as well as the associated p-value. 
The UBM’s were trained using the entire testing partition, 
approx. 13hrs of data. Correlations were performed using all 
100 training and development files. For the t-test, the first class 
contained 38 files with BDI < 10 (low levels of depression), the 
second contained a further 38 files, with a BDI > 18 (moderate 
to severe depression).  

For the score level prediction results, all UBM’s were 
trained using the entire training partition, approximately 12hrs 
of data, and prediction results were recorded in terms of Root 
Mean Square Error (RMSE). Prediction results for PAVslope 
and GM-AV were found using linear regression whilst PAV 
profile results were generated using a Linear Support Vector 
Regressor (SVR), as in [14]. All prediction results were 
compared with the brute forcing (BF), Kullback-Leibler (KL-
means) supervector, Vocal Tract Correlation (VTC) feature and 
i-vector results from [13], [14], [15] and [18] respectively. 

5. Results 
5.1 Statistical Analysis 
The negative correlations, seen in Table 1, show that GM-AV 
decreases with increasing levels of depression, and significant 
correlations (p<0.01) are seen for 8 and 16 mixtures. However 
the results from the 2 class t-test results (|g|≤0.5, p≥0.05) show 
that GM-AV cannot sufficiently differentiate between low/high 
levels of depression. 

For PAVslope, the correlations (p<0.001) and T-test results 
(|g|>0.5, p<0.01) provide strong evidence for the suitability of 
this feature as a marker of depression (Table 1). The positive 
correlations show that the steepness of the PAVprofile increases 
with increasing levels of depression. This is a strong indicator 
that the MFCC feature space becomes more tightly 
concentrated with increasing levels of depression.  

   Table 1: GM-AV and PAVslope statistical test results, for 
three different GMM sizes, calculated on two different 

partitionings of the AVEC 2013 dataset 

Feat. GMM 
Mixes 

Correlation T-Test
Rho p Hedge’s g p 

GM-
AV 

8 -0.32 1.3E-03 0.15 0.52 
16 -0.28 4.5E-03 -0.09 0.68 
32 -0.24 1.8E-02 0.31 0.17 

PAV 
slope 

8 0.45 3.1E-06 -0.69 3.3E-03 
16 0.50 1.2E-07 -0.95 7.9E-05 
32 0.49 1.7E-07 -1.02 2.7E-05 

5.2 Score Level Prediction 
To test the performance of GM-AV, PAVslope and PAVprofile 
as markers of depression we ran a series of score level 
prediction tests. Results from this analysis showed that GM-AV 
was not well suited to performing score level prediction (Table 
2); this is not surprising given the results in section 5.1. The 
PAVslope scores, given their strong statistical results, are 

disappointing; although it is worth noting this single 
dimensional feature was able to outperform the high 
dimensional (2268 features), brute forcing approach used in 
[13]. PAVprofile matches performance with conventional 
spectral features in the development set, however the weaker 
test set results indicate potential overfitting when setting the 
thresholds. It should also be noted that whilst direct comparison 
with [15] is possible, a direct comparison of results in [13], [14], 
and [18] is not straightfoward; these results were calculated 
using the entire files, not just the “Homo Faber” passage.  

Table 2: Comparing AVEC 2013 Development and Test 
RMSE’s for acoustic volume measures with accuracies 

reported in [13], [14], [15] and [18] 

 
 
 
 
 
 
 
 
 

6. Conclusion 
A decrease in feature space variability and in localized model 
domain variability have been previously reported when using 
the MFCC/GMM paradigm to parameterize and model 
depressed speech [12]. To parameterize these reductions in 
acoustic variation we proposed the Probabilistic Acoustic 
Volume, and a technique for its calculation using Monte Carlo 
methods for estimating the volume of a region of space where 
the corresponding probability distribution is greater than some 
given threshold. This technique resulted in two features which 
strongly relate to a speaker’s level of depression.  

PAVslope performed well in statistical testing; the strong 
correlations provide evidence for reduced variations in the 
MFCC feature space. This result, and arguably also the GM-AV 
correlations,  complement the results presented in [12] and 
provides strong evidence for our hypothesis that altered speech 
motor control in depression causes a reduction in acoustic 
variations. Both PAVslope  and the full PAV profile performed 
adequately in the score level prediction results, outperforming 
the AVEC 2013 baseline [13]. 

Future work will include developing ways of automatically 
setting threshold values and experimenting with different 
methods to collapse the PAVprofile into a smaller dimensional 
feature space with fewer redundancies. Given the results here 
and in [12] we will also be exploring other measures for 
characterizing how changes in speech motor control with 
increasing levels of speaker depression are manifested in 
acoustic space. 
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System 
Devel. Test 

8 16 32 8 16 32 
GM-AV 12.55 11.89 11.85 11.45 11.53 11.64 

PAVslope 11.26 10.48 10.55 11.36 11.37 11.47 
PAV profile 10.50 10.60 10.75 11.87 11.86 12.09 

BF [13] 10.75 14.12 
KLmean [14] 9.60 10.17 

VTC [15] 7.42 9.49 
i-vector [18] 10.34 11.37 
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