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Abstract 

An essential step to achieving human-machine speech communication with the 

naturalness of communication between humans is developing a machine that is capable of 

recognising emotions based on speech. This thesis presents research addressing this 

problem, by making use of acoustic and prosodic information. 

At a feature level, novel group delay and weighted frequency features are proposed. 

The group delay features are shown to emphasise information pertaining to formant 

bandwidths and are shown to be indicative of emotions. The weighted frequency feature, 

based on the recently introduced empirical mode decomposition, is proposed as a 

compact representation of the spectral energy distribution and is shown to outperform 

other estimates of energy distribution. Feature level comparisons suggest that detailed 

spectral measures are very indicative of emotions while exhibiting greater speaker 

specificity. Moreover, it is shown that all features are characteristic of the speaker and 

require some of sort of normalisation prior to use in a multi-speaker situation. 

A novel technique for normalising speaker-specific variability in features is proposed, 

which leads to significant improvements in the performances of systems trained and 

tested on data from different speakers. This technique is also used to investigate the 

amount of speaker-specific variability in different features. A preliminary study of 

phonetic variability suggests that phoneme specific traits are not modelled by the emotion 

models and that speaker variability is a more significant problem in the investigated 

setup. 
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Finally, a novel approach to emotion modelling that takes into account temporal 

variations of speech parameters is analysed. An explicit model of the glottal spectrum is 

incorporated into the framework of the traditional source-filter model, and the parameters 

of this combined model are used to characterise speech signals. An automatic emotion 

recognition system that takes into account the shape of the contours of these parameters 

as they vary with time is shown to outperform a system that models only the parameter 

distributions. The novel approach is also empirically shown to be on par with human 

emotion classification performance. 

Keywords: Automatic emotion recognition, group delay features, EMD based 

weighted frequency, speaker normalisation, contour parameterisation, dynamic 

modelling. 
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Chapter 1 
 
Introduction 

The development of symbolic language and speech as a means of communications has 

played a significant role in the evolution of humans. Consequently, speech is probably the 

most natural and widely used form of interpersonal communication. While in general the 

primary objective of speech is to convey information encoded as linguistic content, 

speech is not completely characterised by its linguistic content. Other factors such as the 

speaker’s age, sex, emotional state and cognitive load, collectively referred to as 

paralinguistic information, influence speech as well. Humans are able to both convey and 

interpret paralinguistic information in speech with very little effort during the course of 

any normal conversation. 

The development of a machine that is capable of exhibiting the conversational skills 

of a human being has long been one of the goals of speech processing research. Even 

without achieving the artificial intelligence (AI) goals of understanding the information 

conveyed in speech and responding appropriately, the initial ability to recognise 

linguistic, and to a larger extent paralinguistic, information has not yet been achieved. 

While a significant volume of research has been carried out over the last six decades in 

the fields of speech recognition and speaker recognition, research into recognising other 

aspects of paralinguistic information have only been gaining popularity in recent years1. 

One of these aspects is the emotional state of the speaker and its automatic recognition 

based on speech is the focus of the work reported in this thesis. 

                                                 
1 Google Scholar lists 15 papers relevant to emotion recognition published in 1998 compared with more 
than 100 in 2008. 
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1.1 Speech Based Emotion Recognition 

Human speech is an acoustic waveform, generated by the vocal tract, whose parameters 

are modulated to convey information. The physical characteristics and the mental state of 

the speaker determine how these parameters are affected and consequently speech 

conveys the intended, and on occasion unintended, information. Speech processing 

research could be described as the effort to determine these parameters, understand how 

they characterise the information contained in speech, and apply this understanding to 

practical systems. Even though this knowledge is not explicitly available, the human brain 

is able to decipher this information from the speech waveform, including the emotional 

state of the speaker. This ability of a person to recognise the emotional state of the 

speaker from his or her speech is robust with respect to different speakers, and humans 

achieve it successfully in many cases, even if it is the first time they have been exposed to 

that speaker. This suggests the existence of patterns in speech that are characteristic of the 

emotion being conveyed. These characteristic patterns may exist in many levels, ranging 

from prosodic and acoustic patterns to patterns in word and language usage, and form the 

basis for all automatic emotion recognition (AER) systems based on speech. 

The importance of such AER systems has increased with the need to improve 

naturalness and efficiency of speech based human-machine interfaces (Cowie et al. 2001). 

In general, the aim of an AER system is to extract descriptors that are representative of 

those patterns in speech that are characteristic of the emotional state of the speaker, while 

simultaneously unrepresentative of patterns characteristic of all other information. These 

descriptors (also referred to as features) can then be used to automatically determine the 

emotional state of the speaker. However, no ideal features are known and the search for 

the best features (i.e., those that maximise emotion specific information while minimising 
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dependence on other aspects) is one of the central research themes in the field of speech-

based emotion recognition. 

Given that ideal features (descriptors) do not exist, pattern classification techniques 

are used to make a decision about the emotional state based on the chosen features. 

Herein, based on which aspect of the speech signal they describe, features are broadly 

categorised into low-level or high-level descriptors. Low-level features describe the 

acoustic, prosodic or spectral properties of the speech signal, without taking into account 

the linguistic content explicitly. High-level features on the other hand are based explicitly 

on the linguistic content without taking into account any variations in the acoustic 

parameters of the speech signal. Even though evidence suggests that both contain emotion 

specific information (Lee et al. 2005), in order to limit the complexity of the emotion 

recognition system, especially given the relative immaturity of the field, a large number 

of state of the art AER systems do not make use of semantic or linguistic information and 

rely solely on acoustic, prosodic, and/or spectral features, e.g. (Kwon et al. 2003; 

Ververidis et al. 2006). 

One approach to the search for effective features is to base parameters on some model 

of speech production and another is to base it on a signal analysis method such as the 

Fourier transform or the wavelet transform. Given that different features describe 

different properties of the speech signal, their values vary with any aspect (not only the 

emotional state) of the speaker that affects these properties. This is obviously undesirable, 

and ideal features would exhibit minimum variability with respect to other information 

while retaining emotion specific variability. Hence, both effectiveness of features, and 

their variability are investigated. 

Research in the fields of speech and speaker recognition has provided the speech 

processing community with established and successful features, and powerful modelling 

and pattern classification tools. This has allowed for the rapid development of speech 
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based emotion recognition systems that make use of these tools and features. In a short 

period of time, even though an exhaustive comparison of all possible combinations is not 

feasible given the large number of available features and pattern classification techniques, 

numerous systems with reasonably good performance have been reported. However, this 

system development approach to research into automatic emotion recognition systems 

may tend to emphasise rapid performance gains at the expense of an in-depth 

understanding of why these approaches result in these performances and the relationship 

of the features used to traditional models of speech. 

1.2 Research Issues 

An alternative approach is to develop novel features and classification tools specific to 

the task of emotion recognition. However, one of the major hurdles to this approach is the 

lack of clear research directions. An attempt to ascertain some of these directions forms a 

part of this thesis. In particular it looks at the standard source filter model for speech 

production, interpreting features in terms of the model and studying the variations of 

these parameters in order to exploit those that are due to and indicative of emotions. It 

may also be necessary to minimise variations due to other factors. 

The principal objective of this thesis is the investigation of emotion-specific patterns 

in speech parameters, with the aim of using this information in speech based AER 

systems, but focusing more on developing an understanding of the relationship between 

these parameters and the emotion being conveyed and less on the actual performance of 

the AER system. The AER system can be broadly divided in to two stages: (1) A front-

end that extracts features from the speech signal, and (2) a back-end that makes a decision 

based on the features (refer to Figure 1.1). 
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Figure 1.1: Parts of a generic AER (automatic emotion recognition) system 

While both stages were implemented in the course of the work described in this 

thesis, and preliminary comparisons of back-ends are included, a comprehensive 

evaluation of the best back-end is not part of the scope. The aims of the investigation are: 

• To develop and investigate features for automatic emotion recognition to 

determine which speech parameters (in the framework of a speech production 

model) are the most representative of emotions. 

• To investigate variability in features due to speaker specific information and the 

normalisation of such speaker specific variability prior to classification. 

• To investigate some of the different approaches to emotion classification in order 

to validate the framework used in the evaluations of features. 

• To investigate the use of a three component speech production model, with the 

intention of employing the model parameters as features. In particular, to 

determine the importance of taking into account the long-term temporal variations 

of these parameters. 

1.3 Organisation of the Thesis 

The remainder of the thesis is organised as follows: 
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Chapter 2 provides an overview of speech, emotions, speech processing, feature 

extraction, emotion modelling, and emotion classification. It briefly describes the 

common approaches to automatic speech based emotion recognition. 

 

Chapter 3 discusses various traditional and novel features as applied to speech based 

emotion recognition. Different features are based on different aspects of the speech 

signal. For instance, cepstral coefficients are based on the magnitude spectrum, while 

pitch is based on the period of the vocal excitation. This chapter reviews the traditional 

speech production model and attempts to interpret the features in terms of this model. 

 

Chapter 4 investigates the effects of speaker variability on emotion models. In addition 

to a comparison of the effect of speaker variability in different front-ends, it also proposes 

a novel speaker normalisation method and it compares speaker variability to phonetic 

variability. 

 

Chapter 5 describes a few of the modelling approaches adopted for speech based 

automatic emotion recognition. It includes a preliminary comparison of selected 

classifiers and an evaluation of a modelling approach that attempts to exploit clustering 

the feature space that are not related to emotions. It also compares two approaches to 

modelling the statistics of speech features with different levels of abstraction. 

 

Chapter 6 discusses a three component speech production model as an improvement to 

the traditional speech production model. The glottal parameters determine the shape of 

the vocal excitation waveform and influence voice quality while the pitch contour is 

approximated by linear segments in order to parameterise it. This chapter also discusses 

subjective and objective evaluations of this model based on listening tests conducted on 
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re-synthesised speech and automatic classification tests performed using the model 

parameters as features respectively. 

 

Chapter 7 highlights the achievements of the thesis with respect to the recognition of 

emotions based on speech. It also discusses opportunities and directions for future work. 

1.4 Major Contributions 

The research described in this thesis provides original contributions to the automatic 

recognition of speaker emotional state based on speech. The major contributions can be 

summarised as follows: 

• A novel group delay feature based on an autoregressive (AR) model is proposed 

for speaker dependent emotion recognition. The group delay highlights formant 

frequencies and formant bandwidths. The relationship between group delay and 

formant bandwidth is derived analytically. 

• A feature estimated from a definition of instantaneous frequency based on the 

Hilbert transform and empirical mode decomposition is proposed to characterise 

spectral energy distribution and its performance in emotion recognition systems is 

evaluated. 

• A comparison of some of the most commonly used prosodic, acoustic and spectral 

features on the same database with identical back-ends, in speaker dependent and 

independent scenarios. 

• Almost all acoustic and prosodic features are speaker dependent and can result in 

inefficient estimation of statistics when modelled by classifiers trained on data 

from multiple speakers. A speaker normalisation technique that is novel in the 
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AER context is proposed to overcome this problem and its effectiveness is 

evaluated on 16 distinct acoustic and prosodic features. 

• The effect of speaker specific and phoneme specific information on speech based 

automatic emotion classification is evaluated. Results of this evaluation indicate 

that speaker variability is more significant than phonetic variability. 

• First to use glottal spectral parameters as features in the context of AER, as part of 

a three component speech production model. 

• An AER system that takes into account the shape of the pitch contours is shown to 

significantly outperform a system that models only the distribution of pitch values. 

• The use of glottal and vocal tract parameter contours in addition to pitch contours, 

is evaluated in the context of emotion recognition. Model parameter 

approximations are proposed for compact representation as features and a voiced 

speech synthesis technique based on the model allows for subjective evaluations 

of the proposed approximations along with objective evaluations based on the use 

of model parameters as features. 

• The performance of an AER system based on the 3 component model parameter 

contours is shown be comparable to human performance. 

1.5 List of Publications 

• Sethu, V., Ambikairajah E. and Epps J. (2009) "Pitch contour parameterization 

based on linear stylization for emotion recognition", in the Proceedings of 

INTERSPEECH-09, pp. 2011-2014. 

• Sethu, V., Ambikairajah, E., and Epps J., (2009) “Speaker dependency of spectral 

features and speech production cues for automatic emotion classification”, in the 
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Chapter 2 
 
Speech and Emotions 

This chapter discusses the mechanisms involved in human speech production, what 

emotions are, and how speech could be an indicator of these emotions. It then describes 

the Emotional Prosody speech corpus, which is used in all the experimental work reported 

in this thesis. Finally, it provides a brief background to automatic emotion recognition 

systems. More specifically, it elaborates on what is required for such a system, touching 

upon different approaches, classifiers and features. 

2.1 Human Speech Production 

Speech is the vocalised form of human communication. We use it every day almost 

unconsciously, without devoting much thought to the process. After language processing 

in the brain which involves conversion of an utterance into phonemes, there are three 

stages involved: generation of motor commands to the vocal organs; articulation of the 

vocal organs; and the excitation of the vocal tract by air driven though it by the lungs. 

Figure 2.1 shows the stages involved in producing human speech (Honda 2003) and 

Figure 2.2 shows the parts of the human speech production apparatus. 

 
Figure 2.1: Human speech production process, (Honda 2003) 
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Air flowing through the opening between the vocal folds causes them to draw towards 

each other until eventually the opening is closed, which causes the air pressure below the 

folds to increase until they are forced open again. This cyclic opening and closing of the 

vocal folds modulates the airflow resulting in phonation (production of sound). The sound 

produced at this stage is characterised only by the fundamental frequency, which is the 

rate at which the vocal folds vibrate. Alternately, the vocal folds may not vibrate and air 

flows through a narrow opening, typically created by the position of the vocal folds, 

tongue, and/or lips, resulting in turbulent airflow and a noise-like sound. Speech 

characterised by such a sound source is referred to as unvoiced speech (e.g. /s/) as 

opposed to voiced speech (e.g. /aa/) which requires phonation. The combination of the 

vocal folds and the space in between the folds is referred to as the glottis. 

 
Figure 2.2: Schematic diagram of the human speech production apparatus (Rabiner et al. 1993) 

This pulsed or turbulent air stream then excites the vocal tract causing it to resonate at 

its characteristic frequencies (formants). These characteristic formant frequencies are 

determined by the shape of the vocal tract which is in turn determined to a certain extent 

by the position of the jaws, tongue and other parts of the mouth. This allows humans to 

control the resonance characteristics and consequently the speech sound being produced. 
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A simplified schematic of the human speech production apparatus is shown in Figure 2.2. 

Thus speech can be approximated as a signal produced by a sound source, which is then 

spectrally shaped by the vocal tract. As a result, any physiological changes that affect the 

organs involved in the process of speech production will have an effect on the speech 

being produced and the underlying reason for these changes could potentially be 

determined from the speech. 

2.2 Emotion in Speech 

In order to build an automatic emotion recognition system, it is essential to have a sense 

of what an emotion is and how it affects the speech signal. While most people have an 

informal understanding of emotions, typically built upon the experience of years of 

interpersonal interactions, a formal framework is a pre-requisite for a thesis on emotion 

recognition and can be identified from research in the fields of psychology and cognitive 

sciences. Such a framework must begin with an answer to the question “What are 

emotions?”. Emotions and feelings, particularly feelings of emotions, are often 

considered to be the same thing. However, it has been suggested that making a distinction 

between emotion and the feeling of emotions allows for a testable description (Damasio 

2000). One of the most commonly used and accepted frameworks to describe emotions 

(and one of the few that allows testable hypotheses) is the component process model 

proposed by Scherer (1984). 

2.2.1 What are Emotions? 

Emotions are specific and consistent collections of physiological responses triggered by 

internal or external representations of certain objects or situations, such as a change in the 

person’s body that produces pain, or an external stimulus such as the sight of another 



EMOTION IN SPEECH 
 

13 
 

person; or the representation, from memory, of a person, or object, or situation in the 

thought process. There is some evidence to suggest that the basics of most if not all 

emotional responses are preset in the genome (Damasio 2000). In a broad sense, emotions 

are a part of the bio-regulatory mechanism that humans have evolved to maintain life and 

survive. Emotions form an intermediary layer between stimulus and behavioural reaction, 

replacing rigid reflex-like response patterns (Scherer 1984) allowing for greater flexibility 

in behaviour (Tompkins 1962). It has also been postulated that one of the major functions 

of emotion is the constant evaluation of stimuli in terms of relevance and the preparation 

of behavioural responses that may be required by these stimuli (Arnold 1960; Scherer 

1982). Emotional reactions also serve as a signalling system between organisms and are 

essential in acquiring new behaviour patterns. It has been pointed out that they are a pre-

requisite for learning (Bower 1981; Mowrer 1960). 

While the precise composition and dynamics of the responses are specific to an 

individual (based on environment and individual development), the basic traits are 

consistent across all humans. In a typical emotion, a part of the brain sends commands to 

the rest of the body (and other parts of the brain) via chemical molecules in the 

bloodstream and/or via neuronal pathways, resulting in a global change in the state of the 

person. Both the body and the brain are profoundly affected by the set of commands, in 

response to a particular set of sensory patterns (which may have originated internally or 

externally). This view offered by Damasio (2000) is also consistent with the view 

inherent in the work of other authors such as Ekman (1992b). However, this view only 

loosely defines what may be included under the term ‘emotion’ and is not a complete 

theory of emotions. It should also be noted that while emotions are referred to as ‘states’, 

they are in fact not static concepts but constantly changing processes. 
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In terms of the component process model, emotions are treated as psychological 

constructs consisting of several components each serving distinct functions (Scherer 

1984) as listed below. Scherer (1984) also states that there is a fair amount of agreement 

among researchers that the concept of emotions should indeed encompass all these 

components. 

Component 

Cognitive stimuli appraisal 

Neurophysiological processes 

Motivational and behavioural tendencies 

Motor expression 

Subjective feeling 

Function 

Evaluation of an environment 

System regulation 

Preparation of action 

Communication of intention 

Reflection and monitoring 

Based on internal and external stimuli, the state of each of the components is 

continuously changing (e.g., the sight of a desirable object will change state of the 

cognitive stimuli appraisal component from ‘seeing an object’ to ‘evaluating it as 

desirable’; and the state of the motivational component from ‘curious’ to ‘wanting the 

object’ and so on). An emotion is then conceptualised as a pattern of state changes in 

these components where each component is influenced by the others (Scherer 1984). 

The distinction between emotions and feelings of emotions advocated by Damasio 

(2000) is inherent in this component process framework as the feeling of an emotion is a 

state of the subjective feeling component while the emotion itself is a dynamic sequence 

of states of many components. The distinction between emotions and feelings of emotions 

is of some importance since emotions include a physiological component while feelings 

of emotions refer to the private, mental experiences of an emotion and may not be a part 

of every emotion. It is the physiological and motor expression components, specifically 

the consistency in the patterns of the changes in their states, which form the basis of 
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automatic emotion recognition systems. In particular, systematic effects of the emotion 

specific state sequences of these components on the speech production apparatus forms 

the basis for speech based AER systems. 

2.2.2 Emotions and Speech 

Everyday experience tells us that speech is an informative source for the perception of 

emotions. For instance, talking in a loud voice when feeling very particularly happy, 

speaking in an uncharacteristically high pitched voice when greeting a desirable person, 

or the presence of vocal tremor when fearful or sad have all been experienced routinely 

by a lot of people. This recognition in turn indicates that listeners are able to infer the 

emotional state of the speaker reasonably accurately – even in the absence of visual cues. 

Scherer (2003) states that a review of about 30 studies yielded an average recognition rate 

of about 60%. However, the lack of a common database makes direct comparisons of the 

recognition rates reported in literature an exercise in futility.  Section 2.2.3.3 includes the 

emotion recognition rates achieved by humans on the data used throughout this thesis. 

Based on the definition of emotions as including a physiological component, both 

voluntary and involuntary effects on the human speech production apparatus can be 

expected and the characteristics of vocal expression are the net result of these effects. It 

has been noted that characteristics affecting bodily movement also affect the voice 

production mechanism and consequently the voice. This is supported by the observation 

that the vocal expressions of basic emotions is similar in many languages (Fónagy 1981). 

This work also notes considerable parallels between vocal and physical gestures – for 

example, an increased tension in the throat causing an increased loudness of speech 

paralleling an increased tension of the whole body in preparation for an imminent fight. 

An even more innate ‘frequency code’ with high frequency vocalisation suggesting a 

submissive attitude and lower frequency vocalisation suggesting greater size and a more 
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dominant attitude was proposed in (Ohala 1983). Demonstrations suggesting that various 

aspects of a speaker’s physical and emotional state, including age, sex and personality can 

be identified by voice alone are reviewed in (Kramer 1963). This low-level information is 

present in even short utterances and could influence the interpretation of the words being 

uttered, typically identified by “it’s not what he said but the way he said it”. An analogy 

from communication interprets the paralinguistic information as an “emotion carrier 

wave” for the words (Murray et al. 1993). Consequently, emotion can still be recognised 

even if the linguistic information is not interpreted, this is further supported by the work 

reported in (Pollack et al. 1960) noting that emotion can be recognised from segments of 

speech as short as 60ms. Scherer et al. (2001) report an emotion recognition accuracy of 

66% on meaningless multilingual sentences by listeners from different cultural 

backgrounds, and interpret this as evidence for the existence of vocal characteristics 

specific to emotions. 

Various other authors have also hinted at systematic correlations between emotions 

and acoustic parameters (Darwin 1872; De Gelder 2000; Ekman 1992a; Johnstone et al. 

2000). Table 2.1 (reproduced from (Scherer 2003)) and Table 2.2 (reproduced from 

(Murray et al. 1993)) list some of the relationships between emotions and acoustic 

parameters as reported in the literature. It should be noted that the relationships that have 

been reported in literature are not always consistent across all studies and may contradict 

each other. For instance, Table 2.1 (Scherer 2003) lists heightened intensity for fear while 

Table 2.2 (Murray et al. 1993) lists normal intensity. However, most relationships are 

consistent and point towards correlations between emotions and acoustic parameters that 

can be exploited by an automatic emotion recognition system. 
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Table 2.1: Synthetic compilation of the review of empirical data on acoustic patterning of basic emotions 
based on (Johnstone et al. 2000) (reproduced from (Scherer 2003)) 

 

Table 2.2: Summary of human vocal emotion effects (reproduced from (Murray et al. 1993)) 

 

Reviews of research investigating the effect of emotions on vocal expression can be 

found in (Cowie et al. 2001; Frick 1985; Murray et al. 1993; Scherer 1986; Scherer 2003). 

2.2.3 Emotional Speech Data 

A pre-requisite to almost any study on the expression and recognition of emotions via 

speech is the collection of emotional speech data. However, the lack of common 

agreement about a theory of emotions complicates this process of data collection. Some 
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of the broad issues are listed below while a more detailed discussion of emotional speech 

data-bases can be found in (Douglas-Cowie et al. 2003). 

• What are the emotions for which data must be collected ? 

• Can data be collected when the emotions are acted out or must emotions be 

elicited without the speaker being aware of it ? 

• Can emotions be considered as discrete labels or are they a continuum ? 

• Is it more appropriate to map emotions onto dimensions such as valence, 

excitation, arousal, etc. and associate dimension values to data rather than emotion 

names ? 

Human languages contain a large number of ‘emotion denoting’ adjectives. 

According to (Cowie et al. 2003), the Semantic Atlas of Emotion Concepts (Averill 1975) 

lists 558 words with ‘emotional connotations’. Numbers like these reveal a problem in 

both collecting data and constructing automatic recognisers that are capable of 

distinguishing a large number of classes. However, it may be that not all of these terms 

are equally important and given the specific research aims it could be possible to select a 

subset of these terms fulfilling certain requirements. A number of such approaches have 

been proposed including: basic emotions from a Darwinian point of view, which are 

shaped by evolution to serve functions that benefit survival (Plutchik 1994); emotion 

categories chosen on the grounds that they are more fundamental than others because they 

encompass the other emotion categories; and asking people what emotion terms play an 

important role in everyday life (Cowie et al. 1999). 

2.2.3.1 Considering Emotional States 

While the aim of the above mentioned approaches is to reduce the number of emotion 

related terms, it has also been argued that emotions are a continuum and these terms, even 
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a very large number of them, do not capture every shade of emotion a person can 

distinguish. The dimensional approach to emotion categorisation is also related to this 

line of argument in that it describes shades of emotions as points in a continuous two- or 

three- dimensional space. For instance, in (Cowie et al. 2001), emotional states are 

described in terms of a two-dimensional circular space, with its axes labelled ‘activation’ 

(going from passive to active) and ‘evaluation’ or ‘valence’ (going from negative to 

positive). An important question with the dimensional approach is then if these emotion 

dimensions capture all relevant properties of the emotion concepts or if they are 

simplified and reduced descriptions. Opinion is once again divided with Russel et al. 

(1977) claiming that three dimensions emerging from their factor analysis is “sufficient to 

define all the various emotional states”, while the opposite view is expressed in (Lazarus 

1991). More comprehensive overviews of various descriptive frameworks can be found in 

(Cowie et al. 2003) and (Schröder 2004). 

From an information technology point of view of automatic emotion recognition, a 

continuum of emotions is an intractable problem at the moment and a finite (and 

relatively small) number of emotional categories are a necessity. Consequently the two 

approaches of selecting a set of emotion category labels or using emotion dimensions to 

describe a finite number of emotional states appear to be equivalent. Given this state of 

affairs and the lack of agreement on a ‘theory of emotions’, the pragmatic approach of 

asking people to identify the emotional categories that are most relevant to everyday life 

is very attractive. Such an approach was adopted in (Cowie et al. 1999) to set up what the 

authors refer to as a ‘Basic English Emotion Vocabulary’. In a two stage process, they 

evaluated the probability of various emotion category labels being a part of this basic 

emotion vocabulary. The 10 most probable emotion labels based on this study are listed 
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below in decreasing order of their probabilities (i.e., labels that occur higher up on the list 

have a higher probability of being in the basic emotion vocabulary). 

1. Happy 
2. Sad 
3. Angry 
4. Interested 
5. Relaxed 

6. Worried 
7. Pleased 
8. Affectionate 
9. Bored 
10. Confident 

In (Cowie et al. 1999), the authors state that many lists based on a priori judgements 

(such as the other approaches described above) omit terms that appear to be important 

based on this list, and include others that very few people regarded as useful. This is 

relevant from the point of view of building an automatic emotion recognition system in 

that, if it can identify only a finite number of emotions, these should be ones that are most 

required. 

2.2.3.2 Acted vs. Elicited Emotions 

On the topic of acted and elicited emotional speech, once again there is no clear 

consensus. Critics of the acted speech approach question the validity of such data, 

claiming that such speech may not reflect what people would produce spontaneously. 

However, this notion is challenged in (Banse et al. 1996) stating that even elicited 

emotions are ‘acted’, albeit for different reasons. There are numerous advantages in using 

speech based on acted emotions. Namely, control over the verbal and phonetic content 

(different emotional states can be produced using the same emotionally neutral utterance); 

and ease of producing full blown emotions. The high level of control over the linguistic 

content could also potentially allow direct comparisons of prosodic and voice quality 

parameters for different emotional states. If acted speech is to be used, it should be noted 

that actors are able to produce more convincing emotions than non-actors (Schröder 

2003). 
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2.2.3.3 LDC Emotional Speech Corpus 

The emotional speech database used in all the experiments reported in this thesis is the 

LDC Emotional Speech and Transcripts Corpus (Liberman et al. 2002). This database 

was chosen on the basis of 

• Language: It is one of the few English databases available 

• Availability: It is publically available (most databases used in emotion recognition 

studies are not publically available) 

• Number of Emotions: It contains a large number of emotional states 

• Number of Speakers: It contains speech data from multiple speakers (7 speakers) 

• Gender Balance: It contains data from male (3) and female (4) speakers. 

It contains audio recordings, recorded at a sampling rate of 22050 Hz, and the 

corresponding transcripts (word level transcripts that lack time stamps). The recordings 

were made by professional actors reading a series of semantically neutral utterances 

consisting of dates and numbers, spanning fourteen distinct emotion categories, selected 

based on the German study reported in (Banse et al. 1996), and a ‘neutral’ category that 

does not involve any emotional state. The categories included are 

1. Neutral 

2. Hot Anger 

3. Cold Anger 

4. Panic 

5. Anxiety 

6. Despair 

7. Sadness 

8. Elation 

9. Happy 

10. Interest 

11. Boredom 

12. Shame 

13. Pride 

14. Disgust 

15. Contempt 

Four female and three male actors participated and were provided with descriptions of 

each emotional context, including situational examples adapted from those used in the 

German study. Flashcards were used to display series of four syllable dates and numbers 
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to be uttered in the appropriate emotional category. During the recording, the actors 

repeated each phrase as many times as necessary until they were satisfied the emotion 

was expressed and then moved onto the next phrase. Only the last instance of each phrase 

was included in all the experiments reported herein. This provided about 8 to 12 

utterances per speaker for every emotional category. While the phrases recorded for all 

emotions were not identical, they were very similar to each other and contained numerous 

words that were common (e.g. ‘Two thousand and one’ and ‘Two thousand and twelve’; 

or ‘December second’ and ‘December twenty first’). 

As mentioned previously, not all emotional categories were deemed to be equally 

relevant in everyday life (Cowie et al. 1999). A comparison of the list of the ten 

emotional categories deemed most important in everyday life with the emotional 

categories available in the LDC Emotional speech corpus immediately indicates that 

happiness, sadness and anger must be included in the experiments. The database contains 

two versions of anger, hot and cold, and only the more obvious hot anger was used. 

Neutral was also selected as one of the categories since non-emotional speech is probably 

more common than emotional speech and since most speech studies (not related to 

emotions) are based on neutral speech. The other emotional categories that are present on 

both lists are interest and boredom. Of these, boredom was considered to be important in 

many of the potential applications of automatic emotion recognition and was chosen as 

the fifth category but interest was not used in the experiments. The five emotional 

categories used in the experiments reported in this thesis are listed below. These five 

emotions are also used in other studies (Huang et al. 2006; Yacoub et al. 2003). 

1. Neutral 

2. Anger 

3. Sadness 

4. Happiness 

5. Boredom 
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As part of the work reported in this thesis and in order to act as a reference for all 

automatic emotion recognition accuracies reported in the rest of the thesis, a listening test 

was conducted with eleven untrained listeners to determine the accuracy with which 

humans could classify speech from this database belonging to the above mentioned five 

emotional categories. The listeners were given an utterance, which they could listen to as 

many times as necessary, and asked to classify it as one of the five emotions (Neutral, 

Anger, Sadness, Happiness and Boredom). Each listener classified 15 class balanced 

utterances (3 from each of the 5 classes) drawn at random from the database. The overall 

accuracy of all eleven listeners was 63.6 % and the overall confusion matrix is given in 

Table 2.3. The rows give the actual emotional category and the columns the emotional 

category into which they were classified (this format is followed in all reported confusion 

matrices). 

Table 2.3: Confusion matrix for five emotions classified by 11 human listeners 

 Neutral Anger Sad Happy Bored 

Neutral 69.7 % 3 % 9.1 % 0 % 18.2 % 

Anger 3 % 93.9 % 0 % 3 % 0 % 

Sad 12.1 % 3 % 57.6 % 0 % 27.3 % 

Happy 39.4 % 3 % 9.1 % 45.5 % 3 % 

Bored 33.3 % 0 % 15.2 % 0 % 51.5 % 

Overall Accuracy = 63.6 % 

A few observations can be made from these classification rates. The most obvious one 

is that anger was identified correctly on almost all occasions and other emotions were 

mistaken for anger very rarely. Similarly other emotions were mistaken as happiness very 

rarely even though happiness is often mistaken for no emotion. It is interesting to note 

that both anger and happiness are emotions associated with a relatively high level of 

excitation (Osgood et al. 1957) and the other (low-excitation) emotions are rarely 

mistaken to be one of them. The emotion associated with a low degree of excitation (i.e., 
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neutral, sadness and boredom) are however confused with each other on a non-trivial 

number of occasions. 

2.3 Automatic Emotion Recognition 

The idea of making a machine that is capable of recognising emotions from speech is not 

a very new idea (Tolkmitt et al. 1986). However, the popularity of research in this field 

has grown significantly in recent years, coinciding with the maturing of research in the 

fields of speech and speaker recognition. A major motivation comes from the desire to 

develop human-machine interfaces that are more adaptive and responsive to the user’s 

behaviour, thereby making human-machine interactions more natural and closer to 

human-human interactions (Cowie et al. 2001). For instance, ticket reservation systems 

that use automatic speech recognition, that are also able to detect annoyance and 

frustration of the user, could change their response appropriately (Ang et al. 2002). 

Systems capable of recognising the emotional state of a person based on speech are also 

useful in call centres (Lee et al. 2005; Petrushin 1999); as diagnostic tools in medicine 

(France et al. 2000); and as tools to aid in coping with large amounts of speech data in 

research pertaining to emotions (Mozziconacci et al. 2000). 

FEATURE 
EXTRACTION

PATTERN 
CLASSIFICATIONSPEECH EMOTION

- Gaussian Mixture models
- Hidden Markov models
- Support vector machines
- Neural networks
- etc.

FRONT-END BACK-END

- Acoustic
- Prosodic
- Linguistic
- etc.

 
Figure 2.3: Parts of a generic AER (automatic emotion recognition) system 
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Given that emotions are expressed via speech though numerous cues, ranging from 

low-level acoustic ones to high-level linguistic content, several approaches to speech 

based automatic emotion recognition (AER), each taking advantage of a few of these 

cues, are being explored. However, almost all of them employ a machine learning 

approach and consist of a front-end which extracts relevant cues (features) from speech 

and a back-end which models emotion specific patterns of these features (Figure 2.3). 

2.3.1 Front-End 

As mentioned in section 2.2.2, both voluntary and involuntary effects contribute towards 

the expression of emotions in speech. The net result of these effects manifests itself as 

deviations of acoustic, prosodic and linguistic parameters from patterns found in ‘neutral 

speech’. The term ‘neutral speech’ refers to speech that does not convey any information 

about the emotional state of the speaker. Acoustic and prosodic parameters are non-verbal 

parameters such as pitch, loudness, energy spectral distribution, speech rate, etc. which 

can be extracted without any knowledge of the linguistic content (what is being said) even 

though they may be related to it. For instance, while pitch is dependent on what is being 

said as well as other factors (age, sex, emotional state, etc.), it can be extracted without 

any knowledge of the linguistic content. These features are in most cases short-term 

features estimated on a frame-by-frame basis. Most of the methods employed in 

automatic emotion recognition stem from the front-end signal processing developed in the 

context of speech coding, speech recognition and speaker recognition. Numerous features 

have been analysed for this task (Barra et al. 2006; Borchert et al. 2005; Lugger et al. 

2007; Pantic et al. 2003; Ververidis et al. 2006; Vidrascu et al. 2007; Yacoub et al. 2003) 

and it would be impossible to list all of them. However the most commonly used acoustic 

and prosodic features tend to those based on pitch, intensity, cepstral coefficients and 

speech rate. Although these features are extracted on a frame-by-frame basis, the most 
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commonly adopted approach in emotion recognition systems is to extract parameters 

(statistics) from the feature values corresponding to all the frames in an utterance (turn) 

that is being evaluated. These parameters then form a new feature vector and 

classification is performed based on this new vector rather than the original features. 

Commonly extracted statistics include means, standard deviations, quartiles, ranges, 

extremes, regression coefficients, roll-off points, etc (Schuller et al. 2007; Vlasenko et al. 

2007; Yacoub et al. 2003). However, it has been argued that the use of models such as 

Gaussian mixture models (see section 2.3.2.1) which approximate the probability density 

functions would intrinsically model these parameters and the frame level features can be 

used directly (Huang et al. 2006). 

Linguistic parameters, unlike the acoustic and prosodic ones, are based on the 

linguistic content and cannot be extracted without prior speech recognition (automatic or 

manual). Examples of linguistic parameters include part-of-speech (POS) tags, semantic 

tags and N-grams, and a number of approaches based on linguistic parameters have been 

investigated (Ang et al. 2002; Boucouvalas et al. 2002; Cowie et al. 1999; Lee et al. 2002; 

Litman 2003; Schuller et al. 2009). However, the use of linguistic parameters for 

automatic emotion recognition is not as widespread as the use of acoustic and prosodic 

parameters for three predominant reasons, namely: the linguistic approach requires 

speech recognition which is error-prone and based on a fixed vocabulary; it is language 

dependent to a much greater extent; and it is significantly more complex than the acoustic 

and prosodic approach. Measures of the parameters (acoustic, prosodic or linguistic) 

themselves, or measures of their deviation from the patterns for neutral speech are 

extracted by an appropriate front-end as features (refer to Chapter 3 for a discussion on 

features). 
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2.3.2 Back-End 

Given a suitable set of features (cues) representative of the emotional state of the speaker, 

the role of the back-end is to initially model emotion specific patterns and then perform 

pattern matching. A number of classification methods have been used for automatic 

emotion recognition and based on their approach they can be categorised as either 

generative or discriminative. Generative classifiers try to model the distribution of the 

training data (features) from each class (emotion) individually (i.e., the models of each 

class are based only on data from that class and not from any other class). Pattern 

matching involves estimating some measure of closeness of the unknown data to each of 

the models and then picking the class whose model is closest to the data. The commonly 

used generative classifiers are: 

• Probabilistic neural networks (PNN) (Specht 1988) 

• Gaussian mixture models (GMM) (Reynolds et al. 1995) 

• Hidden Markov models (HMM) (Baum et al. 1966; Baum et al. 1970) 

Unlike generative classifiers, which attempt to model the entire feature space for each 

class, discriminative classifiers attempt maximising a discriminative function between the 

different classes without modelling the distribution of the entire feature space. The main 

disadvantage of the discriminative classifiers is that their optimal structure has to be 

selected by trial and error procedures. Some of the commonly used discriminative 

classification techniques are: 

• Linear discriminant analysis (Fisher 1936) 

• Polynomial classifier (Specht 1967) 

• Recurrent neural networks (Pearlmutter 1995) 

• Time-delay neural networks (Lang et al. 1990) 
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• Multilayer perceptrons (Rosenblatt 1958) 

• Support vector machines (SVM) (Vapnik 2000) 

Among the classifiers listed above, hidden Markov models, recurrent neural networks 

and time-delay neural networks are capable of modelling temporal patterns in feature 

sequences while the other classifiers are insensitive to the temporal order of the features. 

Both GMMs and HMMs were used in the experiments reported in this thesis and are 

discussed in this section. 

2.3.2.1 Gaussian Mixture Models (GMM) 

Appropriate features (cues) are those that enable the separation of classes (emotions) in 

the feature space (ܰ dimensional vector space determined by the ܰ dimensions of the 

feature – features are vectors when ܰ  1). Thus each feature vector is a point in this 

feature space and ܰ dimensional probability density functions (PDFs) describe the 

distribution of all the feature vectors of each class. An example in a two dimensional 

feature space with two distinct classes is shown below (Figure 2.4). 

Given ܯ classes and their corresponding probability density functions 

ଵ݂ሺ࢞ሻ, … , ெ݂ሺ࢞ሻ, the probability of any feature vector, ݔҧ belonging to a class ݆ is simply 

݂ሺݔҧሻ. The problem of finding the class, given the feature vector and assuming that all the 

classes are equiprobable is 

 arg max


൛ ݂ሺݔҧሻൟ (2.1)

The problems are then estimating the probability density functions themselves, and 

compactly representing them (the size of the PDF increases exponentially with the 

dimensionality of the features). Using Gaussian mixture models (GMMs) to model these 

PDFs provides a solution to both these problem. 
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Figure 2.4: Two well separated classes in a 2 dimension feature space and their corresponding probability 

density functions 

A mixture density is a probability density function (PDF) that is expressed as a 

convex combination (linear combination where all the weights are non-negative and sum 

to 1, see (2.2) and (2.3)) of other probability density functions.  Given a set of probability 

density functions ଵሺݔሻ, … ,  ሻ, referred to as mixture components and correspondingݔሺ

weights ݓଵ, … ,  ሻ is a mixture densityݔሺݍ , the weighted sumݓ

 
ሻݔሺݍ ൌ  ሻݔሺݓ



ୀଵ

 (2.2)

 
ݓ  0 ܽ݊݀  ݓ



ୀଵ

ൌ 1 (2.3)

The mixture components are usually not arbitrary pdfs, but belong to the same 

parametric family. In the case when they are all normal (Gaussian) distributions, the 

convex sum is a Gaussian mixture density. 
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Any probability density function can be approximated by a Gaussian mixture density 

given a sufficient number of mixture components ݊ and is referred to as a Gaussian 

mixture model (GMM). A Gaussian mixture model of ݊ mixtures is parameterised by 3݊ 

values. Namely, the weights (ݓ), means (ߤ) and standard deviations (ߪ) of the ݊ 

mixture components. An illustration of this for a single dimensional case is shown in 

Figure 2.5. 
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Figure 2.5: A probability density function approximated by a sum of 3 Gaussian mixtures. 

In multi-dimensional cases, the means are vectors (ࣆ) and covariance matrices () 

are used in place of standard deviation. 

 
ഥሻ࢞ሺݍ ൌ  ,ഥ࢞घሺݓ ,ࣆ  ሻ
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 (2.6)
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The single dimension model can be considered a special case of the more general 

multi-dimensional GMM seen in (2.7). 

 
ഥሻ࢞ሺݍ ൌ  ݓ



ୀଵ

1

ሺ2ߨሻ
ே
ଶ ||

ଵ
ଶ

݁ିଵ
ଶሺ࢞ഥିࣆሻ

షሺ࢞ഥିࣆሻ (2.7)

Thus, any Gaussian mixture model is then parameterised by the weights, mean vectors 

and covariance matrices of all its component densities. 

 ࣚ ൌ ሼݓ, ,ࣆ ܑሽ, ݅ ൌ 1, … , ݊ (2.8)

 

If GMMs are used to model the probability density functions of the feature spaces of 

each class, the problem of classifying any given feature vector (࢞ഥ) into one of ܯ classes 

reduces to 

 
arg max


Pr൫࢞ഥหࣚ൯ ൌ arg max


 ݓ

ೕ

ୀଵ

1

ሺ2ߨሻ
ே
ଶ ቚܒ

ቚ
ଵ
ଶ

݁ିଵ
ଶቀ࢞ഥିࣆቁ


ܒ

షቀ࢞ഥିࣆቁ (2.9)

where, the pdfs of the ܯ classes, ଵ݂ሺ࢞ሻ, … , ெ݂ሺ࢞ሻ, are modelled by the Gaussian 

mixture models, ࣚ, … , ࣚ  and ࡹࣚ ൌ ቄݓ
, ࣆ

, ܑܒ
ቅ , ݅ ൌ 1, … , ݊. 

It should be noted that  arg max Pr൫࢞ഥ|ࣚ൯  and  arg max Pr൫ࣚห࢞ഥ൯ are not 

equivalent except when all the classes are equiprobable. In other cases, their relationship 

is given by the Bayes’ theorem as 

 arg max


Pr൫ࣚห࢞ഥ൯ ൌ arg max


൛Pr൫࢞ഥหࣚ൯ Pr൫ࣚ൯ൟ (2.10)

In order to use Gaussian mixture models for classification the GMMs must first be 

estimated. The GMM modelling the feature distribution (pdf) of each class is estimated 

from feature vectors extracted from data that is known to belong to that class (for 

instance, a Gaussian mixture model for anger is estimated based on features extracted 
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from speech which known a priori to express anger). These data are known as training 

data. 

Maximum likelihood estimation (MLE) is used to estimate the model parameters. The 

likelihood is a function of the model parameters given the observation and is defined as 

the conditional probability of the observation, given the model. The difference between 

conditional probability and the likelihood function being that, while the conditional 

probability has the observation as the independent variable, the likelihood function has 

the model parameters as the independent variable. Given a set of ܶ independent and 

identically distributed (IID) feature vectors (observations), ࢄ ൌ ሼ࢞, ,࢞ … ,  ሽ, and aࢀ࢞

model ࣚ, the likelihood of the model is given as 

 
ࣦሺࣚ|ࢄሻ ൌ Prሺࢄ|ࣚሻ ൌ ෑ Prሺ࢚࢞|ࣚሻ

்

௧ୀଵ

 (2.11)

Maximum likelihood estimation determines the model parameters (ࣚ) that maximises 

this likelihood, given the observation (training data), ࢄ. However, this maximisation 

problem does not have a closed form solution and an iterative procedure called the 

Expectation Maximisation (EM) algorithm (Dempster et al. 1977) is used in most cases. 

Often log-likelihoods (log of the likelihood) are used in place of likelihood values to 

improve numerical precision as the likelihood values tend to be very small (also note that 

a product of the likelihoods simplifies to a sum of log-likelihoods). 

2.3.2.2 Hidden Markov Models (HMM) 

A hidden Markov model (HMM) is a doubly stochastic model with an underlying 

stochastic process that is not directly observable (hidden), but is linked through another 

set of stochastic processes that produces an observable sequence of symbols. In the 

context of pattern classification, a sequence of features (observable symbols) is modelled 

as being generated by a sequence of states (the number of possible states is finite and 
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unrelated to the number of possible observable symbols) which is not directly observable. 

At every time instant (corresponding to each of the features in the sequence), the model 

enters a new state (which may be the same state as the previous one) based on a transition 

probability distribution which depends on the previous state (Markovian property) and 

generates the observation (feature) at that instant based on a probability distribution that 

is associated with that state (regardless of when and how the state is entered). While the 

number of possible states is always finite, the possible observations (single- or multi-

dimensional) may belong to a discrete (and finite) or a continuous set, and thus giving rise 

to discrete and continuous HMMs respectively. 

Any HMM is characterised by the state transition probability distribution, the initial 

state distribution, and the state observation probability distributions. The state observation 

pdfs in a continuous HMM are usually modelled by Gaussian mixture models (GMMs) 

described in section 2.3.2.1. The formal model notations are defined below: 

T – length of the observation (feature) sequence 

N – number of states 

ܳ ൌ ሼݍଵ, ,ଶݍ …  ேሽ – possible statesݍ

 ݐ ௧ – observation at timeݔ

࣊ ൌ  ሼߨଵ, ,ଶߨ … , ߨ , ேሽߨ ൌ ܲሺݍ|ݐ ൌ 1ሻ – initial state distribution 

 ൌ ൛ܽൟ, ܽ ൌ ܲ൫ݍ
௧หݍ

௧ିଵ൯ - state transition probability distribution 

 ൌ  ൛ ܾሺݔሻൟ, ܾሺݔሻ ൌ ܲ൫ݔหݍ൯- observation probability distribution in state j 

The compact notation ࣅ ൌ  ሺ࣊, ,  ሻ is used to represent a HMM. Given an

observation (feature) sequence ࢄ ൌ ሼݔଵ, ,ଶݔ … ,  ሽ, the probability of a state sequence்ݔ

ࡵ ൌ ሼ݅ଵ, ݅ଶ, … , ்݅ሽ, ݅௧ א ሼ1,2, … , ܰሽ generating it is given by: 
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Prሺࡵ|ࢄ, ሻࣅ ൌ ෑ ܾሺݔ௧ሻ

்

௧ୀଵ

 (2.12)

The probability of such a state sequence ࡵ, on the other hand, is 

 
Prሺࣅ|ࡵሻ ൌ భߨ ෑ ܽషభ

்

௧ୀଶ

 (2.13)

The probability of ࢄ and ࡵ occurring simultaneously is then given as 

 Prሺࢄ, ሻࣅ|ࡵ ൌ Prሺࡵ|ࢄ, ሻࣅ · Prሺࣅ|ࡵሻ (2.14)

The probability of the observation sequence ࢄ, given a HMM ࣅ, is then the sum of the 

probability of ࢄ over all possible state sequences. 

 Prሺࣅ|ࢄሻ ൌ  Prሺࢄ, ሻࣅ|ࡵ
 ࡵ

 (2.15)

 Prሺࣅ|ࢄሻ ൌ  Prሺࡵ|ࢄ, ሻࣅ · Prሺࣅ|ࡵሻ
 ࡵ

 (2.16)

Given an observations sequence ࢄ  and a set of HMMs ሼࣅ, ,ࣅ … ,  ሽ, the problemࡹࣅ

of identifying the most probable model can formalised as 

 arg max
ఏ

ሼPrሺࢄ|ࣂࣅሻሽ (2.17)

This probability is related to the probability of an observation given a model (eqn. 

2.16) by the Bayes’ theorem. 

 
Prሺࢄ|ࣂࣅሻ ൌ

Prሺߣ|ࢄఏሻ Prሺߣఏሻ
Prሺࢄሻ  (2.18)

Since the probability of observation Prሺࢄሻ is not dependent on the model 

 arg max
ఏ

ሼPrሺࢄ|ࣂࣅሻሽ ൌ arg max
ఏ

ሼPrሺࣂࣅ|ࢄሻ Prሺߣఏሻሽ (2.19)

If the model probabilities are not known a priori and the models are assumed to be 

equally probable, the above relationship further reduces to 

 arg max
ఏ

ሼPrሺࢄ|ࣂࣅሻሽ ൌ arg max
ఏ

ሼPrሺࣂࣅ|ࢄሻሽ (2.20)



SUMMARY 
 

35 
 

Hence, in a classification framework if every class is modelled as a hidden Markov 

model, then a sequence of features (observation) can be classified as belonging to one of 

the classes using the appropriate relationship from above (eqn. 2.19 or eqn. 2.20). The 

class models (HMMs) are usually estimated from features extracted from data that is 

known to belong to the class being modelled (training data). The problem of estimating 

the parameters ሼ࣊, ,  ሽ of a HMM is a difficult one and does not have an analytical

solution. Typically iterative procedures, such as the Baum-Welch method, are used. A 

good overview of hidden Markov models including the Baum-Welch method to estimate 

the models can be found in (Rabiner et al. 1986). 

2.4 Summary 

This chapter has provided a brief background to speech, emotions, automatic emotion 

recognition and data for experiments concerning speech based emotion recognition. It 

provided an overview of the speech production mechanism in humans before moving on 

to look at emotions. Section 2.2 set up a working definition of emotions as collections of 

physiological responses to characteristic internal or external stimuli that are more or less 

consistent across all humans. It then outlined how emotions thus defined may affect 

speech which is the basis of any speech based emotion recognition system. Following 

this, it presented a brief look at some of the issues involved in gathering data for use in 

the study of emotions and speech based emotion recognition systems. The LDC 

Emotional Speech and Transcripts corpus which was used in all the experiments reported 

was then described. This section also presented the results of an experiment performed to 

evaluate the performance of humans in recognising emotions, in terms of classification 

accuracy, from the data contained in this corpus. 
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Finally, this chapter described automatic emotion recognition systems in terms of 

applications and structure. In particular, it briefly outlined the commonly used classes of 

features and the ones that will be further explored in this thesis along with the classifiers 

that will be used. 
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Chapter 3 
 
Speech Characterisation – Features  

This chapter discusses the traditional source-filter model (Fant 1960) of human speech 

production. While only an approximation, given its relative simplicity the model has been 

used extensively in almost all aspects of speech processing. The source filter model views 

speech sounds as being produced by the action of the vocal tract, which is modelled as a 

filter, on a sound source, either the glottis or some other constriction within the vocal tract 

(refer to vocal organs depicted in Figure 2.2). An important assumption, fundamental to 

the model is that the source and the filter are independent. This aids in the analysis of 

speech sounds, separating the source and vocal tract spectra and allowing for more 

accurate estimates of speech production parameters. These parameters form the basis for 

features used in automatic emotion classification systems, and a few of the commonly 

used ones are discussed in this chapter. 

The first section discusses the source-filter model, which is then followed by a 

description of an automatic emotion recognition system that serves as a common platform 

to compare the performances of different speech based features. The third section is an 

overview of some common features and precedes an analysis of novel features proposed 

for use in emotion recognition systems. The emotion classification accuracies obtained 

when all the features outlined in sections 3.2 and 3.3 are used individually in the system 

described in section 3.5 are also included. 
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3.1 The Source-Filter Model 

An overview of the speech production mechanism was given previously in section 2.1. 

Here the focus is on a commonly used model (Fant 1960) of this speech production 

mechanism as a linear time invariant (over a short period of time) system excited by an 

appropriate source. 

3.1.1 The Source 

Based on the type of excitation, speech sound can be categorised as voiced or unvoiced 

speech. The source of excitation for voiced speech is the pulsed airflow from the lungs 

due to periodic vibration of the vocal folds. This is independent of the vocal tract and 

comprises of a series of glottal pulses. The waveform and spectrum of the glottal source 

are shown in Figure 3.1 (Harrington et al. 1999). 

 
 

Figure 3.1: A glottal source waveform and the corresponding spectrum (Harrington et al. 1999) 

The spectrum of the glottal source is made up of a number of discrete frequency 

components corresponding to the harmonics of the fundamental frequency of vibration of 

the vocal folds. The effect of increasing the fundamental frequency on the magnitude 
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spectrum is to increase the gap between consecutive spectral components, but the overall 

shape of the spectrum remains unchanged. Pitch is technically the fundamental frequency 

perceived by a listener, but is often used interchangeably with the fundamental frequency 

of vibration of the vocal folds (usually denoted as ܨ). In this thesis, unless otherwise 

mentioned, pitch refers to the fundamental frequency of vibration of the vocal folds. 

The vocal folds are open in the case of unvoiced speech and do not vibrate. The 

source of excitation instead is turbulent airflow caused due to a constriction in the vocal 

tract, which can be at various positions and is caused by the positioning of the tongue, 

lips, etc. Unlike the periodic excitation of voiced speech, turbulent airflow has no 

dominant periodic component and has a relatively flat spectrum. It is often described as a 

noise source, varying randomly. 

3.1.2 The Filter 

The vocal tract shapes the source waveform to produce the desired speech sound. The 

shape of the vocal tract is determined by the position of the various articulators such as 

the position of the tongue, shape of the oral cavity, etc., and this in turn determines how 

the source waveform is shaped. The vocal tract itself can be considered a continuous tube 

whose cross sectional area (which is determined by its shape) is a function of position and 

time. During the course of normal speech, the shape of the vocal tract (cross sectional 

area) is continuously changing in order to produce the desired sounds. However, when 

considering very short durations of speech (referred to as frames of speech), typically 

about 10-20ms, the signal can be considered stationary, i.e., its properties do not change 

with time. Consequently the shape of the vocal tract can also be considered to be fixed 

during these intervals. Thus speech can be approximated as a sequence of short segments 

within which the shape of the vocal tract can be considered to be unchanging, i.e., the 

cross sectional area can be considered a function of position only and not time, which is 
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sometimes referred to as the quasi-stationary property of speech. Figure 3.2 taken from 

(Rabiner et al. 1978) shows a schematic representation of the vocal tract as a tube with a 

varying cross sectional area (Fant 1960). 

 
Figure 3.2: Schematic representation of the vocal tract (Rabiner et al. 1978) 

The vocal tract can then be further approximated as a concatenation of a number of 

lossless cylindrical tubes of different cross sectional areas (rather than a tube of 

continually varying cross sectional area) as depicted in Figure 3.3 (Rabiner et al. 1978). 

Thus the vocal tract, which is closed at one end by the glottis, can be thought of as having 

resonant frequencies (which are determined by the lengths and cross section areas of the 

different sections). 

 

Figure 3.3: Concatenation of 5 lossless acoustic tubes (Rabiner et al. 1978) 

The source waveform, either voiced or unvoiced, travelling through this tube is then 

shaped according to the resonant frequencies. When the shape of the tube is changed the 

resonant frequencies change as well, resulting in the source waveform being shaped 
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differently and ultimate producing a different sound. Due to the quasi-stationary property 

of speech, this approximation of the vocal tract can be considered a linear time invariant 

system (for the 10-20 ms period) and can be modelled as a fixed filter over this duration. 

The magnitude response of the filter will reflect the resonant frequencies, which are 

referred to as formant frequencies, of the lossless tube model (Figure 3.6). 

The lips couple the air flow in the vocal tract to the sound pressure wave of the speech 

waveform and were not considered in the lossless tube model. However, this can be 

considered to be another filter connected in cascade with the vocal tract filter. The lip-

radiation filter has a characteristic spectrum that does not change and can be 

approximated as a 6dB/octave rise. 

3.1.3 Combining Source and Filter 

Combining the source and filter models described, the source-filter model of speech 

production can be schematically represented as shown in Figure 3.4. According to this 

model speech, ݏሺ݊ሻ can be viewed as the result of the excitation, ݁ሺ݊ሻ being filtered by 

the vocal tract filter, ܸሺݖሻ and the lip radiation filter, ܴሺݖሻ. The excitation can be either a 

series of glottal pulses, in the case of voiced speech, or random noise, in the case of 

unvoiced speech. 

 
Figure 3.4: The source filter model for speech production. 

The model is a linear, time invariant model for the purposes of each 10-20ms frame 

interval where speech is considered stationary and gives rise to the following relationship. 
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 ܵሺݖሻ ൌ ሻ (3.1)ݖሻܴሺݖሻܸሺݖሺܧ

In the case of voiced speech, the glottal excitation can be further considered the result 

of the convolution of a train of impulses, separated by the pitch period ( ܶ ൌ  , whereܨ/1

  is the fundamental frequency), and a single glottal waveform. This is another filteringܨ

operation, where the impulse response of the filter is the single glottal waveform. 
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Figure 3.5: Glottal Filter Model 

Thus, eqn. 3.1 can be re-written as 

 ܵሺݖሻ ൌ Ρሺݖሻܩሺݖሻܸሺݖሻܴሺݖሻ (3.2)

where, Ρሺݖሻ is the pulse train and ܩሺݖሻ is the glottal transfer function. 

As previously mentioned, the lip radiation filter has a constant magnitude spectrum 

approximated by a 6dB/octave rise and is usually modelled as a single pole high pass 

system (eqn. 3.3). The glottal magnitude spectrum is commonly approximated as a 

12dB/octave fall and modelled as a two pole low pass system, with both poles at 1 (eqn. 

3.4). 

 ܴሺݖሻ ൌ 1 െ  ଵିݖܽ

ൎ 1 െ ,ଵିݖ ሺ ܽ ՜ 1ሻ 
(3.3)

ሻݖሺܩ  ൌ
1

ሺ1 െ ଵሻଶ (3.4)ିݖ

This allows the transfer function voiced speech production system to be approximated 

in terms of only the vocal tract filter. 
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ሻݖሺܪ ൌ

ܵሺݖሻ
Ρሺݖሻ ൌ

1
1 െ ଵିݖ ܸሺݖሻ (3.5)

The vocal tract filter is typically, and quite successfully, modelled as an 

autoregressive (AR) system. The order of the AR model must be selected appropriately, 

and a commonly used rule of thumb gives the order as 2   ௦ isܨ ௦/1000ሻ, whereܨሺ݀݊ݑݎ

the sampling rate. In order to estimate the AR vocal tract model parameters, the speech 

signal, ݏሺ݊ሻ, is initially high pass filtered with a single pole filter, ܪሺݖሻ ൌ 1 െ  ଵ, toିݖ

cancel the effect of the combined glottal and lip radiation models, ܩሺݖሻܴሺݖሻ ൌ 1 ോ ሺ1 െ

 ଵሻ. Linear prediction analysis techniques are then used to determine the vocal tractିݖ

filter model parameters (Makhoul 1975). The high pass filtering of speech prior to 

analysis in order to study only the vocal tract model is referred to as pre-emphasis. The 

resonances of the AR model correspond to the resonances of the lossless tube allowing 

for the formant frequencies (resonant frequencies) to be determined from the speech 

signal. The magnitude response of a 10th order AR model of 45ms of voiced speech (the 

phoneme /ߝ/) is shown in Figure 3.6 and the magnitude spectrum of the pre-emphasised 

speech signal is given in Figure 3.7. 
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Figure 3.6: Magnitude response of an AR vocal tract model for voiced phoneme /ߝ/. 
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Figure 3.7: Magnitude Spectrum of speech corresponding to phoneme /ߝ/ and the Magnitude Response of 
the corresponding AR model (10th order). 

It can be seen that the magnitude response of the vocal tract model is the envelope of 

the magnitude spectrum of the signal. The fundamental frequency (ܨ) of the speech 

signal analysed here was 210 Hz and distinct spectral components can be observed at 

multiples of 210 Hz in Figure 3.7. From another point of view, the magnitude spectrum of 

speech signal is the magnitude response of the corresponding vocal tract model sampled 

at the pitch (ܨ) harmonics. This is expected from the speech production model described 

in this section, since pre-emphasised speech is given by: 

 ܵሺݖሻ ൌ ሺ1 െ ሻ (3.6)ݖଵሻܵሺିݖ

Based on (3.2), (3.3), (3.4) and (3.6) 

 ܵሺݖሻ ൌ ܸሺݖሻܲሺݖሻ (3.7)

Thus, pre-emphasised speech can be considered the response of the vocal tract filter 

model to an impulse train. 

ሺ݊ሻݏ  ൌ ࣰሼߩேሺ݊ሻሽ (3.8)

 
ேሺ݊ሻߩ ൌ  ሺ݊ߜ െ ݇ܰሻ

ஶ

ୀିஶ

 (3.9)

where, ࣰሼ·ሽ is the vocal tract system and ߩேሺ݊ሻ an impulse train with period ܰ. 
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The spectrum of pre-emphasised speech is thus given by the product 

 ܵሺ߱ሻ ൌ ܸሺ߱ሻܲሺ߱ሻ (3.10)

where, ܸሺ߱ሻ is the frequency response of the vocal tract model and ܲሺ߱ሻ is the 

spectrum of the impulse train, ߩேሺ݊ሻ, and is given by 

 
ܲሺ߱ሻ ൌ

ߨ2
ܰ  ߜ ൬߱ െ

݇ߨ2
ܰ ൰

ஶ

ୀିஶ

 (3.11)

The period, ܰ, is given by ܰ ൌ  ,. is fundamental frequency. i.eܨ  andܨ/1

 
ܲሺ߱ሻ ൌ ߱  ሺ߱ߜ െ ݇߱ሻ

ஶ

ୀିஶ

 (3.12)

where ߱ ൌ  .ܨߨ2

Hence the spectrum of the impulse train is a sequence of equal magnitude impulses at 

multiples of the fundamental frequency; and since the spectrum of pre-emphasised speech 

is the product of the vocal tract response, ܸሺ߱ሻ, and ܲሺ߱ሻ as indicated in (3.9), it can be 

viewed as the vocal tract response sampled at harmonics of the fundamental frequency. 

 
ܵሺ߱ሻ ൌ ܸሺ߱ሻ߱  ሺ߱ߜ െ ݇߱ሻ

ஶ

ୀିஶ

ൌ ߱  ܸሺ߱ െ ݇߱ሻ
ஶ

ୀିஶ

 (3.12)

Most of the commonly used features (but not all) in speech based automatic emotion 

recognition (AER) systems describe some aspect of speech and consequently some aspect 

of the source-filter model. 

3.2 Typical Features used in AER Systems 

This section looks at some of the commonly used features in automatic emotion 

recognition (AER) system. The features listed in this section have been used in one or 

more AER systems reported in the literature and shown to be useful for the task of 

recognising emotions. It also considers them in the context of the traditional source filter 
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model of speech production whenever possible in order to ascertain the relative 

significance, if any, of the different aspects/parameters of the speech production system in 

the context of emotion recognition. 

In order to evaluate and compare the effectiveness of different features described in 

this chapter, it is necessary to quantify their effectiveness. This is done by using them as 

features in an automatic emotion recognition system and using the classification accuracy 

of the system as a measure of effectiveness. A 5-class (neutral, anger, happiness, sadness 

and boredom) AER system was used for this purpose and is explained in more detail in 

section 3.5. The system was used in both speaker dependent (training and testing data 

from the same speaker) and speaker independent (training and testing data from different 

speakers) scenarios and the overall accuracies in both scenarios are listed along with the 

feature descriptions in this chapter. The more detailed confusion matrices for all features 

in both scenarios are presented in Appendix A. 

3.2.1 Mel Frequency Cepstral Coefficients (MFCCs) 

Mel frequency cepstral coefficients (MFCCs) stem from the more generic filter bank 

analysis, wherein the signal is filtered by a bank of band pass filters and the energy of the 

outputs of these filters provide an estimate of the spectrum of the signal. In the case of 

MFCCs, the filter bank consists of a series of triangular filters, equally spaced in the Mel 

scale. The Mel frequency scale is given as 

 
ெ݂ா ൌ 2595 logଵ ൬1  ு݂௭

700൰ (3.13)

Since the triangular filters are arranged linearly in the Mel frequency scale, when 

looked in the linear scale (Hz), the filters are close to each other and have narrow 

bandwidths at the low frequency and the spacing and bandwidth increase with frequency. 

This non-linear analysis of speech is based on the cochlear of the human auditory system. 
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The energies, or more commonly the log of the energies, of the outputs of the filters 

provide a low dimensional estimate of the magnitude spectrum and are often used as 

features in classification systems. In the case of MFCCs, log energies are calculated 

followed by the discrete cosine transform (DCT) to obtain the cepstrum (a cepstrum can 

be loosely considered to be the Fourier transform of the log magnitude spectrum). The 

first few DCT coefficients (around 12) are then used as the features, leading to the name 

Mel frequency cepstral coefficients. The log energies of adjacent filter bands tend to be 

correlated and the use of cepstral coefficients reduce this correlation and also allow for 

further reduction in dimensionality at the cost of finer details of the magnitude spectrum. 
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Figure 3.8: Overview of MFCC computation 

To compute the MFCCs, the speech signal is initially pre-emphasised to remove the 

effects of the glottal and lip radiation models and then windowed into short frames 

(typically 20ms to 30ms). The magnitude spectrum of each frame is then computed and 

multiplied with the filter response of each of the triangular filters. The averages of each of 

these ‘filtered’ spectra are then calculated and their logarithms computed to obtain the 
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average log-energy within each filter band. A discrete cosine transform (DCT) is then 

performed and the first ܰ coefficients are selected to obtain the ܰ-dimensional MFCCs. 

An overview of MFCC computation is shown in Figure 3.8, using 17 triangular Mel scale 

filters and choosing 12 DCT coefficients to form the final 12-dimensional MFCC vector. 

Mel frequency cepstral coefficients contain information about both the source and 

filter (vocal tract) of the source-filter model. The low frequency filters are closely spaced 

and have sufficient resolution to capture information about the fundamental frequency 

(source characteristic), while the entire filter bank spans the magnitude spectrum to obtain 

an estimate of the spectral envelope (vocal tract characteristics). Also, the first cepstral 

coefficient is representative of the energy of the signal (another source characteristic). 

The overall classification accuracies of a speaker dependent and a speaker 

independent GMM based automatic emotion recognition (AER) system, described in 

section 3.5, using MFCCs in the front-end are reported in Table 3.1. 

Table 3.1: Summary of Overall Accuracies using MFCCs 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 49.7 % 

Speaker DEPENDENT AER system 74.8% 

3.2.2 Formant Frequencies 

The characteristics of the vocal tract determine to a large extent, the sound produced by 

the speech production apparatus, in turn determining the shape of the magnitude spectral 

envelope. This shape is typically characterised by a few discrete peaks, which usually 

occur at the resonant frequencies of the vocal tract. Frequencies at which these peaks 

occur are referred to as formant frequencies. These are the dominant spectral components 

in speech and contain a significant amount of information. This makes them very 
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attractive as features and have been used so in numerous applications. Linear prediction 

analysis models the vocal tract as an AR (autoregressive) system allows for the estimation 

of the model parameters. The magnitude response of the AR model (all-pole filter) 

corresponds to the spectral envelope of the speech signal and allows for the estimation of 

the formant frequencies. Along with the formant frequencies, the spectral magnitudes of 

the frequency response of the vocal tract model at these frequencies may also contain 

information, and are occasionally appended to the formant frequencies to form the feature 

vector. It should be noted that the formant frequencies are characteristic of the vocal tract 

model only and do not contain any information about the source (excitation). 

The classification accuracies of a speaker dependent and a speaker independent 

system using a six dimensional feature vector composed of the frequencies and gains of 

the first three formants as the front-end is reported in Table 3.2. 

Table 3.2: Summary of Overall Accuracies using formant information 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 43.7 % 

Speaker DEPENDENT AER system 58.3% 

3.2.3 Reflection Coefficients 

Since the vocal tract is modelled as an autoregressive system, the linear prediction (LP) 

coefficients completely characterise the model. Also, the total number of coefficients is 

usually small (around 10 per frame for speech sampled at 8 kHz). This makes the use of 

LP coefficients as features very tempting. However, LP coefficients are very sensitive and 

can change by large amounts for small changes in the signal and this makes them poor 

features. An alternative to LP coefficients are reflection coefficients, which are not as 

sensitive. While LP coefficients are the coefficients of a direct form implementation of 
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the filter model, the reflection coefficients are obtained from the equivalent lattice form 

implementation. In the context of the loss tube approximation, where the vocal tract is 

approximated by a series of concatenated lossless cylinders of different cross section 

areas, the reflection coefficients characterise the boundaries between adjacent sections. If 

the cross section area of the ݅௧ section is given by ܣ, reflection coefficient, Γ is given 

by 

 Γ ൌ
ିଵܣ െ ܣ

ିଵܣ  ܣ
 (3.14)

The Levinson-Durbin algorithm (Rabiner et al. 1978) can be used to obtain both LP 

and reflection coefficients from the speech signal. 

Table 3.3 gives the classification accuracies obtained when using reflection 

coefficients as features. The AR model order was chosen as 24 (sampling rate of the data 

was 22.05 kHz) and hence there were 24 reflection coefficients thus giving a 24 

dimensional feature vector. 

Table 3.3: Summary of Overall Accuracies using reflection coefficients 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 48.9 % 

Speaker DEPENDENT AER system 71.2% 

3.2.4 Pitch 

The pitch is a property of the source producing the vocal excitation and is independent of 

the vocal tract. A single pitch value is determined from every window (frame) of speech. 

Numerous algorithms have been suggested over the years to estimate ܨ from speech 

signals. Among these, one of the most popular algorithms is the robust algorithm for pitch 

tracking (RAPT) proposed by Talkin (Talkin 1995). This algorithm is used to extract 

pitch for use in all experiments reported in this thesis. Figure 3.9 shows a speech 
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waveform for the utterance ‘thousand’, the corresponding spectrogram and the pitch 

estimated from the signal using RAPT superimposed on the spectrogram. 
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Figure 3.9: The waveform of a speech signal and its spectrogram with the estimated pitch 

A single pitch (ܨ) value is extracted per frame and the classification accuracies 

obtained when it is used as a feature in both speaker independent and speaker dependent 

scenarios are given in Table 3.4. 

Table 3.4: Summary of Overall Accuracies using pitch 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 46.6 % 

Speaker DEPENDENT AER system 51.8% 
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3.2.5 Intensity (Energy) 

The intensity of speech is a measure of the energy contained in speech as it is produced, 

which in turn is based on the energy of the vocal excitation (since the vocal tract is a 

passive system). Like pitch, it is a property of the excitation source and the vocal tract 

filter model is independent of intensity. Loudness of speech as perceived by a listener on 

the other hand depends on the sound pressure level (SPL) of the sound waves at the 

eardrum, which is dependent on both the intensity of the speech and the distance of 

between the speaker and the listener. When analysing recorded speech, loudness depends 

on the sound pressure level at the microphone which in turn is related to the amplitude of 

the recorded signal via the microphone transfer function and hence loudness is 

characterised by the energy of the signal. Consequently, when using loudness as a 

measure of vocal excitation intensity, an assumption that the speakers are always at the 

same distance from the microphone is being made. However, since all the data used the 

experiments reported in this thesis was obtained from the same recording studio, this 

assumption is reasonable. 

Often it is desirable to estimate the change in loudness with time instead of employing 

a single loudness parameter for an entire utterance. In such cases, rather than energy of 

the entire speech signal, energy within short frames (windows) may be estimated, and is 

referred to as short-term energy. Typically 20ms-30ms frames, within which speech can 

be assumed to be stationary, are used. Given a window, ݓሾ݊ሿ, the short term energy of a 

speech signal, ݏሾ݊ሿ, within that window is given as 

 
ܧ ൌ  ሾ݊ሿݓሾ݊ሿ|ଶݏ|

ஶ

ୀିஶ

 (3.15)

The short-term energy contour of the speech waveform shown in Figure 3.9 is given 

below. 
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Figure 3.10: Short-Term Energy Contour 

Like pitch, intensity is a single dimensional feature with one intensity value per 

frame. The accuracy of the AER system using only intensity as a feature in speaker 

independent and speaker dependent tests is given below. 

Table 3.5: Summary of Overall Accuracies using energy 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 28.8 % 

Speaker DEPENDENT AER system 25.2% 

3.2.6 Energy Slope (Spectral Slope) 

The parameters of the source filter model are representative of all the information 

contained in speech, both linguistic and paralinguistic. However, in the context of 

automatic emotion recognition (AER), this is not necessarily advantageous. While 

emotion specific variability in the parameters form the basis for an AER system, 

variability due to the linguistic content and other paralinguistic factors (such as age, sex, 

speaker’s identity, etc.) tend to degrade the performance of any AER system that do not 

make use of linguistic and paralinguistic information as features, albeit to varying degrees 

based on system configuration. This is particularly true of the parameters of detailed 

vocal tract model and features characterising the entire spectrum such as MFCCs. 

Features that characterise some aspect of the spectrum or the vocal tract model, but do not 

describe it completely may reduce the amount of other variability with respect to emotion 
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specific variability. Energy slope (also referred to as spectral slope or spectral balance) 

roughly describes the distribution of energy in the magnitude spectrum, given by the 

slope of a linear approximation to the magnitude spectrum. Figure 3.11 shows a 

magnitude spectrum and its linear approximation. The slope of this straight line is the 

energy slope. 
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Figure 3.11: Magnitude spectrum of /ߝ/ and linear fit of the spectrum. 

Disregarding the spectral structure even further, an estimate of the slope can be 

approximated as the ratio of energy in low frequencies to that in high frequencies. In the 

work reported in this thesis, energy slope was estimated this way and the low and high 

frequency regions were chosen as 0-1 kHz and 2-11 kHz. This is similar to the energy 

slope used in (Huang et al. 2006). Table 3.6 reports the accuracies of AER systems using 

energy slope as their feature. 

Table 3.6: Summary of Overall Accuracies using energy slope 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 43.4 % 

Speaker DEPENDENT AER system 59.0% 
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3.2.7 Zero Crossing Rate (ZCR) 

Zero crossing rate (ZCR) is another parameter that characterises only a part of the 

spectrum. It serves as a rough estimate of the dominant frequency in the speech signal 

encapsulated in a single dimensional frame based feature. ZCR has been used as a feature 

for emotion recognition in (Huang et al. 2006; Lugger et al. 2007). For the work reported 

in this thesis it was calculated as  

 
ܴܥܼ ൌ

1
2  ሾ݊ሿሻݓሾ݊ሿݏሺ݊݃݅ݏ| െ ሾ݊ݏሺ݊݃݅ݏ െ 1ሿݓሾ݊ െ 1ሿሻ|

ஶ

ୀିஶ

 (3.16)

where, ݏሾ݊ሿ is the speech signal and ݓሾ݊ሿ is the framing window. 

The classification accuracies of a speaker independent and a speaker dependent 

system using only ZCR in their front-ends are given in Table 3.7. 

Table 3.7: Summary of Overall Accuracies using ZCR 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 47.1 % 

Speaker DEPENDENT AER system 46.8% 

3.2.8 Spectral Centroid 

The spectral centroid is another way to condense the information contained in the speech 

spectrum. It is the weighted mean frequency, with the spectral magnitudes as weights. 

The spectral centroid in each frame is single dimensional and was computed as 

 
݀݅ݎݐ݊݁ܿ_ܿ݁ݏ ൌ

௦ܨ ∑ |ܺሺ݅ሻ| · ݅ே
ୀଵ

ܰ ∑ |ܺሺ݅ሻ|ே
ୀଵ

 (3.17)

where, ܰ is the frame size, ܺሺ݇ሻ is the DFT of the framed speech signal and ܨ௦ is the 

sampling rate. 
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Table 3.8 reports the classification accuracies obtained when using the spectral 

centroid, a single dimensional feature, in the front-end of speaker independent and 

speaker dependent AER systems. 

Table 3.8: Summary of Overall Accuracies using spectral centroid 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 40.2 % 

Speaker DEPENDENT AER system 44.6% 

3.2.9 Phoneme Rate 

On the face of it, speaking rate appears to be a high-level parameter requiring prior 

speech recognition. However, it is possible to estimate speech rate based on factors such 

as the duration of voiced segments, the number of syllables in a period, etc., which do not 

require speech recognition. Speech rate has been used as a feature in numerous emotion 

recognition systems (Banse et al. 1996; Dellaert et al. 1996; Lee et al. 2005; Ververidis et 

al. 2006). Here, speaking rate was estimated from the number of phonemes in each 0.5s 

window. A phone recogniser developed at the Faculty of Information Technology, Brno 

University of Technology was used to generate the phonetic labels (Schwarz et al. 2006). 

The overall classification accuracy for a speaker independent system and that of a 

speaker dependent system using phoneme rate are given in Table 3.9. 

Table 3.9: Summary of Overall Accuracies using phoneme rate 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 20.6 % 

Speaker DEPENDENT AER system 23.0% 
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3.3 Novel Features - AER Performance 

This section describes novel features used in the context of automatic emotion 

recognition. The features described in section 3.2, while used in AER systems, were not 

originally motivated by such systems. Thus it is possible that they are not the most 

efficient representations of the information that can be used to discriminate between 

emotions. The features proposed in this section emphasise information contained in 

speech differently from the typical features and are investigated to determine if they are 

better suited for an AER system. While the hypotheses when initially proposing these 

features were that they would improve the performance of the AER system, failure to do 

so also provided information about how emotions can be recognised from speech. 

3.3.1 Gammatone Filter Cepstral Coefficients (GFCC) 

The gammatone filter cepstral coefficients (GFCCs) are identical to the Mel frequency 

cepstral coefficients except for the analysis filter bank. The GFCCs use gammatone filters 

instead of the triangular Mel scale filters utilised in MFCCs. The gammatone filters 

(Aertsen et al. 1980; Flanagan 1960; Katsiamis et al. 2007) are modelled on the cochlear 

filters unlike the Mel scale filters, whose positions are perceptually motivated but are 

shaped to minimise computational complexity. The GFCCs, like the MFCCs, will capture 

source (energy) and filter (spectral envelope) characteristics. 

Table 3.10 gives the overall accuracies of a speaker independent and a speaker 

dependent AER system using gammatone filter cepstral coefficients as features. The 

feature vector consisted of the first 13 DCT coefficients and 30 gammatone filters were 

using in the feature extraction process. These parameters are identical to those used in 
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extraction of MFCCs (section 3.2.1) allowing for a direct comparison of the classification 

accuracies. 

Table 3.10: Summary of Overall Accuracies using GFCCs 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 55.6 % 

Speaker DEPENDENT AER system 72.6% 

3.3.2 Proposed Linear Predictive Model Group Delay 

The source-filter model of speech production describes the speech signal as the response 

of an all-pole filter (AR model) to a suitable glottal excitation. The all-pole filter 

characterises the vocal tract, and its magnitude response provides information about 

formant locations, which determine the sound (phoneme) produced, and estimates of 

formants have been used as features in speech recognition systems. However, when the 

same phoneme is uttered by the same person in different emotional states, formant 

positions may not vary much and consequently may not be very useful in distinguishing 

between the emotional states. Figure 3.12 shows the formant positions obtained from the 

same phoneme as part of the same word, uttered by the same person in different 

emotional states. It can be observed that while locations of the first three formants are not 

very different, the formant bandwidths are very different and produce the difference in the 

sounds that help distinguish between the two emotions. This change in bandwidth is 

reflected in the group delays of the corresponding all-pole filters (shown in Figure 3.13). 

The magnitude of the group delay increases with a reduction in the formant bandwidth 

and the positions of the group delay’s local minima reflect the formant locations. 
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Figure 3.12: Formant locations for /ߝ/ for two emotions spoken by the same person 

 
Figure 3.13: Group delay for /ߝ/ for two emotions spoken by the same person 

In order to see the relationship between formant bandwidths and the group delay 

value at the formant frequency, we examine the transfer function of the all-pole filter that 

characterises the vocal tract. This can be considered to be a cascade of second order 

resonators with conjugate poles, with each resonator producing a formant. 

 
ܸሺݖሻ ൌ ෑ ሻݖሺܪ

ெ

ୀଵ

 (3.18)

where, ܪሺݖሻ is the transfer function of the ݅௧ second order resonater. 

Setting ݖ ൌ ݁ఠ gives the frequency response of the all-pole filter. 

 
ܸሺ߱ሻ ൌ ෑ ሺ߱ሻܪ

ெ

ୀଵ

 (3.19)
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|ܸሺ߱ሻ|݁ఏሺఠሻ ൌ ෑ|ܪሺ߱ሻ|

ெ

ୀଵ

݁థሺఠሻ (3.20)

where, ܸሺ߱ሻ is the transfer function of the all-pole vocal tract filter, ܪሺ߱ሻ is the 

transfer function of the ݅௧ formant, ߱ א ሾെߨ,  .is the total number of formants ܯ ሿ andߨ

The group delay of the all-pole filter can thus be written as the sum of the group 

delays of the resonators 

 
ሺ߱ሻߠ ൌ  ߶ሺ߱ሻ

ெ

ିଵ

 (3.21)

Thus, studying the relationship between the group delay value at the resonant 

frequency and the formant bandwidth for the 2-pole resonator should be adequate. In 

order to do so, consider the frequency response of a 2-pole resonator. 

ሺ߱ሻܪ  ൌ
1

ሺ1 െ ఈ݁ିఠሻሺ1݁ݎ െ ఈ݁ିఠሻ (3.22)ି݁ݎ

where, ߙ is the formant (resonant) frequency and ݁ݎേఈ are the poles of the system. 

The squared magnitude response and consequently the formant bandwidth are 

computed as 

ሺ߱ሻ|ଶܪ|  ൌ
1

ሾ1  ଶݎ െ ݎ2 cosሺ߱ െ ሻሿሾ1ߙ  ଶݎ െ ݎ2 cosሺ߱  ሻሿ (3.23)ߙ

When the poles are near the unit circles, i.e., ݎ is close to but less than 1, the formant 

bandwidth, Δ߱, can be approximated as 

 Δ߱ ൎ 2ሺ1 െ ሻ (3.24)ݎ

Also, from eqn. (3.22), the phase response of the system can be computed as 

 
߶ሺ߱ሻ ൌ െ ቈarctan ቆ

ݎ sinሺ߱ െ ሻߙ
1 െ cosሺ߱ െ ሻቇߙ  arctan ቆ

ݎ sinሺ߱   ሻߙ
1 െ cosሺ߱  ሻቇ (3.25)ߙ

The group delay is obtained by differentiating the phase response with respect to 

frequency. For the 2-pole resonator, the group delay obtained is as follows 
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߬ሺ߱ሻ ൌ ቈ

ଶݎ െ ݎ cosሺ߱ െ ሻߙ
1  ଶݎ െ ݎ2 cosሺ߱ െ ሻߙ 

ଶݎ െ ݎ cosሺ߱  ሻߙ
1  ଶݎ െ ݎ2 cosሺ߱  ሻ (3.26)ߙ

At the resonant frequency, ߙ, the group delay takes the value 

 
߬ሺ߱ሻ ൌ

െݎ
1 െ ݎ 

ሾ1ݎ െ cosሺ2ߙሻሿ
1  ଶݎ െ ݎ2 cosሺ2ߙሻ (3.27)

It can be seen that as the value of r approaches 1, the group delay function’s value at 

the formant frequency takes an increasingly negative value since the magnitude of the 

first term in eqn. (3.27) is always larger than the magnitude of the second term for all 

ݎ  0.2361. 

From equations (3.24) and (3.27) it can be seen that a reduction in the formant 

bandwidth is reflected by an increasingly larger negative value of the group delay at the 

formant frequency. Since the overall group delay of the all-pole filter is the sum of the 

group delays of the resonators, we can expect the group delay to have negative spikes at 

formant locations, with the magnitudes of these spikes reflecting the formant bandwidths. 

In order to estimate the group delay, the all-pole filter parameters are estimated using 

the LPC algorithm (The model order is set to 24 since the data is sampled at 22.05 kHz). 

The phase response of this filter is estimated from the first 1024 samples of the impulse 

response and the group delay is calculated by differentiating this phase response with 

respect to frequency. Alternatively, equation (3.27) gives the contribution of each 

complex conjugate pole pair to the overall group delay, which can thus be estimated by 

adding the contributions of all the poles present in the vocal tract  filter. 

The group delay computed this way is a vector with a large number of components. In 

order to represent it compactly, a discrete cosine transform (DCT) is applied to the 

sequence and the first 10 coefficients (ߚ െ  ଽ) are picked as the elements of theߚ
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proposed feature vector. Figure 3.14 shows the steps involved in computing the LPC 

group delay feature vector. 

 
Figure 3.14: LP based Group Delay feature extraction 

The ten dimensional group delay feature vector described above was used in speaker 

independent and speaker dependent AER systems and the resultant classification 

accuracies are reported in Table 3.11. 

Table 3.11: Summary of Overall Accuracies using Group Delay 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 42.9 % 

Speaker DEPENDENT AER system 69.8% 

3.3.3 Frequency Modulation 

The cepstral coefficients (both MFCCs and GFCCs) are representative of the magnitude 

spectrum, in particular the shape of the envelope. However, since information about the 

average energy in the pass bands of these filters is retained but all information about the 

shape of the spectrum within these pass bands is discarded, the cepstral coefficients are 

also dependent on these pass bands and consequently the filter bank. The frequency 

modulation (FM) feature is an attempt to reduce this dependency by extracting 

information about the shape of the magnitude spectrum of a signal within the pass bands 

of the filters in any filter bank. The magnitude spectra of the filtered signals can be 
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modelled by a 2nd order AR model, whose resonant frequency identifies the dominant 

peak in the magnitude spectra within the pass bands (Thiruvaran et al. 2008). The FM 

features are obtained by computing the difference between the 2nd order resonant 

frequency in each band and the centre frequency of the bands. This taken together with 

the cepstral coefficients which would contain information about the average energy in 

each band would roughly characterise the shape of the magnitude spectra in every band. It 

should be noted that the implicit assumption is that these magnitude spectra contain only 

one dominant frequency. The 2-pole method for extracting frequency modulation (FM) 

feature was proposed in the context of speaker recognition in (Thiruvaran et al. 2008). 

The classification accuracies obtained when using these FM features with a 

gammatone filter bank are reported in Table 3.12. However, since the FM features are 

intended to add detail to cepstral coefficients and minimise the impact of the choice of 

filter bank, it is more meaningful to consider a combination of cepstral coefficients and 

FM features extracted using identical filter banks. Such a test was performed and the 

classification accuracies obtained when using the FM features and GFCCs are in Table 

3.13. 

Table 3.12: Summary of Overall Accuracies using FM 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 44.4 % 

Speaker DEPENDENT AER system 64.0% 

Table 3.13: Summary of Overall Accuracies using GFCC + FM 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 47.1 % 

Speaker DEPENDENT AER system 73.4% 
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3.3.4 EMD based Weighted Frequency (WF) 

The recently pioneered empirical mode decomposition (EMD) (Huang et al. 1998) can be 

used to represent the speech signal as a sum of zero-mean AM-FM components which 

then allow for the definition of a positive instantaneous frequency for each component 

based on the Hilbert transform. A major hurdle in the use of the Fourier transform in 

signal analysis is that the basis functions (sinusoids) are infinitely long and consequently 

any interpretation of their frequencies as frequencies present in the signal is physically 

meaningful only when the signal is stationary (within the analysis window). The EMD on 

the other hand imposes no such restriction.  A weighted frequency feature based on the 

instantaneous frequencies of these components would be low dimensional and contain 

information about the spectral magnitude distribution. 

3.3.4.1 Empirical Mode Decomposition (EMD) 

Any real-valued signal can be written as an analytic signal by setting it as the real part of 

the analytic signal and its Hilbert transform as the imaginary part of the analytic signal 

ሻݐሺݖ  ൌ ሻݐሺݔ  ݅ሼݔሺݐሻሽ (3.28)

where, ݔሺݐሻ is the real valued signal and ሼ·ሽ  is the Hilbert transform operator and 

 .ሻ is the analytic signalݐሺݖ

From the analytic signal, the instantaneous phase can be obtained and the time 

derivative of the instantaneous phase is then defined as the instantaneous frequency. The 

complex analytic function also allows for the definition of instantaneous amplitude. 

 
߶ሺݐሻ ൌ arctan ቆ

ሼݔሺݐሻሽ
ሻݐሺݔ ቇ (3.29)

 
ሻݐሺߠ ൌ

݀߶ሺݐሻ
ݐ݀  (3.30)



NOVEL FEATURES - AER PERFORMANCE 
 

65 
 

 ܽሺݐሻ ൌ ඥݔଶሺݐሻ  ሼݔሺݐሻሽଶ (3.31)

where, ߶ሺݐሻ is the instantaneous phase, ߠሺݐሻ is the instantaneous frequency and ܽሺݐሻ 

is the instantaneous amplitude. 

A problem for most methods of instantaneous frequency estimation occurs when 

sudden changes in the amplitude or frequency of the signal result in the instantaneous 

frequency paradoxically taking negative values (Cohen 1995). The empirical mode 

decomposition (EMD) decomposes any signal as a sum of signals, referred to as intrinsic 

mode functions (IMF), that have positive instantaneous frequencies as defined in (3.30). 

A description of the decomposition process and a brief analysis of its application to 

speech signals is presented in Appendix B. 

3.3.4.2 Weighted Frequency Feature 

The speech spectrum changes according to the phoneme being uttered, the speaker and 

the emotional state of the speaker, among other factors. Consequently, the changes in the 

different IMF instantaneous frequencies due to changes in speech content and the 

different vocal tract characteristics of different speakers makes using them directly as 

features for an emotion classifier impossible. However, computing the weighted average 

of the instantaneous frequencies of the first five modes, with the instantaneous amplitudes 

acting as weights may give a broad spectral parameter that can be used as a feature. The 

weighted frequency, ݓሾ݊ሿ is defined as 

 
ሾ݊ሿݓ ൌ

∑ ܽሾ݊ሿߠሾ݊ሿெ
ୀଵ

∑ ܽሾ݊ሿெ
ୀଵ

 (3.32)

where, ݊ is the sample index, ܽሾ݊ሿ and ߠሾ݊ሿ are the instantaneous amplitude and 

frequency of the ݉௧ IMF and ܯ ൌ 5 (number of modes). The weighted frequency, 

 .ሾ݊ሿ, has as many samples as the frameݓ
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Weighted frequency is computed from the speech signal without any pre-processing 

and takes into account the spectral shaping imposed by the vocal tract onto the vocal 

chord excitations. The weighted frequency is indicative of the energy distribution in the 

speech spectrum (Figure 3.15), taking small values when most of the energy is 

concentrated in the low frequencies (first formant) and larger values when higher 

frequencies (higher formants) contain more energy. This information is useful for 

discriminating between emotions, as shown in Figure 3.15, and similar differences in the 

weighted frequency due to emotional states were observed in other phonemes as well. 

 
Figure 3.15: Magnitude spectra and average weighted frequency for 20ms frames of speech of phoneme /ߝ/ 

for two emotions (a) Neutral; (b) Anger 

For use in AER systems, a weighted frequency feature was computed from ݓሾ݊ሿ (not 

directly feasible as a feature as every sample of the signal will result in an estimate of 

 ሾ݊ሿ) for 40ms frames using the EMD sifting process and stopping conditions suggestedݓ

in (Rilling et al. 2003). The discrete cosine transform of this weighted frequency signal in 

each frame was then obtained and the first three coefficients were selected as a feature 

vector to represent that frame of data (Figure 3.16). 
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Figure 3.16: Weighted frequency feature extraction. 

Table 3.14 gives the classification accuracies of the AER systems using the EMD 

based weighted frequency as its features. 

Table 3.14: Summary of Overall Accuracies using Weighted Frequency 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 47.6 % 

Speaker DEPENDENT AER system 53.2% 

3.3.5 Wavelet Scale based Feature 

Instantaneous frequency is not a well defined concept mathematically which makes 

analysis of the weighted frequency a hard task. A Fourier transform based spectral 

analysis on the other hand has the advantage of a well defined concept of frequency, but 

does not have a local time support. Hence, a wavelet transform might be a good 

compromise, offering both temporal and spectral localisation. The continuous wavelet 

transform (CWT) of a signal, ݂ሺݐሻ, is defined as 
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,టሺܽܨ ܾሻ ൌ න ݂ሺݐሻ߰ ൬

ݐ െ ܾ
ܽ ൰

തതതതതതതതതത
ݐ݀

ஶ

ିஶ

 (3.33)

where, ܨటሺܽ, ܾሻ is the wavelet transform, ߰ሺݐሻ is the mother wavelet and  ݖҧ indicates 

a complex conjugate. ܽ and ܾ are the scale and shift coefficients relating to spectral and 

temporal localisation. 

Similar to the way Fourier coefficients are interpreted as a measure of energy as a 

function of frequency, the continuous wavelet transform coefficients, ܨటሺܽ, ܾሻ, can be 

interpreted as an estimate of energy as a function of scale (frequency) and time. 

Overviews of wavelet transform and time-scale signal analysis can be found in (Vetterli 

et al. 1992) and (Allen et al. 2004). Computing the CWT for a finite set of discrete scales 

allows for the computation of a weighted average frequency (scale), ݓ௦, using the 

wavelet coefficients as weights in a manner similar to that adopted for weighted 

frequency in section 3.3.4.2. 

 

௦ሾ݊ሿݓ ൌ
 ܽ · ,టሾܽܨ ݊ሿ

ࢇ

 ,టሾܽܨ ݊ሿ
ࢇ

 (3.34)

The wavelet scale features used in the experiments reported in this thesis were 

computed using ሾ1,2,3 … 64ሿ as the scales and the Gaussian wavelet as the mother 

wavelet. The classification accuracies obtained when using these features in the front-end 

are reported in Table 3.15. 

Table 3.15: Summary of Overall Accuracies using Wavelet Scale feature 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 41.8 % 

Speaker DEPENDENT AER system 54.7% 
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3.3.6 LP Residue Cepstral Coefficients (LPRCC) 

All features discussed until this point have been discussed in terms of the traditional 

speech production model discussed in section 3.1. This model however makes certain 

assumptions about the source characteristics; in particular the assumption about the 

envelope of the spectrum of the vocal excitation is a gross approximation. A more 

accurate modelling of the vocal excitation (Doval et al. 2006; Fant et al. 1985) has been 

shown to be integral for synthesis of natural sounding speech. It is therefore reasonable to 

assume that features that describe the spectrum of the vocal excitation may be valuable in 

the context of emotion recognition. Since the vocal tract is modelled as an all-pole filter 

(AR model), filtering of the speech signal by its inverse filter (all-zero FIR filter) should 

give an estimate of the vocal excitation (LP residue). The spectrum of this estimate can be 

represented compactly by the MFCCs of the excitation and is termed the LP residue 

cepstral coefficients. 

A 13 dimensional feature vector comprising of the cepstral coefficients of the LP 

residue using a Mel filter bank was used in the experiments reported here. The overall 

classification accuracies of the speaker independent and speaker dependent AER systems 

using this vector in their front-end are given in Table 3.16. 

Table 3.16: Summary of Overall Accuracies using LPRCCs 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 50.0 % 

Speaker DEPENDENT AER system 68.4% 

3.3.7 Fractal Dimension (FD) 

The turbulence produced by airflow has previously been discussed as the source of vocal 

excitation for unvoiced sounds and it is also possible that some amount of turbulence is 
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present during the production of voiced sounds as well. However, the effect of these 

turbulences typically manifest as geometrical complexity and fragmentation of the time 

waveforms of speech; and due to lack of a better approach, are either not modelled or 

treated as noise. It has been proposed that the theory of fractals can be used to model this 

complex geometry and in particular use the idea of fractal dimension to quantify the 

degree of fragmentation (Maragos et al. 1999). 

3.3.7.1 Fractal Geometry 

The term ‘Fractal’ coined by Mandelbrot (Mandelbrot 1983) is based on the concept of 

self-similarity, in which an object appears to be similar to itself when viewed at different 

scales. A very important parameter for the description of fractals is the fractal dimension, 

 Intuitively, it is a quantity that gives an indication of how completely a fractal fills a .ܦ

space.  

Suppose, the length of a curve, ܮ, is determined as the number of yardsticks of length 

߳ that can fit sequentially along it. The length of a fractal curve would be a function of ߳ 

and will increase as ߳ decreases, following (approximately) the power 

ሺ߳ሻܮ  ൌ ݇ · ߳ଵି,     as ߳ ՜ 0 (3.35)

where, ܦ is the fractal dimension of the curve. 

3.3.7.2 Minkowski-Bouligand Dimension 

This is one of several ‘fractal dimensions’ that are more or less capable of quantifying the 

degree of fragmentation of a curve. It is based on Minkowski’s idea of finding the length 

of irregular curves (Maragos et al. 1993): 

1. Dilate them with disks of radius ߳ by forming the union of these disks centred on 

all points of the curve and thus create a “Minkowski cover”. 

2. Find the area ܣሺ߳ሻ of the dilated set at all scales ߳. 
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3. Set the length of the curve as limఢ՜ ሺ߳ሻܮ ሺ߳ሻ, whereܮ ൌ  ሺ߳ሻ/2߳. If the curve isܣ

a fractal, ܮ behaves as in (3.27). Let 

ሻܣሺߣ   sup ቄ: lim
ఢ՜

ሺ߳ሻ߳ିܣ ൌ 0ቅ 

ൌ lim
ఢ՜

log ሺ߳ሻܣ
log ߳  

(3.36)

(3.37)

 be the infinitesimal order of ܣ. 

4. Bouligand defined the dimension, ܦெ as 

ெܦ  ൌ 2 െ  ሻܣሺߣ

ൌ lim
ఢ՜

ቆ2 െ
log ሺ߳ሻܣ

log ߳ ቇ 

(3.38)

(3.39)

The method presented in (Maragos 1991) based on a morphological covering method 

to estimate ܦெ was used to estimate the fractal dimension from speech in the experiments 

reported. The estimation method is discussed in more detail in (Maragos et al. 1999) and 

(Maragos et al. 1993). Table 3.17 reports the classification accuracies obtained by the 

AER systems using fractal dimension (FD) as their feature. 

Table 3.17: Summary of Overall Accuracies using FD 

Classification Test Accuracy 

Speaker INDEPENDENT AER system 42.9 % 

Speaker DEPENDENT AER system 69.8% 

3.4 Discussion and Summary 

This chapter has discussed the traditional source-filter model of speech production before 

considering selected features typically used in the front-end of automatic emotion 

recognition systems. These features are either based on the source-filter model or can be 

interpreted as being representative of some parameters of the model. Based on this 
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dependence, the features can be representative of the source (e.g. pitch), filter (e.g. 

reflection coefficients) or both (e.g.MFCCs). 

This chapter also described some novel features for use in AER systems, namely, 

GFCCs, group delay, FM features, weighted frequency, wavelet scale feature, LPRCCs 

and fractal dimension. All of these features, apart from fractal dimension, can also be 

interpreted in the framework of the source-filter model. All of these features were used 

individually as features for an automatic emotion recognition system (section 3.5) in 

speaker independent and speaker dependent scenarios to allow for a comparison based on 

classification accuracies. Table 3.18 lists overall accuracies obtained for all of these 

features. 

Table 3.18: Overall classification accuracies for various features. 

Features Feature 
Dimension 

Speaker 
Independent 

Speaker 
Dependent 

MFCC 13 49.7 % 74.8 % 

Formant Frequencies (FF) 6 43.7 % 58.3 % 

Reflection Coefficients (RC) 24 48.9 % 71.2 % 

Pitch (P) 1 46.6 % 51.8 % 

Intensity/Energy (E) 1 28.8 % 25.2 % 

Energy Slope (S) 1 43.4 % 59.0 % 

Zero Crossing Rate (Z) 1 47.1 % 46.8 % 

Spectral Centroid (SC) 1 40.2 % 44.6 % 

Phoneme Rate (PhR) 1 20.6 % 23.0 % 

GFCC 13 55.6 % 72.6 % 

LP based Group Delay (GD) 10 42.9 % 69.8 % 

Wavelet Scale Feature (WS) 1 41.8 % 54.7 % 

LPRCC 13 50.0 % 68.4 % 

Frequency Modulation (FM) 30 44.4 % 64.0 % 

FM + GFCC 43 47.1 % 73.4 % 

Weighted Frequency (WF) 3 47.6 % 53.2 % 

Fractal Dimension (FD) 1 46.3 % 41.0 % 
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A comparison of the classification accuracies reveals a few interesting trends. The 

high dimensional features that characterise the spectral shape (and consequently the vocal 

tract filter model) perform very well in the speaker dependent scenario. These include 

• Mel frequency cepstral coefficients (MFCC) 

• Formant frequencies (FF) 

• Reflection coefficients (RC) 

• Gammatone filter cepstral coefficients (GFCC) 

• LP based group delay (GD) 

Among these MFCCs and GFCCs are very similar to each other and while the use of 

gammatone filters appears to improve the speaker independent performance, it does not 

appear to have a similar effect on speaker dependent performance and the difference 

between the two features do not appear to be very significant. Given that the investigation 

of the effect of different types of filter banks is a relatively minor detail and beyond the 

scope of the work presented in this thesis, and the widespread use of MFCCs in speech 

processing literature, GFCCs are not considered henceforth. The frequency modulation 

features are not representative of the vocal tract filter on their own, but are intended to 

improve the spectral resolution of cepstral coefficients. However, comparing the 

classification accuracies obtained when using GFCCs and a combination of GFCCs and 

FM, it appears that the added complexity of including the FM features outweighs any 

advantage. 

The low dimensional features that are characteristic of the vocal tract filter, that were 

considered in this chapter are 

• Energy slope (S) 

• Zero crossing rate (Z) 

• Spectral centroid (SC) 
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• EMD based weighted frequency (WF) 

• Wavelet scale feature (WSC) 

Energy slope and ZCR characterise the spectral distribution of energy and the 

dominant frequency (usually ܨଵ) respectively. However, the other three features are all 

different types of weighted spectral average and can be expected to characterise similar 

information. Hence only one of them needs to be considered for any system. Comparing 

their performances, it can be seen that weighted frequency and the wavelet scale feature 

perform similarly in the speaker dependent scenario but weighted frequency is better in 

the speaker independent case. Both outperform spectral centroid. Consequently, only 

weighted frequency is included in all experiments henceforth. 

The source specific features considered are pitch, energy and the LP residue cepstral 

coefficients. Pitch and energy are complementary and are both used in emotion 

recognition systems. The LPRCC is an attempt to capture information about the spectral 

shape of the LP residue, which is an estimate of the vocal excitation. However, explicit 

glottal – vocal tract separation would be a better approach and is discussed in Chapter 6. 

Fractal dimension and phoneme rate cannot be viewed in terms of the source-filter 

model and consequently can be expected to be complementary to the other features. 

However, phoneme rate, estimated as described in section 3.2.9, does not appear to 

contain any emotion specific information. This suggests that estimation method is flawed, 

or that phoneme rate is not suitable as a feature for a frame based modelling approach. 

Fractal dimension on the other hand is able to discriminate between the emotions 

considered here. This is especially interesting since the aspects of speech characterised by 

the fractal dimension are hypothesised to be caused by non-linear processes that are not 

modelled by the source-filter model. While non-linear speech production models are not 

considered in this thesis, these results suggest future directions for research. 
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3.5 GMM based AER Benchmarking System 

The 5-class AER system used to quantify the effectiveness of the features described in 

this chapter is outlined in this section. Gaussian mixture models were used as the back-

end this system. The probability density functions of the features for each emotion were 

modelled by a GMM (described in section 2.3.2.1), capturing all the statistical 

information present in them. The LDC corpus (described in section 2.2.3.3) was used in 

the classification experiments. The data is in the form of short discrete utterances and 

each utterance was segmented into 20ms frames (unless otherwise mentioned in the 

description of the features), with 10ms overlap between consecutive frames, prior to 

feature extraction in these frames. The emotional class models (GMMs) were trained on 

the feature vectors extracted from all the frames in the training dataset. During testing the 

likelihood of an utterance belonging to each of the five emotional classes was calculated 

as the product of the likelihoods (conditional probability of a GMM given a feature 

vector, refer (2.11)) of the feature vectors (one vector corresponding to each frames) 

belonging to that model; and the most likely emotion chosen. Since the actual emotional 

class of each utterance is known, the accuracy of the system can be determined. Figure 

3.17 shows an overview of the GMM based AER system. 

Speech data from 7 speakers are available in the LDC corpus and both speaker 

dependent and speaker independent classification tests were performed. In the speaker 

dependent tests, both training and testing data were from the same speaker. 70% of the 

utterances from a speaker were used for training the GMMs and the remaining 30% were 

used for testing. This was repeated 7 times, once for each speaker and the average 

accuracy of the 7 trials was taken as the overall system accuracy. The speaker 

independent tests used training and test data from different speakers and were carried out 
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in a 7-fold cross validation setup. Data from 6 speakers was used for training the back-

end and the data from the remaining speaker was used for testing. This was repeated 7 

times, using each of the 7 speakers as the test speaker, and the mean accuracy of the 7 

trials was taken as the overall system accuracy. 

 
Figure 3.17: Overview of the AER system used in this study 

Speaker normalisation was used in the speaker independent tests, to reduce the 

speaker specific variability in features, and is required when data from multiple speakers 

are used. Chapter 4 discusses speaker variability and speaker normalisation. 

Classification accuracies are reported as overall classification accuracy, i.e. the 

percentage of test utterances classified correctly, and a table reporting the confusion 

matrix. The confusion matrix has actual emotions in the rows and target emotions in the 

columns. Each value is the percentage of utterances belonging to the actual emotion that 

was classified as the target emotion. i.e., the element ݒ of the confusion matrix is the 

percentage of utterances belonging to emotional class ݅ that were automatically classified 

as belonging to emotional class ݆. 

It is important to note that pitch (ܨ), which is a significant and widely used feature, is 

defined only for voiced speech and consequently it can be extracted only from frames that 

contain voiced speech (referred to as voiced frames). Thus only voiced frames were used 
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in training, testing and normalisation in all experiments. This was the case even when 

pitch was not used as a feature in order to make the systems comparable based on their 

performance. 
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Chapter 4 
 
Speaker Variability 

The features used in emotion recognition systems are selected to be representative of 

speech characteristics that vary with the emotional state of the speaker. However, speech 

also conveys other information including the linguistic content, information about the 

speaker, etc, and consequently no parameter varies only with the emotional state. The 

variability in the features used in an AER system that does not contribute towards 

distinguishing between emotions, usually degrades the performance of the system. The 

features can exhibit a lot of variability between different speakers in particular. This 

would not be a problem for a classification system that is trained on data obtained from 

the target speaker (speaker dependent), but such an expectation is not practical in most 

cases. This chapter investigates the existence and significance of speaker specific 

variability. In order to do so, a novel technique for speaker normalisation in AER based 

on matching the feature distributions for different speakers is proposed. This 

normalisation technique is then used to compare the speaker variability in different front 

end configurations. Finally, the chapter also includes a preliminary comparison between 

the effect of speaker variability and phonetic variability. 

4.1 Significance of Speaker Variability 

Pitch is a widely used and successful feature in emotion classification problems. Pitch 

values, however, exhibit a large amount of variation between speakers. Figure 4.1(a-b) 

shows the probability distributions of the pitch values for two different speakers 
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expressing no emotion (neutral) and anger, estimated from all utterances from these two 

speakers present in the LDC corpus. It is clear that while the distributions for neutral and 

anger are distinct for the speakers, the distributions for speaker 1 are not the same as the 

distributions for speaker 2, in particular the neutral class in this example. Hence, when the 

probability distribution of pitch for an emotion is estimated for all speakers, the resultant 

distribution is multi-modal with a large variance (Figure 4.1c). 

 
Figure 4.1: Distribution of pitch (a) Speaker 1; (b) Speaker 2; (c) Both speakers together 

Although only pitch is illustrated, this is true for all features and is a problem for any 

speaker independent emotion recognition system. Comparisons of speaker dependent 

(training and testing data from the same speaker) and speaker independent (training and 

testing data from different speakers) classification accuracies, for all features, lend 

support to this observation. Table 4.1 lists the overall classification accuracies obtained 

by a speaker independent system and a speaker dependent system on the same 5-class 

classification task. Even though the speaker independent system is trained on a larger 
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dataset (approx. 6 times larger), the performance of the speaker dependent system is 

much greater. Given that the tasks and system parameters are identical this difference can 

be attributed solely to speaker specific variability. A novel speaker normalisation method 

that makes use of cumulative distribution mapping to match the feature distributions for 

different speakers is proposed to reduce this variability. This method is also used to 

investigate the relative speaker variability in different features in section 4.2. 

Table 4.1: Comparison of speaker dependent and independent systems (5-class) 

Features Speaker 
Independent 

Speaker 
Dependent 

MFCC 48.7 % 74.8 % 

Formant Frequencies (FF) 35.7 % 58.3 % 

Reflection Coefficients (RC) 41.8 % 71.2 % 

Pitch (P) 36.0 % 51.8 % 

Intensity/Energy (E) 22.2 % 25.2 % 

Energy Slope (S) 38.9 % 59.0 % 

Zero Crossing Rate (Z) 37.6 % 46.8 % 

Spectral Centroid (SC) 33.3 % 44.6 % 

Phoneme Rate (PhR) 20.4 % 23.0 % 

GFCC 46.3 % 72.6 % 

LP based Group Delay (GD) 36.0 % 69.8 % 

Wavelet Scale Feature (WS) 38.1 % 54.7 % 

LPRCC 38.9 % 68.4 % 

Frequency Modulation (FM) 40.5 % 64.0 % 

Weighted Frequency (WF) 40.7 % 53.2 % 

Fractal Dimension (FD) 41.3 % 41.0 % 

4.1.1 Cumulative Distribution Mapping 

Cumulative distribution mapping is a technique that maps each feature dimension to a 

predetermined distribution, and was originally suggested as a method to provide 

robustness against channel mismatch and non-linear noise effects (de la Torre et al. 2002; 

Pelecanos et al. 2001). Also known as histogram equalisation in image processing 

literature and feature warping in speech processing literature, it has been used 
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successfully in speech recognition (de la Torre et al. 2002), speaker verification 

(Pelecanos et al. 2001) and language identification (Allen et al. 2006). In all three areas it 

is applied on each utterance (or short segments) based on the assumption the underlying 

distribution is known (typically Gaussian) and any deviation is due to a distortion that 

requires normalisation. However, in the proposed method the mapping is estimated from 

all the data from each speaker and is utilised in a different manner (outlined in section 

4.1.2)  making no assumptions about the underlying distribution. 

Cumulative distribution mapping treats each feature dimension as an independent 

stream of values, mapping them onto a target distribution (refer to Figure 4.2). 
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Figure 4.2: Overview of Cumulative Distribution Mapping 

Denoting the target distribution as ݄ሺݖሻ, and the original probability distribution of 

the feature as ݂ሺݕሻ, the mapping is defined as 

 
න ݂ሺݕሻ݀ݕ ൌ න ݄ሺݖሻ݀ݖ



௭ୀିஶ



௬ୀିஶ
 (4.1)

where,  is the original feature value and ݍ is the warped feature value. 

It is not necessary however to estimate the actual distribution ݂ሺݕሻ; rather the 

integrals can be recognised as the cumulative density functions corresponding to the 

probability distributions. 
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ሻሺܨ ൌ න ݂ሺݕሻ݀ݕ



௬ୀିஶ
 

ሻݍሺܪ ൌ න ݄ሺݖሻ݀ݖ


௭ୀିஶ
 

(4.2)

(4.3)

 This reduces (4.1) to 

ሻሺܨ  ൌ ሻ (4.4)ݍሺܪ

Since the target distribution, ݄ሺݖሻ is known, the corresponding cumulative density 

function (CDF), ܪሺݔሻ, and hence the inverse CDF are also known. Denoting the inverse 

CDF as ିܪଵሺݔሻ, the warped feature value is 

ݍ  ൌ ሻ൯ (4.3)ሺܨଵ൫ିܪ

Given a large number of feature samples, the value of the CDF corresponding to the 

original distribution, for any feature value, can be approximated as the ratio of the number 

of samples lower than that value to the total number of samples. This is accomplished by 

initially sorting all the feature samples in descending order and indexing them from 1 to 

ܰ (ܰ is the number of samples). The rank, ܴ, of the feature, , to be warped is its index 

after sorting and ܰ െ ܴ gives the number of samples lower than it, allowing for the 

estimation of the cumulative density value. 

ሻሺܨ  ൎ
ܰ െ ܴ

ܰ  (4.4)

This gives the warped value as 

ݍ  ൌ ଵିܪ ൬
ܰ െ ܴ

ܰ ൰ (4.5)

4.1.2 Proposed Speaker Normalisation 

Selecting the target distribution as the standard normal distribution, cumulative 

distribution mapping is used to map all the features extracted from all the data from each 

speaker (for all emotions) onto the same region of a new feature space, thereby reducing 
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any variability introduced by the speakers. In the context of the example pitch 

distributions shown in Figure 4.1, the overall distribution of the pitch stream (taking into 

account both emotions) for each speaker is mapped to the standard normal distribution. 

This preserves the difference between distributions for each emotion for a speaker while 

normalising the values across speakers. 

The distributions estimated from the pitch streams for both speakers after feature 

warping are shown in Figure 4.3(a-b). It can be seen that the variation between the 

distributions for both speakers is now much lower. This also results in a reduction in the 

variance of the overall distribution for each emotion; when estimated from both speakers 

(refer to Figure 4.3c). 

 
Figure 4.3: Distribution of pitch after normalisation (a) Speaker 1; (b) Speaker 2; (c) Both Speakers 

4.1.3 Evaluation 

The GMM based automatic emotion recognition (AER) system described in section 3.5 

was used to evaluate the performance of this proposed speaker normalisation method. 

When used in a speaker independent configuration, the training data and the test data are 

-3 -2 -1 0 1 2 3
0

0.002

0.004

0.006

0.008

0.01

0.012
Speaker 1

-3 -2 -1 0 1 2 3
0

0.002

0.004

0.006

0.008

0.01
Speaker 2

-3 -2 -1 0 1 2 3
0

2

4

6

8
x 10-3 Both Speakers

Neutral
H. Anger



SIGNIFICANCE OF SPEAKER VARIABILITY 
 

84 
 

from different speakers (6 speakers for training and a 7th speaker for testing). Hence, if 

speaker normalisation is required and if the proposed method is effective, a comparison of 

the system classification accuracy when using normalisation to the accuracy when 

normalisation is not used should indicate a significant improvement in system 

performance. Such a comparison using the GMM based AER system was performed for 

all the features reported in Chapter 3 and the results are given in Table 4.2. 

Table 4.2: Overall classification accuracies for a 5-class GMM based AER system. 

 Speaker Independent Speaker Dependent 

Features Without 
Normalisation 

With 
Normalisation 

Without 
Normalisation 

With 
Normalisation 

MFCC 48.7 % 49.7 % 74.8 % 73.4 % 

Formant Frequencies (FF) 35.7 % 43.7 % 58.3 % 67.6 % 

Reflection Coefficients (RC) 41.8 % 48.9 % 71.2 % 74.8 % 

Pitch (P) 36.0 % 46.6 % 51.8 % 53.2 % 

Intensity/Energy (E) 22.2 % 28.8 % 25.2 % 28.8 % 

Energy Slope (S) 38.9 % 43.4 % 59.0 % 57.6 % 

Zero Crossing Rate (Z) 37.6 % 47.1 % 46.8 % 49.6 % 

Spectral Centroid (SC) 33.3 % 40.2 % 44.6 % 47.5 % 

Phoneme Rate (PhR) 20.4 % 20.6 % 23.0 % 23.0 % 

GFCC 46.3 % 55.6 % 72.6 % 74.8 % 

LP based Group Delay (GD) 36.0 % 42.9 % 69.8 % 71.9 % 

Wavelet Scale Feature (WS) 38.1 % 41.8 % 54.7 % 54.7 % 

LPRCC 38.9 % 50.0 % 68.4 % 68.4 % 

Frequency Modulation (FM) 40.5 % 44.4 % 64.0 % 62.6 % 

Weighted Frequency (WF) 40.7 % 47.6 % 53.2 % 57.6 % 

Fractal Dimension (FD) 41.3 % 46.3 % 41.0 % 41.0 % 

The classification accuracies in Table 4.2 strongly indicate that speaker variability is a 

problem in emotion recognition and needs to be addressed. They also indicate that the 

proposed speaker normalisation method is able to reduce this variability and improve the 

performance of AER systems. The proposed normalisation method improves the 

classification accuracy of the system for all features, except phoneme rate. However, 

given the extremely poor phoneme rate accuracy (20% is random separation for a 5 class 
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problem), this feature can be safely ignored. These results indicate that provided a feature 

is capable of discriminating between emotional classes, the proposed technique can 

improve performance by normalising speaker variability. 

4.2 Speaker Dependency of Features 

Different features may have different levels of speaker dependent and emotion dependent 

characteristics. This would produce differing performances in speaker dependent (trained 

on data from target speaker) and speaker independent (training and testing data come 

from different speakers) systems. Also, in some cases the information contained in a 

particular feature set could be complementary to the information in another set. This 

section attempts to compare the speaker variability of such features and determine if some 

or any of them are complementary. 

Based on whether the features are representative of parameters of the speech 

production model (Section 3.1) or the speech spectrum, they can be categorised as speech 

production cues or spectral features. Spectral features can be further classified into broad 

and detailed spectral measures based on the level of spectral detail contained in them. 

While it has been shown that speaker variability in features significantly lowers the 

performance of a speaker independent system (section 4.1.2), different features capture 

different amounts of the speaker’s characteristics and consequently not all of them are 

affected to the same degree. It should be noted that the distinction between spectral 

features and speech production cues is only a loose way of grouping the features and is 

not set in stone, particularly when considering that parameters of the speech production 

model ultimately affect the speech spectrum. 
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4.2.1 Source Specific Cues (SSC) 

Features based on the parameters of the vocal excitation in the context of the source-filter 

model constitute source specific cues. The source parameters are represented by pitch and 

energy, each of which is a single dimensional feature. In this section, they are taken 

together to form a 2 dimensional feature vector that parameterises the vocal excitation. 

This 2 dimensional feature does not contain any information about the vocal tract. 

4.2.2 Detailed Spectral Measures (DSM) 

The vocal tract is modelled by an all-pole filter and characterised by its resonant 

frequencies (formant frequencies). Features that contain detailed information about the 

spectral characteristics of the vocal tract are referred to as detailed spectral measures 

(DSM). They are typically high dimensional when compared to broad spectral measures. 

Mel frequency cepstral coefficients (MFCCs), LP-based group delay (GD), formant 

frequencies (FF) and reflection coefficients (RC) belong to this category. It should be 

noted that while the group delay, formant frequencies and reflections coefficients are 

related to the spectral envelope of the signal and characterise only the vocal tract, MFCCs 

contain information about both the vocal excitation and the vocal tract. 

4.2.3 Broad Spectral Measures (BSM) 

These are features derived from the spectrum, but exclude a lot of detail in an attempt to 

reduce variability that could degrade the performance of the AER system. The broad 

spectral measures tend to be low dimensional and describe only a part of the spectrum. 

Energy slope and zero crossing rate are taken together to form a rough estimate of the 

spectral distribution of energy in the signal. In (Huang et al. 2006), they were proposed as 

additions to pitch and energy in a speaker independent system. Taken together, they form 

a 2 dimensional vector. Two other estimates of the spectral energy distribution that could 
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be considered broad spectral measures are the EMD based weighted frequency (refer to 

section 3.3.4) and spectral centroid (refer to section 3.2.8).  However, given that they are 

both very similar to each other (both are some form of weighted spectral averages) and 

that weighted frequency outperforms spectral centroid, only weighted frequency is 

considered. 

4.2.4 Performance Comparison 

The GMM based automatic emotion recognition (AER) system described in section 3.5 

was used in both speaker dependent and speaker independent contexts to compare the 

speaker variability inherent in the features described in above. The accuracies obtained 

are reported in Table 4.3. 

Table 4.3: Comparison of emotion classification accuracies for individual features 

 Features 

Speaker 

Dependent 
Speaker Independent 

 Without 
Normalisation 

With 
Normalisation 

SSC Pitch + Energy (PE) 51.1 % 37.6 % 46.6 % 

DSM 

MFCC 74.8 % 48.7 % 49.7 % 

Formant Feature (FF) 58.3 % 35.7 % 43.7 % 

Reflection Coefficients (RC) 71.2 % 41.8 % 48.9 % 

LP based Group Delay (GD) 69.8 % 36.0 % 42.9 % 

BSM 
Energy Slope + ZCR (SZ) 57.6 % 40.2 % 51.6 % 

Weighted Frequency (WF) 53.2 % 40.7 % 47.6 % 

As can be seen from these accuracies, the best performing features for the speaker 

dependent and independent systems are different. More interestingly, the different groups 

of features are affected similarly by speaker variability. Pitch and Energy (PE), the only 

features that are based completely on source characteristics, perform moderately well in 

both speaker dependent and speaker independent (with normalisation) scenarios and have 

the smallest difference in accuracies in both scenarios. On the other hand, MFCCs, 

reflection coefficients and group delay which all describe the vocal tract characteristics in 
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detail exhibit a large difference between speaker dependent and speaker independent 

scenarios. The Formant feature, which is also characteristic of the vocal tract, exhibits a 

similarly large difference between speaker dependent and independent performance. The 

broad spectral measures, namely the weighted frequency and the energy slope - zero 

crossing rate features, are also affected in terms of classification accuracy due to speaker 

variability. However, the difference in the case of the broad spectral measures is much 

lower that those of the detailed spectral measures (MFCC, group delay and reflection 

coefficients) or formant information. Moreover, it can be seen that speaker normalisation 

does not improve the performance of the features that describe the vocal tract 

characteristics in detail as significantly as it does for the other features. 

Since the different groups of features are characteristic of different aspects of the 

speech production model, certain combinations of features (concatenation of the 

individual feature vectors to make a larger feature vector in the front end) would be 

complementary and should lead to improved system performance. Such a comparison of 

feature combinations is reported in Table 4.4. An exhaustive comparison of all possible 

combinations is neither feasible nor necessary. Features that describe similar information 

such as MFCCs, group delay and reflection coefficients (detailed vocal tract 

characteristics) will not benefit from being combined with each other. However, 

combining the source specific features (pitch and energy) with vocal tract specific 

features (e.g. reflection coefficients) can be expected to result in improved performance. 

Thus combinations of features from the three different categories (source specific cues, 

detailed spectral measures and broad spectral measures) were used as front-ends and the 

overall classification accuracies of the systems are reported. 

Combinations of MFCCs with other features give the best speaker dependent 

classification accuracies. However, when compared to the MFCC alone speaker 
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dependent system (Table 4.3), the improvements are small or non-existent. This is most 

likely due to the fact that MFCCs model both filter and source characteristics and 

combining them with other features add little extra information. The other detailed 

spectral measures (group delay, formant information and reflection coefficients) show 

some improvement (very small in the case of reflection coefficients) when combined with 

pitch and energy or with the broad spectral measures (BSM). 

Table 4.4: Comparison of emotion classification accuracies for feature combinations 

 
Features 

Speaker Dependent Speaker Independent 

  Without 
Normalisation 

With 
Normalisation 

SSC + BSM 
PE + SZ 61.2 % 34.7 % 52.9 % 

PE + WF 59.7 % 36.2 % 56.4 % 

SSC + DSM 

PE + MFCC 71.2 % 45.0 % 58.2 % 

PE + FF 57.5 % 36.2 % 57.7 % 

PE + GD 69.1 % 43.1 % 54.2 % 

PE + RC 71.9 % 47.9 % 58.2 % 

BSM + DSM 

SZ + MFCC 74.1 % 45.0 % 50.8 % 

SZ + FF 60.4 % 38.6 % 48.9 % 

SZ + GD 72.7 % 39.7 % 48.4 % 

SZ + RC 74.8 % 48.2 % 52.7 % 

WF + MFCC 77.0 % 43.7 % 48.9 % 

WF + FF 62.6 % 41.3 % 49.5 % 

WF + GD 71.2 % 42.9 % 47.1 % 

WF + RC 72.7 % 50.0 % 56.1 % 

In the case of the speaker independent system, feature combinations of the source 

specific cues (pitch and energy) with the other features give the best results. Among 

these, combining detailed spectral measures (DSMs) with pitch and energy appears to be 

more effective than combining broad spectral measures (BSMs) with pitch and energy. It 

is also interesting to note that reflection coefficients are the best performing DSMs in a 

speaker independent scenario, outperforming the others when combined with the same 

feature (i.e., RC + X outperforms or matches MFCC + X, GD + X and FF + X). 
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The accuracies of the different features in a five-class emotion classification reported 

in this section suggests that MFCCs are very discriminative but are also very 

characteristic of the speaker, and that they do not lend themselves well to speaker 

normalisation. Since most practical emotion classification systems would need to be 

speaker independent, MFCCs may not be the front-end of choice, unlike in speech 

recognition and speaker recognition systems. 

4.3 Phonetic and Speaker Variations 

This section reports an experiment performed to determine if some phonemes are more 

conducive to emotion classification than others. In order to achieve this, an emotion 

classifier was setup and the independent classification accuracies for different phonemes 

were determined. It was expected that if certain phonemes expressed the emotion being 

conveyed better than others, the classification accuracies for those phonemes would be 

correspondingly higher than those of other phonemes. The effect of speaker variability in 

this context was also investigated. 

4.3.1 Phoneme Recognition 

In order to examine the effect of phonetic content on classifier performance it was 

essential to determine the phoneme associated with every frame of data. The phoneme 

recogniser developed at the Faculty of Information Technology, Brno University of 

Technology (Schwarz et al. 2006) was applied to generate phonetic labels from the data. 

The dominant phoneme in each frame (the phoneme with the longest duration in the 

frame when more than one was present) according to the labels was then associated with 

the frame, as seen in Figure 4.4. 
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Figure 4.4: Frame level phonetic labelling 

The phoneme set consists of 39 phonemes, as described in (Schwarz et al. 2006). 

However, since reliable pitch estimation is rarely possible from stops, affricates and 

fricatives, they were all combined as a single phoneme group (the phonemes b, d, g, p, t, 

k, dx, jh, ch, s, sh, z, f, th, v, and dh were grouped together and labelled as fr). Also, 

frames labelled as silences or pauses were not included in the experiments. This gave a 

total of 23 classes. Informal tests on the TIMIT database indicate the phone recogniser 

had an accuracy of about 74% for these 23 classes. 

4.3.2 Classification System 

Since the aim of the experiment was to study the difference between different phonemes 

with respect to automatic emotion recognition, a decision about the emotion could not be 

made for every phrase, as in all the previously reported results, since each phrase would 

contain many phonemes. However, since the AER systems (both speaker dependent and 

independent systems) described in Section 3.5 compute likelihood scores for feature 

vector from every frame prior to making a decision about a phrase, these scores can be 

used to classify each frame (instead of each phrase) as belonging to one of the five 

emotional classes. Since each frame is also associated with a phoneme (Section 4.3.1), 

this allowed for the study of phoneme specific system performance and such a system 

was used in this experiment and the classification accuracies for all the phoneme classes 

listed in Table 4.5 were determined for speaker dependent and speaker independent cases. 
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Figure 4.5: Phonetic and speaker variation test system overview 

Table 4.5: Number of Test Frames in each phonetic class 

Phonemes 

Number of Frames 
Phonemes 

Number of Frames 
Speaker 

Dependent 
Speaker 

Independent

Speaker 

Dependent 

Speaker 

Independent 

fr 556 1973 ey 190 671 

m 226 897 ae 383 983 

n 678 2558 aa 106 296 

ng 5 27 aw 258 610 

l 623 2178 ay 596 2413 

r 56 184 ah 372 1420 

w 4 46 oy 0 0 

y 3 3 ow 18 119 

hh 344 1063 uh 5 13 

iy 899 2772 uw 263 881 

ih 1131 3791 er 140 888 

eh 256 888    

Since the speech spectrum determines the sound (phoneme) being uttered and is in 

turn determined by the shape of the vocal tract, features that are characteristic of the vocal 

tract can be expected to have phoneme specific information. Using such features in this 

experiment could bias the results in favour of phonemes which were more closely 

clustered in that feature space. Hence a feature vector comprising of pitch, energy and 

weighted frequency, the best performing feature combination in a speaker independent 

scenario (refer to Table 4.4), that did not contain any detailed vocal tract information was 

chosen as the front-end for this experiment. 
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Table 4.6: Phonetic accuracies for speaker dependent (SD) and speaker indepdent (SI) systems 

 

Accuracy 

 

Accuracy 

With 

Normalisation 

Without 

Normalisation 

With 

Normalisation 

Without 

Normalisation 

SD SI SD SI SD SI SD SI 

fr 51.3 % 50.1 % 48.6 % 39.2 % ey 46.3 % 42.0 % 39.0 % 26.5 % 

m 52.2 % 34.5 % 54.4 % 30.4 % ae 46.2 % 47.4 % 46.2 % 20.8 % 

n 39.8 % 38.9 % 38.8 % 27.0 % aa 67.9 % 60.8 % 61.3 % 51.4 % 

ng 0 % 29.6 % 0 % 33.3 % aw 42.6 % 56.1 % 44.2 % 32.1 % 

l 45.6 % 39.5 % 44.8 % 26.3 % ay 56.5 % 53.5 % 50.7 % 38.3 % 

r 69.6 % 46.7 % 33.9 % 34.2 % ah 47.8 % 42.5 % 48.1 % 30.6 % 

w 100 % 63.0 % 100 % 32.6 % oy - - - - 

y 100 % 100 % 100 % 100 % ow 22.2 % 53.8 % 0 % 24.4 % 

hh 36.6 % 31.7 % 33.4 % 27.2 % uh 100 % 100 % 20.0 % 38.5 % 

iy 50.1 % 41.5 % 46.4 % 32.0 % uw 33.1 % 40.3 % 35.7 % 30.0 % 

ih 49.6 % 41.6 % 48.5 % 28.8 % er 32.9 % 34.9 % 37.9 % 24.9 % 

eh 41.8 % 45.6 % 42.6 % 36.0 % Overall 47.5 % 43.8 % 45.8 % 31.6 % 

From Table 4.5, it can also be seen that the rate of occurrence of some phonemes is 

higher than that of others, particularly semi-vowels and vowels. This is because better 

pitch estimates can be obtained from these phonemes than the others and only frames 

with pitch estimates were used in the experiments. Also, the accuracies for phonetic 

classes with very few test frames convey little or no useful information since they are 

easily affected by a few frames being misclassified (phonetic classes //ng//, //w//, //y//, 

//oy//, //ow//, //uh// can be safely ignored). Their low rates of occurrence also mean their 

contribution to the overall accuracy is negligible. 

From Table 4.6 it can be seen that feature warping has very little effect on a speaker-

dependent system, as expected. However in the speaker-independent case, feature 

warping plays a very significant role. This suggests that variations in the features between 

different speakers are quite large and much better modelling can be achieved when some 

sort of normalisation is used to reduce this variability. 

The Gaussian mixture models used for each emotional class in all of the 

abovementioned experiments were trained on data from all phonetic classes. It might be 
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argued that better modelling may be achieved if a separate GMM was trained for every 

phonetic class for every emotion. During testing, since every test frame is associated with 

a particular phonetic class, likelihood estimation and consequently classification is 

performed only over the five GMMs associated with the five emotions for that phonetic 

class. Such an experiment was performed for the speaker-independent case (there was 

insufficient training data to do this in a speaker-dependent manner) and the results are 

given in Table 4.7. 

Table 4.7: Phonetic accuracies for a speaker independent system using phoneme specific GMMs 

Phonemes 
Accuracy 

Phonemes 
Accuracy 

With 

Normalisation 

Without 

Normalisation 

With 

Normalisation 

Without 

Normalisation 

fr 50.8 % 45.8 % ey 46.4 % 21.8 % 

m 30.2 % 38.0 % ae 45.0 % 37.1 % 

n 39.2 % 30.3 % aa 78.0 % 59.1 % 

ng 29.6 % 33.3 % aw 46.4 % 32.1 % 

l 43.6 % 29.9 % ay 46.3 % 33.2 % 

r 35.9 % 43.5 % ah 40.5 % 37.1 % 

w 50.0 % 39.1 % oy - - 

y 100 % 100 % ow 63.9 % 33.6 % 

hh 28.6 % 25.4 % uh 100 % 38.5 % 

iy 44.2 % 37.5 % uw 26.7 % 23.6 % 

ih 39.4 % 30.2 % er 45.8 % 39.5 % 

eh 33.2 % 31.1 % Overall 42.2 % 33.6 % 

Comparing the accuracies of the systems using phoneme-specific GMMs with those 

that use phoneme independent emotion models, the difference appears to be very small. 

This tends to suggest that the phoneme-specific models are very similar to the phoneme-

independent models, indicating that for these features phonetic variability is very small 

and certainly much less significant than speaker variability. It is important to note that the 

features used in this experiment were chosen on the basis that they did not characterise 

the detailed spectral shape and consequently the phonetic content of speech. Hence this 
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made it difficult to determine whether the similarity of the phoneme-specific GMMs to 

the phoneme-independent GMMs is because of the lack of phoneme-specific information 

in the features or because the information being modelled by the emotion models is 

different from that modelled by phoneme recognisers. In essence, are these experiments 

biased towards this similarity, or is the similarity an inherent property of the emotion 

models? To clarify this, speaker independent emotion classification was performed with 

phoneme-independent and phoneme-specific GMMs using a MFCC based front end. 

Table 4.8: Phonetic accuracies for a MFCC based Speaker-Independent system (with normalisation) 

Phonemes 

Accuracy 

Phonemes 

Accuracy 

Phoneme 

Independent 

GMMs 

Phoneme 

Specific 

GMMs 

Phoneme 

Independent 

GMMs 

Phoneme 

Specific 

GMMs 
fr 40.6 % 44.1 % ey 35.9 % 38.3 % 

m 32.9 % 20.0 % ae 46.0 % 37.7 % 

n 28.1 % 35.2 % aa 68.6 % 77.0 % 

ng 25.9 % 25.9 % aw 51.0 % 43.0 % 

l 34.2 % 36.0 % ay 43.5 % 48.0 % 

r 29.4 % 32.6 % ah 38.6 % 40.1 % 

w 37.0 % 37.0 % oy - - 

y 100 % 100 % ow 47.1 % 61.3 % 

hh 34.0 % 40.5 % uh 92.3 % 92.3 % 

iy 35.6 % 38.1 % uw 43.0 % 35.6 % 

ih 35.2 % 36.9 % er 30.4 % 28.5 % 

eh 34.0 % 40.5 % Overall 37.4 % 38.8 % 

The classification accuracies of the MFCC based systems are reported in Table 4.8 

and from these accuracies it can be observed that once again there is very little difference 

between phoneme-specific and phoneme-independent emotion models. This lends support 

to the argument that even when phoneme-specific information is present in the features, 

they are not modelled by the emotion models; in turn supporting the observation that 

speaker variability is a more significant problem in emotion modelling than phonetic 
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variation. A summary of the overall accuracies of the different systems based on the 

pitch, energy and weighted frequency front-end is shown in Table 4.9. 

Table 4.9: Summary of overall accuracies 

 
Speaker Dependent Speaker Independent 

Without 

Norm. 

With 

Norm. 

Without 

Norm. 

With 

Norm. 

Phoneme Independent GMMs 45.8 % 47.5 % 31.6 % 43.8 % 

Phoneme Dependent GMMs - - 33.6 % 42.2 % 

4.4 Summary 

This chapter initially presented a technique that is novel in the context of AER to reduce 

the variance in data that arises due to differences in speaker characteristics, in order to 

improve the performance of a speaker independent emotion classification system. The 

proposed method involved the use of cumulative distribution mapping to transform the 

data from each speaker such that they are all mapped to the same distribution. This 

resulted in the data retaining their separation in the feature space due to emotional classes 

but not due to speaker specificity. Experimental results (Table 4.2) indicated that the 

proposed method improves the performance of the speaker independent system for all 

features. 

In the next section, the proposed normalisation technique was used to study how 

different features are affected by speaker variability. The performance of features and 

feature combinations from three broad categories of feature types were compared (refer 

Table 4.3 and Table 4.4). These accuracies revealed that MFCCs are very discriminative 

but are also very characteristic of the speaker. Moreover, the results indicated that source 

specific features such as pitch and energy lend themselves more to normalisation than 
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detailed spectral features such as MFCCs and group delay. The results also tend to 

suggest that MFCCs may not be the front-end of choice in a speaker independent system. 

This chapter then examined whether features extracted from speech corresponding to 

certain phonemes are more discriminative of emotions than features extracted from other 

phonemes in both speaker-dependent and speaker-independent systems. The classification 

accuracies (refer Table 4.6) indicated that this is the case, and differences between 

emotions are better conveyed by some phonemes than others. However, the accuracies of 

the emotion models were affected to a larger extent by differences between speakers than 

they were by difference between phonemes. For example, the high classification 

accuracies for frames associated with the phoneme //aa//, indicates that the classifier is 

able to make better decisions from features corresponding to //aa//; but classifiers trained 

on speech frames corresponding to the phoneme //aa// perform similarly to classifiers 

trained on all frames corresponding to all phonemes. 
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Chapter 5 
 
Static Classification Approaches 

The automatic emotion recognition system described in section 3.5 is based on a Gaussian 

mixture model (GMM) back-end. This approach is useful for comparing different front-

ends and for studying the effect of variability unrelated to emotion. However, the fact that 

GMMs are only one of many possible back-ends prompts the question, how do they 

compare to other classification approaches? Tools such as N-grams, though not explicit 

classifiers, are used to model temporal patterns while some classifiers such as hidden 

Markov models are used to model both statistical and temporal patterns. Classifiers that 

explicitly model temporal patterns are usually termed dynamic classifiers (e.g. HMMs, 

refer to section 6.2.4 for a description of a system that uses HMMs to model pitch 

contours), while those that model only statistical patterns are termed static classifiers. 

Section 5.1 compares a few commonly used static classifiers in the context of emotion 

recognition to determine if any of them are significantly better than the others. Other 

questions about the back-end that arise are: 

• Is a single stage classifier sufficient, or would pre-classification improve 

recognition rates? 

• Given that features are extracted for short frames, should the back-end model 

these features directly or should utterance (turn) level statistics be computed from 

the features and these statistics modelled? 

The experiments performed to try and ascertain the answers to these questions are 

reported in this chapter. While the limited size of the database precludes high degrees of 
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certainty, the results obtained can provide some indications as to which approaches may 

offer more promise compared to the others. 

5.1 Comparison of Static Back-Ends 

A number of different classifiers have been used in various speech processing 

applications. Some of them such as Gaussian mixture models and support vector 

machines are used to statistically model the distribution of the features. It should be noted 

that while static classifiers model only the statistical patterns in the feature space, the 

features themselves could be chosen to be representative of temporal patterns in speech 

and thus enable the static classifiers to model temporal patterns indirectly. The static 

classifiers compared in this section are 

• Gaussian mixture models (GMM) - (Reynolds et al. 1995) 

• Probabilistic neural networks (PNN) - (Specht 1988) 

• Support vector machines (SVM) - (Vapnik 2000) 

In the experiments reported in this thesis where Gaussian mixture models were 

employed, they were implemented using HTK (Young et al. 1995) and unless mentioned 

otherwise, all GMMs utilised 4 mixtures. Support vector machines were implemented 

using the SVMlight toolkit (Joachims 2003) and utilised a radial basis kernel (with 

parameter, ߛ ൌ 0.015). The implementation from the neural network toolbox of 

MATLAB was used for probabilistic neural networks with the spread of the radial basis 

functions set at 0.15. 

Since these classifiers require different techniques for combining frame level 

decisions/scores to obtain an utterance (turn) level decision, and since the aim is to 

compare the capabilities of these classifiers to model the feature space, only frame level 
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classification accuracies, as in section 4.3, are reported. Also as in section 4.3, pitch, 

energy and weighted frequency are used in the front-end. The classification accuracies 

obtained when using these three back-ends in a speaker independent scenario are reported 

in the following tables. 

Table 5.1: Confusion matrix for GMM based AER system using P + E + WF 

 Neutral Anger Sad Happy Bored 

Neutral 47.2 % 0.6 % 23.3 % 5.6 % 23.3% 

Anger 1.7 % 70.5 % 5.5 % 20.3 % 2.0 % 

Sad 27.0 % 2.1 % 35.1 % 18.0 % 17.9 % 

Happy 6.8 % 25.4 % 21.9 % 39.3 % 6.6 % 

Bored 36.4 % 1.8 % 22.1 % 10.9 % 28.8 % 

Overall Accuracy = 43.1 % 

Table 5.2: Confusion matrix for PNN based AER system using P + E + WF 

 Neutral Anger Sad Happy Bored 

Neutral 14.0 % 0.7 % 7.8 % 7.1 % 70.4% 

Anger 6.2 % 72.5 % 1.9 % 21.3 % 4.0 % 

Sad 6.0 % 3.4 % 12.3 % 21.7 % 56.6 % 

Happy 1.4 % 27.4 % 8.8 % 42.4 % 20.1 % 

Bored 7.3 % 1.9 % 14.1 % 14.5 % 62.3 % 

Overall Accuracy = 44.1 % 

Table 5.3: Confusion matrix for SVM based AER system using P + E + WF 

 Neutral Anger Sad Happy Bored 

Neutral 13.3 % 1.9 % 11.3 % 4.5 % 69.0 % 

Anger 1.2 % 87.9 % 4.2 % 3.4 % 3.3 % 

Sad 7.2 % 8.7 % 29.0 % 11.3 % 52.9 % 

Happy 4.9 % 51.1 % 15.6 % 12.9 % 15.6 % 

Bored 9.6 % 7.5 % 19.2 % 6.7 % 56.9 % 

Overall Accuracy = 40.5 % 

These overall accuracies of all three systems are very close to each other and do not 

shed much light on the differences. The confusion matrices on the other hand reveal some 
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differences between the performances of these classifiers, while some trends are common 

to all three cases. For instance, anger and happiness are confused with each other far more 

often than with any other emotions in all three cases. Also, neutral speech is not 

recognised very well by the PNN or the SVM. It should be noted that the classifiers can 

distinguish between classes only if such a distinction is possible in the feature space and 

trends that are common to all three cases could be a result of the features chosen for the 

front end. Trends that are consequences of the choice of front-end should be ignored in a 

comparison of back-ends. 

In order to help distinguish back-end specific trends from feature related trends, the 

classification experiments were repeated with a Mel frequency cepstral coefficients 

(MFCC) based front-end. The accuracies obtained when using MFCCs (which 

characterise the speech spectrum in detail) instead of pitch, energy and weighted 

frequency (which lack detailed spectral characterisation) are given in Table 5.4, Table 5.5 

and Table 5.6. Given that the features are representative of different aspects of speech, the 

front-end specific trends can reasonably be expected to be different in both cases. 

Since two front-ends modelling different aspects of speech are used, trends common 

to both can reasonably be attributed to the back-end. This enables a comparison between 

the three back-ends and the following observations can be made: 

• The overall accuracies for all three back-ends are close to each other 

• The individual emotion specific classification accuracies vary and GMMs have 

the best all round performance with no significantly low accuracy for any of the 

classes 

• Happiness is often confused with anger by all three system, and for both front-

ends. Given that humans very rarely exhibited this confusion, the confusion in the 
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automatic classification systems indicates the distinction between the two 

emotions are not sufficiently well modelled at either the feature level or the 

classifier level (or both). 

• Both SVM and PNN appear to be biased towards boredom, giving a high accuracy 

for that emotion, at the cost of misclassifying neutral and sadness as boredom in 

many instances. The reason for this bias is not clear, but it could be a result of 

insufficient training data. 

Table 5.4: Confusion matrix for GMM based AER system using MFCC 

 Neutral Anger Sad Happy Bored 

Neutral 43.2 % 0.4 % 22.7 % 7.7 % 16.0% 

Anger 3.7 % 60.7 % 6.8 % 25.3 % 3.6 % 

Sad 26.8 % 4.2 % 27.5 % 13.7 % 27.8 % 

Happy 14.7 % 23.5 % 17.5 % 29.6 % 14.7 % 

Bored 30.9 % 2.3 % 25.4 % 12.6 % 28.8 % 

Overall Accuracy = 37.1 % 

Table 5.5: Confusion matrix for PNN based AER system using MFCC 

 Neutral Anger Sad Happy Bored 

Neutral 30.7 % 1.1 % 18.4 % 12.5 % 37.3% 

Anger 2.8 % 49.1 % 7.9 % 32.2 % 8.1 % 

Sad 13.7 % 4.8 % 24.3 % 19.7 % 37.5 % 

Happy 9.2 % 21.1 % 16.1 % 34.5 % 19.2 % 

Bored 18.7 % 3.2 % 25.8 % 15.8 % 36.6 % 

Overall Accuracy = 35.6 % 

Table 5.6: Confusion matrix for SVM based AER system using MFCC 

 Neutral Anger Sad Happy Bored 

Neutral 29.4 % 1.8 % 9.3 % 10.0 % 49.6% 

Anger 1.1 % 75.0 % 2.7 % 16.3 % 5.0 % 

Sad 9.6 % 8.6 % 13.0 % 16.4 % 52.5 % 

Happy 7.0 % 37.6 % 6.7 % 26.2 % 22.5 % 

Bored 17.1 % 4.3 % 16.1 % 13.1 % 49.4 % 

Overall Accuracy = 39.9 % 
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These trends suggest that a back-end based on Gaussian mixture models is in fact a 

good choice. The lack of any obvious bias in GMMs towards any of the classes simplifies 

the interpretation of any classification results, since it eliminates the necessity to 

compensate for any back-end specific trends. 

5.2 Pre-Classification 

The training of static classifiers involves separation of the feature space into distinct 

regions and associating them to the different classes. This is done based on the 

distribution of the training data in the feature space. Classification then reduces to a 

problem of associating a feature vector to one of the regions. Ideally, every region in the 

feature space would correspond to a particular class. The speaker normalisation technique 

proposed in section 4.1.2 is an attempt to reduce the number and size of clusters caused 

by speaker specific variability while retaining emotion specific clusters. Another way to 

address this problem is to perform some sort of pre-classification to identify and separate 

large clusters not related to emotions and then perform emotion recognition within these 

clusters. 

The classification system used in the experiment reported in section 4.3, using 

phoneme specific GMMs, in fact performs this kind of pre-classification. It initially 

separates phonetic clusters and then performs emotion classification within these clusters. 

However, the phonetic clusters imposed on the feature space are based on knowledge of 

the linguistic structure of speech and not estimated from the distribution of the features. 

This may be the reason the classification accuracy of the system did not improve. 

An unsupervised clustering algorithm can instead identify data clusters in the feature 

space without the imposition of any prior assumptions. Once identified, all features can 

be pre-classified into one of these clusters. Cluster specific emotion modelling and 
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classification can then be performed. Self-organising maps (SOM), also referred to as 

Kohonen maps, can be used to ‘learn’ the structure of the distribution of data in the 

feature space and hence identify clusters (Kohonen 1982; Kohonen 1997; Kohonen 

1998).  

Such an experiment was performed, and cluster specific and cluster independent 

GMM based emotion models were trained in a manner similar to the experiment reported 

in section 4.3. A comparison of cluster specific and cluster independent classification 

accuracies however revealed that cluster specific modelling resulted in no significant 

performance gains in either the AER system that used pitch, energy and weighted 

frequency (P + E + WF) or the AER system that used MFCCs as its features. The details 

of this experiment along with classification accuracies are reported in Appendix C. 

5.3 Frame based vs. Turn based Static Modelling 

The AER system described in section 3.5 uses frame based features and a Gaussian 

mixture model (GMM) based back-end to model the distributions of these features for the 

different emotional classes. An alternative approach, that is very prevalent, is to estimate 

statistics from the set of features extracted from all the frames in each phrase (turn) and to 

model these statistics instead of the feature values (refer to Figure 5.1). These two 

approaches are termed ‘frame based’ and ‘turn based’ respectively (Vlasenko et al. 

2007). The turn based static modelling approach is popular since the high level of 

abstraction of the features results in information reduction, which avoids phonetic over-

modelling that may occur in dynamic modelling (Schuller et al. 2003; Vlasenko et al. 

2007). The frame based approach used in the system described in section 3.5 also ignores 

temporal patterns while modelling the probability distribution of the features (using 

GMMs) which should implicitly capture the statistics that are computed in the turn based 
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approach (Huang et al. 2006). The statistics utilised in the experiments reported in this 

section are: 

• Mean 

• Maximum 

• Minimum 

• Standard Deviation 

• Median 

• 1st Quartile 

• 3rd Quartile 

• Skewness 

• Kurtosis 

 
Figure 5.1: Frame and Turn based modelling approaches 

It should be noted that both approaches are types of static modelling, where only 

statistics of the features are modelled, as opposed to dynamic modelling, where temporal 

patterns are modelled as well. In order to compare the two approaches, turn based systems 

with two front-ends - one with pitch, energy and weighted frequency and the other with 

MFCCs - were set up where: 

• Phrases were divided into frames and a feature vector extracted from each frame 
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• Statistics of features from all frames in each phrase were computed to form a new 

vector, thus giving one statistics vector per phrase. 

• This system was used in a speaker independent scenario (the size of the database 

was too small to train a speaker dependent setup) and the training and test datasets 

were setup as described in section 3.5. 

• The speaker normalisation technique proposed in section 4.1.2 was applied prior 

to estimation of the statistics. 

The performances of these systems were compared to those of two frame based 

systems (as described in section 3.5) using the same front-ends. Table 5.7 and Table 5.8 

report the accuracies of the pitch, energy and weighted frequency based systems.  

Table 5.7: Confusion matrix for TURN based AER system using P + E + WF 

 Neutral Anger Sad Happy Bored 

Neutral 43.4 % 0 % 15.1 % 3.8 % 37.7% 

Anger 0 % 73.0 % 1.4 % 21.6 % 2.7 % 

Sad 8.1 % 0 % 31.1 % 21.6 % 39.2 % 

Happy 2.4 % 17.7 % 8.2 % 63.5 % 8.2 % 

Bored 18.5 % 2.2 % 28.3 % 8.7 % 42.4 % 

Overall Accuracy = 51.3% 

Table 5.8: Confusion matrix for FRAME based AER system using P + E + WF 

 Neutral Anger Sad Happy Bored 

Neutral 66.0 % 0 % 17.0 % 0 % 17.0% 

Anger 0 % 79.7 % 1.4 % 18.9 % 0 % 

Sad 23.0 % 0 % 48.7 % 13.5 % 15.9 % 

Happy 1.2 % 16.5 % 15.3 % 65.9 % 1.2 % 

Bored 37.0 % 0 % 27.2 % 6.5 % 29.4 % 

Overall Accuracy = 56.4% 

The accuracies obtained using the MFCC based systems are reported in Table 5.9 and 

Table 5.10. 
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Table 5.9: Confusion matrix for TURN based AER system using MFCC 

 Neutral Anger Sad Happy Bored 

Neutral 24.5 % 0 % 18.9 % 7.6 % 49.1% 

Anger 0 % 79.7 % 1.4 % 18.9 % 0 % 

Sad 2.7 % 0 % 51.4 % 17.6 % 28.4 % 

Happy 0 % 18.8 % 11.8 % 57.7 % 11.8 % 

Bored 6.5 % 0 % 22.8 % 21.7 % 48.9 % 

Overall Accuracy = 54.0% 

Table 5.10: Confusion matrix for FRAME based AER system using MFCC 

 Neutral Anger Sad Happy Bored 

Neutral 45.3 % 0 % 26.4 % 0 % 28.3% 

Anger 0 % 73.1 % 1.4 % 25.7 % 0 % 

Sad 16.2 % 0 % 35.1 % 10.8 % 37.8 % 

Happy 3.5 % 17.7 % 11.8 % 54.1 % 12.9 % 

Bored 18.5 % 0 % 29.4 % 14.1 % 38.0 % 

Overall Accuracy = 48.9% 

The higher level of abstraction of the features in the turn based approach can be 

expected to ignore phonetic variability to a larger extent at the cost of higher information 

loss. Consequently the turn based approach can be expected to perform well when the 

front-end captures a significant amount of phonetic detail. Of the two front-ends used in 

the experiment reported here, the MFCC based front-end captures vocal tract specific 

information and will be more dependent on the phonetic structure of speech and the turn 

based approach should be more suited to it. From the reported accuracies it can be seen 

that the turn based approach is indeed better than the frame based on for MFCC, while the 

frame based approach is superior when using pitch, energy and weighted frequency which 

are representative of the phonetic content to a much smaller extent. 

Given that the turn based approach is better when the features are phoneme 

dependent, the extensive use of MFCC as features explains the prevalence of the turn 

based approach in emotion recognition literature. However, as indicated by the 
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classification accuracies in Table 5.7 and Table 5.8, the turn based approach may not 

necessarily be the best one. It should be noted that the number of mixtures in the 

Gaussian mixture models were held constant to facilitate direct comparison of the features 

and increasing the number of mixtures does result in a small improvement in the 

performance of the frame based system that makes use of MFCCs. However this 

improvement is small and the accuracy of the best performing system was less than that 

of the frame based system using pitch, energy and weighted frequency. 

5.4 Summary 

This chapter sought to address three issues, namely, the choice of classifier, the use of a 

pre-classifier and the issue of turn vs. frame based classification. In the first section, 

Gaussian mixture models, probabilistic neural networks and support vector machines, 

three commonly used static classifiers, were compared in terms of classification accuracy. 

The overall classification accuracies of AER systems based on all three were also similar. 

However, class (emotion) specific recognition rates indicated a bias towards one class 

(boredom) in the PNN and SVM based system, suggesting that GMM based back-end 

was the best option of the three. 

The next section investigated the potential for multi-stage classification. Specifically, 

it investigated the use of a pre-classifier to compensate for non-emotion specific 

clustering of data in the feature space. Unlike the phoneme specific classification system 

(section 4.3.2) and the speaker dependent AER system, both of which can be considered 

pre-classification, this section investigated pre-classification based on self-learning 

without any assumptions of a prior framework (e.g. phonetic structure or speaker specific 

characterisation of speech). A comparison of a system that made use of pre-classification 

to one that did not in terms of emotion recognition rates indicated that when low 
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dimensional features were used, there was no advantage in performing pre-classification. 

When a high dimensional feature (MFCC) was used, pre-classification conferred a small 

advantage. However this advantage was too small to draw any conclusions one way or the 

other. 

The final question addressed in this chapter was that of comparing a turn (utterance) 

based approach to a frame based approach. The turn based approach involved estimation 

of statistical parameters pertaining to the distribution of features extracted from all the 

frames in a turn (utterance) and then using the back-end to model a feature space 

comprising of these statistics. The frame based approach on the other hand involved using 

the back-end to model the feature space comprising of the features extracted from the 

frames directly and allowing the back-end to model the statistics implicitly. A comparison 

of recognition rates obtained using both approaches once again indicated that the 

dimensionality of the features played a role, with the higher level of abstraction of the 

turn based approach suiting high dimensional features. 
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Chapter 6 
 
Speech Parameterisation for Emotion 
Recognition 

The source-filter model described in Section 3.1 is widely used in speech processing 

literature. It models the vocal apparatus as a linear system excited by a series of glottal 

pulses, often approximated as the response of a second order low pass system to an 

impulse train, and has been particularly successful in describing voiced speech. The 

automatic emotion recognition (AER) systems described in this thesis all make use of 

only voiced speech and the source-filter model plays an integral role in understanding 

them. All the features explored in this thesis, with the exception of fractal dimension, are 

interpreted in the light of the source-filter model (see Chapter 3). Briefly, the 

characteristics of the vocal apparatus described by this model that are captured by the 

commonly used features for AER systems are 

• Fundamental frequency – described by the period of the impulse train 

• Vocal Intensity – described by the amplitude of the impulses 

• Shape of the vocal tract – Spectral properties/coefficients of the vocal tract filter 

model 

Two shortcomings common to the features that characterise the various aspects of this 

model are that (i) they do not contain information pertaining to the shape of the glottal 

pulses (since the glottal model is always a two pole low pass system with both poles at 
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unity); and (ii) they do not characterise the temporal variations of the model parameters. 

This chapter explores: 

• The use of the spectral representation of glottal source models, thereby increasing 

the flexibility of the source-filter model and allowing for explicit seperation of the 

effects of the glottal source and vocal tract on speech giving rise to a 3-part 

source-filter model. Also, in contrast to the most other investigations of an explicit 

glottal model, spectral parameters are used instead of temporal parameters. 

• The use of temporal patterns of the model parameters, which adds a temporal 

dimension to the model. These temporal patterns are longer term patterns than the 

ones typically characterised by delta parameters (which are commonly utilised). 

• The use of discrete contours of model parameters as features in an AER system. 

Thus allowing for an investigation of the significance of these temporal patterns in 

the context of AER. A comparison of the performance of an AER system using 

model parameter contours to that of one modelling the probability distributions of 

the parameter values would give an indication of this significance. 

6.1 The Glottal Source – Spectral Extension 

As previously mentioned in section 3.1, voiced speech is modelled as the response of a 

LTI system modelling the vocal tract to a periodic excitation after it passes through a lip 

radiation model. The glottal flow is further modelled as the response of a filter to a 

periodic train of impulses (with the impulses separated by the fundamental period); where 

the impulse response of the filter is the shape of a single glottal flow pulse. While it is 

acknowledged that the magnitude response of the glottal filter is low-pass, approximating 

it by ܩሺݖሻ ൌ 1/ሺ1 െ  ଵሻଶ, as it is commonly done, is equivalent to the assumption thatିݖ
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the shape of the glottal pulse is always the same. As a result, the effects of changes to this 

shape are not taken into account. 

This shape has been associated with certain characteristics of speech that are 

subsumed under the cover term ‘voice quality’ (Childers et al. 1991). While there is no 

generally accepted definition of voice quality, the term has been used to refer to the 

auditory impressions of the listener that are not accounted for by measurable parameters. 

For instance, voice types such as hoarse, harsh and breathy are considered voice qualities. 

Thus, the incorporation of a more detailed model of the glottal source is required for 

improved speech analysis. The importance of glottal flow modelling in parametric 

synthesis of natural sounding speech has been well established (Cabral et al. 2007; 

Childers et al. 1991). The modification of glottal voice quality factors has been shown to 

be important for the synthesis of emotional (expressive) speech in (d'Alessandro et al. 

2003). While not commonly used, glottal parameters have also been used in an emotion 

classification framework (Rui et al. 2009) and were shown to be useful in distinguishing 

between emotional category pairs that had statistically similar pitch values. 

Often instead of the glottal flow, its derivative is modelled. The reason for this is 

twofold: 

• The lip radiation model can be approximated by a differentiator as in the 

traditional source-filter model and using the glottal-flow derivative automatically 

takes lip radiation into account. 

• Some aspects of the shape of the glottal-flow derivative can be visible from the 

acoustic speech waveform (e.g. peak of the glottal flow derivative may be visible 

in the speech waveform). 



THE GLOTTAL SOURCE – SPECTRAL EXTENSION 
 

113 
 

 
Figure 6.1: Parameters of a typical glottal flow signal and its derivative, (Doval et al. 2006). 

The time-domain models of glottal flow (or its derivative) are described in terms of 

phases of the glottal flow signal. Figure 6.1, taken from (Doval et al. 2006), shows a 

typical glottal flow signal and its derivative during one fundamental period, ܶ. It 

illustrates the following phases of the signal: 

• Open phase when the vocal folds are open and glottal flow is present. This phase 

is further divided into two phases, 

• the opening phase, where the glottal flow increases from its baseline to its 

maximum value as the vocal folds open; and 

• the closing phase, where the glottal flow decreases from its maximum value 

as the vocal folds close until the glottal closure instant (GCI), which is the 

point at which the glottal flow derivate attains is negative minimum. 

• the closed phase, when the vocal folds are closed and the glottal flow is at the 

baseline DC value. It should be noted that when there is a smooth closure, the 
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glottal flow derivative is continuous at the GCI and changes smoothly from its 

negative minimum to its baseline value, resulting in a return phase.  

The significant time domain glottal flow model (GFM) parameters, as seen from 

Figure 6.1, are thus 

• ܶ – The fundamental period 

 ௩ – Amplitude of voicing, the maximum amplitude of glottal flowܣ •

• ܶ – The time at which ܣ௩ is reached 

 Maximum excitation, the minimum negative value of the glottal flow – ܧ •

derivative 

• ܶ – Glottal Closure Instant (GCI), the time at which the flow derivative reaches ܧ 

• ܶ – Closure instant, time at which the glottal flow reaches its baseline DC value 

Pioneering work on voice source signal modelling was done by Fant (Fant et al. 

1985), Rosenberg (Rosenberg 1971) and others. Following this signal analysis approach, 

most of the glottal-flow models proposed have been time domain models, which describe 

the shape of the glottal excitation signal in the time domain. The most commonly used 

time-domain glottal models are 

• KLGLOTT88 model (Klatt et al. 1990) 

• Rosenberg C model (Rosenberg 1971) 

• R++ model (Veldhuis 1998) 

• LF model (Fant et al. 1985) 

Time domain models have certain advantages since the model parameters can be 

directly related to temporal phases of the glottal flow signal. Also, time domain models 

lend themselves well to the study of glottal activity using time domain analyses such as 
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electroglottography, high-speed cinematography and electromyography. However, in 

some applications, a frequency-domain approach can be desirable. For instance, the main 

spectral parameters for synthesising voices with different voice qualities were found to 

be: 1. Spectral tilt; 2. Amplitude of the first few harmonics; 3. Increase of the first 

formant bandwidth; 4. Noise in the voice source; (Hanson 1995; Klatt et al. 1990). 

6.1.1 The Glottal Spectrum 

Based on the source-filter model, the speech spectrum can be viewed as the product of the 

vocal tract frequency response, the lip radiation frequency response, the glottal flow 

spectrum and a spectrum of an impulse train, with the impulses separated by the 

fundamental period. The spectrum of an impulse train is another series of impulses (Dirac 

comb) in the frequency domain separated by the fundamental frequency. This Dirac comb 

spectrum gives rise to the harmonic structure of speech while the envelope of the speech 

spectrum is determined by the magnitude responses of the vocal tract, lip radiation and 

glottal flow models (see Figure 6.2). 

That is: 

 ܵሺ߱ሻ ൌ ܴሺ߱ሻ · ܸሺ߱ሻ · ሺ߱ሻܩ · ܲሺ߱ሻ (6.1)

where, ܵሺ߱ሻ is the speech spectrum, ܴሺ߱ሻ is the lip radiation response, ܩሺ߱ሻ is the 

glottal flow response, ܸሺ߱ሻ is the vocal tract response and ܲሺ߱ሻ is the spectrum of the 

impulse train (Dirac comb). 

As previously mentioned the lip radiation is often modelled as a differentiator and 

combined with the glottal flow. Together they are considered to be the glottal flow 

derivative. The four commonly used time-domain glottal flow models also model the 

glottal flow derivative. In (Doval et al. 2006), all four are described within a common 

framework and their spectra analysed; suggesting that the magnitude spectrum of the 
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glottal flow derivative can be stylised by three asymptotic lines with +6dB/oct, -6dB/oct 

and -12dB/oct slopes as shown in Figure 6.3. Such a stylised representation allows for a 

very compact characterisation of the glottal flow derivative magnitude spectrum since the 

stylised spectrum can be uniquely identified based on three values, ܨ, ܨ and ܣ. The 

compact representation also lends itself to use as a feature in a classification system. 
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Figure 6.2: Spectral Structure of Speech 

6.1.1.1 Estimation of Glottal Spectral Parameters 

While it is obvious that the use of a glottal flow (or glottal flow derivative) model results 

in a more accurate modelling of the speech production apparatus when compared to the 

two-pole (with both poles at unity) approximation outlined in section 3.1.3, the estimation 

of the glottal flow signal from the speech signal is not a well defined problem and lacks 

an analytical solution. However, numerous techniques have been proposed over the years 

which are based on the properties of the glottal flow signal (Alku 1991; Cabral et al. 

2008; Frohlich et al. 2001; Hui-Ling et al. 1999; Riegelsberger et al. 1993; Vincent et al. 

2005). The iterative adaptive inverse filtering (IAIF) method (Alku 1991) was used to 
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estimate the glottal flow derivative in all the work reported in this thesis. The IAIF 

method can be used pitch synchronously (with variable window lengths based on pitch) 

or asynchronously (with fixed window lengths). For pitch synchronous IAIF, the DYPSA 

algorithm (Naylor et al. 2007) was used to detect glottal closure instants (GCI) and hence 

identify window boundaries. Given an estimate of the glottal flow derivative, the best 

stylised fit to its magnitude spectral envelope (Figure 6.3), in terms of minimum mean 

squared error (MMSE), was estimated via a brute force search of the 3-dimensional 

parameter space. An overview of the glottal spectral parameter estimation method is 

given in Figure 6.4. 

 
Figure 6.3: Stylised glottal flow derivative magnitude spectrum 

Preliminary visual comparisons of the spectral fit obtained and the glottal flow 

spectrum across consecutive frames showed glottal flow spectra with different errors 

resulting in similar spectral fits (particularly the location of the glottal formant). This 

indicates the spectrum fitting process is robust (to a certain extent) to errors in the glottal 

flow derivative estimation process that result from incomplete removal of the formant 

structure, particularly in terms of identifying the glottal formant. However, the estimation 
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of the corner frequency, ܨ, is affected to a much larger degree by the errors and the 

estimated values were not very reliable. Therefore, ܨ was ignored as a glottal parameter 

and only the glottal formant frequency and magnitude, ܨ and ܣ, were used in the work 

reported in this thesis. 
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Figure 6.4: Overview of glottal spectral parameter estimation procedure 

6.1.1.2 Glottal Parameters as static features 

The AER system outlined in section 3.5, used to evaluate the features outlined in Chapter 

3, can be used here to evaluate the utility of the glottal parameters. A 2-dimensional 

feature vector comprised of the two glottal formant parameters, ൣܨ,  ൧, was used as theܣ

front-end and a GMM based classifier was used to make turn level decision in both 
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speaker dependent and independent scenarios. The classification accuracies obtained in 

the two scenarios are reported in Table 6.1 and Table 6.2. These accuracies are 

substantially above random chance (20%) and indicate that the shape of glottal flow 

derivative contributes towards the expression of emotions. This is also in accordance with 

the findings in (Rui et al. 2009) that glottal features, albeit different ones from those 

proposed here, exhibit statistically significant difference between emotions. 

Table 6.1: Confusion matrix for Speaker INDEPENDENT AER system using Glottal Parameters 

 Neutral Anger Sad Happy Bored 

Neutral 58.5 % 0 % 24.5 % 1.9 % 15.1% 

Anger 0 % 81.1 % 0 % 17.6 % 1.4 % 

Sad 47.3 % 1.4 % 20.3 % 9.5 % 21.6 % 

Happy 1.2 % 21.2 % 5.9 % 56.5 % 15.3 % 

Bored 48.9 % 0 % 13.0 % 14.1 % 23.9 % 

Overall Accuracy = 46.6 % 

Table 6.2: Confusion matrix for Speaker DEPENDENT AER system using Glottal Parameters 

 Neutral Anger Sad Happy Bored 

Neutral 81.3 % 0 % 0 % 0 % 18.8% 

Anger 3.6 % 67.9 % 0 % 25.0 % 3.6 % 

Sad 21.4 % 3.6 % 60.7 % 3.6 % 10.7 % 

Happy 6.3 % 9.4 % 12.5 % 65.6 % 6.3 % 

Bored 17.1 % 0 % 37.1 % 11.4 % 34.3 % 

Overall Accuracy = 59.0 % 

6.2 Temporal Patterns of Pitch 

A second aspect of the source-filter model that is not captured very well by the features 

outlined in Chapter 3 is information about the variation of the model parameters with time 

within an utterance, or within segments of speech. The estimation of deltas and shifted 

deltas allow for a limited description of the temporal evolution of a parameter, these are 
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still short term descriptions, involving only adjacent frames (or a few frames in the case 

of shifted deltas). Parameter contours are representative of the variations over an entire 

utterance and are characterised by a much longer duration. The most common and 

probably best studied of these is the pitch (ܨ) contour, which is essentially pitch as a 

function of time, and is the focus of this section. While most studies agree on the 

importance of global prosodic parameters such as ܨ level, ܨ range, loudness and rate of 

speech, ܨ contours are taken into account less frequently in the context of emotion 

recognition even though they have been shown to play an important role in the expression 

and perception of emotion (Burkhardt et al. 2000; Mozziconacci et al. 1999). 

The significance of the temporal patterns can be gauged from a comparison of an 

AER system that makes use of these patterns with one that does not. In the section, the 

pitch contour is parameterised and the estimated parameters are employed as features. 

This system is then be compared with that described in Section 3.5 using pitch values as 

features, and the results are reported in Section 6.2.4.3. 

6.2.1 Contour Parameterisation 

Linear stylisation of F0 contours (Mertens et al. 1995; Ravuri et al. 2008; Wang et al. 

2005) is commonly carried out to make them simpler to analyse, but has the additional 

advantage of making their representation more compact than that of the original contour. 

Approximating the pitch contour in each voiced segment by a straight line enables the 

representation of that contour using three parameters. This is different from typical F0 

contour stylisations (Mertens et al. 1995; Wang et al. 2005) since each voiced segment is 

approximated by a single linear segment rather than a piecewise linear approximation in 

order to utilise a single vector to characterise the contour in each voiced segment (refer to 

section 6.2.4.1). This is the simplest form of contour parameterisation and if an AER 
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system that makes use of such a representation outperforms a system that models the 

distribution of pitch values without taking into account any temporal information, it is 

reasonable to suppose that the shapes of the pitch contours contain emotion specific 

information. 

The RAPT algorithm for pitch estimation (Talkin 1995) was used to estimate pitch 

contours from speech. A separate voicing activity detector (VAD) was used to identify 

voiced segments prior to linear curve fitting of the pitch contours in these segments as in 

(Ravuri et al. 2008). The linear approximation in each segment is represented by the slope 

of the line (s), the initial offset (b) and the length of the segment (x) as shown in Figure 

6.5. Thus the pitch contour of any speech sample can be represented by 3N parameters, 

where N is the number of voiced segments in the utterance. 
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Figure 6.5: (a) Estimated F0 contour (b) Linear approximation of F0 contour (c) Linear model parameters - 

b, s and x 
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A subjective comparison of: 

• speech synthesised using the approximate F0 contour 

• speech synthesised using the actual estimated F0 contour, and 

• the actual speech sample 

was performed to determine if the linear approximations of F0 segments retain 

information representative of emotions from the actual speech signal, and hence to 

determine their utility as AER features. 

6.2.2 A Voiced-Speech Synthesis Technique 

In the work reported in this section, the purpose of speech synthesis is to enable 

subjective comparisons of speech samples that use the estimated pitch contour with 

speech samples whose pitch contours have been replaced by linear approximations. Given 

the sole focus on pitch, a synthesis method based on a non-stationary AM-FM type 

representation of speech was used. This method is very close to the sinusoidal 

representation (McAulay et al. 1986). 

 
ሻݐሺݏ ൌ  ,ሻݐሺ݂݇ሺܣ ሻݐ sin ቌන ݂݇ሺ߬ሻ݀߬

௧



ቍ
ே

ୀଵ

 (6.2)

where ݂ሺݐሻ is the F0 contour, ܰ is the number of harmonics and ܣሺ݂,  ሻ is an estimateݐ

of the spectral magnitude as a function frequency and time. 

The representation of speech as a sum of harmonic sinusoids as given in (6.2) is 

directly dependent on the pitch contour, and allows for synthesis with both the estimated 

contour and its linear approximation. The spectrogram of the speech signal was used to 

determine the amplitude of the sinusoids for all the synthesis reported in this work. 
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However, other estimates such as the LPC spectrum or more complex forms reported in 

(Kawahara et al. 1999), for example, may also be used. 

6.2.3 Subjective Evaluation 

Speech data from the LDC Emotion Prosody speech corpus (Liberman et al. 2002) was 

used in the subjective evaluations. Two listening tests were performed to determine 

whether the linear approximations to pitch contour segments retained sufficient 

information about the emotion being expressed by speech. Both tests were taken by the 

same eleven untrained listeners. Synthetic speech used in both listening tests was 

produced from spectrograms estimated from speech samples taken from the LDC 

database, and either the actual pitch contours estimated from these samples or linear 

approximations of the estimated contours. 

6.2.3.1 Accuracy of linear approximation 

The first test compared speech re-synthesised using the linear approximations with speech 

re-synthesised using pitch contours estimated from the original samples. The eleven 

untrained listeners were given two utterances, which they could listen to as many times as 

they needed to, and asked to give a non-fractional score between 1 and 5 depending on 

how close the two utterances were to each other. The scores were described as follows. 

• 5 – Utterances are indistinguishable 

• 4 – Utterances sound very similar 

• 3 – Utterances sound moderately similar 

• 2 – Utterances have very little similarity 

• 1 – Utterances are completely dissimilar 
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The listeners were also asked to consider only how close the two utterances were to 

each other and to not take into account any other factors such as intelligibility, quality, 

clarity of emotional expression, etc. Each listener rated 30 comparisons, of which 15 were 

control, where both utterances were identical (both were speech re-synthesised using the 

estimated pitch contour). For the other 15 comparisons one utterance was speech re-

synthesised using linear approximations to pitch contours and the other utterance was 

speech re-synthesised using estimated pitch contours. Re-synthesised speech using 

estimated pitch contours was used instead of actual speech so as to negate the effect of 

some quality loss due to the re-synthesis method, which is independent of approximations 

to the pitch contour. The utterances for the 15 control and 15 comparisons were chosen to 

produce 3 samples of the five emotions in each set but were otherwise selected randomly 

from the database. The scores given by each listener were normalised using the mean 

control score of that listener as given below. 

 
పܵ ൌ ܵ ൈ 5

ܥ
 (6.3)

where పܵ  is the adjusted score for the ith listener, ܵ is the actual score and ܥ is the 

mean control score. 

Table 6.3: Subjective comparison scores (Range 1-5, with 5 indicating two versions were indistinguishable) 

Emotion Mean Score 

Neutral 4.67 

Anger 4.32 

Sadness 4.84 

Happiness 4.30 

Boredom 4.87 

Overall 4.60 

The mean comparison scores for each of the five emotions and the overall mean 

comparison score are listed in Table 6.3. The high scores across all five emotions 
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indicates that the use of linear approximations is more or less indistinguishable from the 

use of the estimated pitch contours. 

6.2.3.2 Emotion classification – Human 

In the second test, listeners were given a sample of speech, which they could listen to as 

many times as necessary, and asked to classify it as one of the five emotions (Neutral, 

Anger, Sadness, Happiness and Boredom). Each listener classified 45 utterances, 

comprising three versions each of three samples drawn from each of the five emotions. 

The first version was the actual speech sample from the database, the second version was 

speech re-synthesised using the estimated pitch contour and the third version was speech 

re-synthesised using linear approximations to the pitch contours. The 45 utterances were 

presented in random order to the listeners. The confusion matrices for the three versions 

are given in Table 6.4, Table 6.5 and Table 6.6. 

Table 6.4: Confusion matrix for original speech 

 Neutral Anger Sad Happy Bored 

Neutral 69.7 % 3 % 9.1 % 0 % 18.2 % 

Anger 3 % 93.9 % 0 % 3 % 0 % 

Sad 12.1 % 3 % 57.6 % 0 % 27.3 % 

Happy 39.4 % 3 % 9.1 % 45.5 % 3 % 

Bored 33.3 % 0 % 15.2 % 0 % 51.5 % 

Overall Accuracy = 63.6 % 

Table 6.5: Confusion matrix for re-synthesised speech using actual estimated pitch contour 

 Neutral Anger Sad Happy Bored 

Neutral 78.8 % 3% 9.1 % 0 % 9.1 % 

Anger 3 % 78.8 % 0 % 18.2 % 0 % 

Sad 18.2 % 6.1 % 51.5 % 0 % 24.2 % 

Happy 39.4 % 0 % 12.1 % 39.4 % 9.1 % 

Bored 18.2 % 0 % 24.2 % 6.1 % 51.5 % 

Overall Accuracy = 60.0 % 
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Table 6.6: Confusion matrix for re-synthesised speech using linear approximations of pitch contours 

 Neutral Anger Sad Happy Bored 

Neutral 60.6 % 3 % 18.2 % 3 % 15.2 % 

Anger 9.1 % 72.7 % 0 % 18.2 % 0 % 

Sad 24.2 % 6.1 % 39.4 % 0 % 30.3 % 

Happy 39.4 % 9.1 % 12.1 % 30.3 % 9.1 % 

Bored 21.2 % 0 % 15.2 % 0 % 63.6 % 

Overall Accuracy = 53.3 % 

From these confusion matrices, it can be seen that the class confusion patterns across 

the five emotions are more or less consistent for all three versions. However, anger is not 

identified as well in both re-synthesised versions as it is in the actual speech sample, even 

though it is still the most accurately recognised emotion in all three cases. The most likely 

reason for this drop in accuracy is that voice quality factors are not preserved very well by 

the re-synthesis method adopted in this investigation. There is a drop in accuracy for 

sadness as well, but it is not as significant as the drop for anger. Happiness is not very 

well recognised even in the first case, making it hard to infer anything from the results. 

The recognition rates for boredom and neutral are more or less consistent for all three 

cases. The recognition and confusion rates in the second and third cases are similar, 

indicating that the linear approximations to the pitch contours are able to capture a 

significant amount of the information that the pitch contours contain about the emotion 

being expressed. 

To summarise, (i) the loss of voice quality as a result of the synthesis method led to a 

drop in recognition rates; and (ii) similar recognition rates in the second and third case 

indicate that the linear approximations are able to preserve emotion-specific information 

in pitch contours to a large extent. 
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6.2.4 Automatic Classification System 

6.2.4.1 Front-End 

An automatic emotion classification system based on the linear approximations to the 

pitch contour was constructed to help determine whether they were able to capture 

emotion-specific information. As shown in Figure 6.6, linear approximations to segments 

of the pitch contour of each utterance were determined. Each linear segment was 

represented by a three-dimensional vector comprising the slope of the linear fit (s), the 

initial offset (b) and the length of the segment (x) (refer Figure 6.5). Thus the entire 

utterance was represented by a sequence of N 3-dimensional vectors, and served as the 

front-end for the classification system. 
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Figure 6.6: An overview of the system (s – slope, b – initial offset, x – segment length) 
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6.2.4.2 Back-End 

Since the front-end produces a sequence of vectors for every utterance, the system 

requires a back-end that can model such sequences, and therefore a hidden Markov model 

(HMM) based back-end was chosen. An overview of hidden Markov models was 

provided in section 2.3.2.2. The number of states in the HMMs is determined by how 

much of the temporal variation in the contours between segments must be modelled and 

by how many segments were present in the utterances. A 3-state HMM has sufficiently 

many states to model the variations in the initial, central and terminal sections of the 

contour for the utterances employed herein without over-fitting and losing the ability to 

generalise. Preliminary experiments supported this choice. Each state was represented by 

a 4-mixture Gaussian mixture model. The speaker normalisation method outlined in 

section 4.1.2 was applied to the features prior to modelling and classification. 

6.2.4.3 Classification Accuracy 

The automatic classification system was implemented only in a speaker-independent 

configuration. Training and test datasets were chosen in the same manner as in the 

speaker-independent configuration outlined in section 3.5. i.e., all experiments were 

repeated 7 times in a ‘leave-one-out’ manner, using data from each of the 7 speakers as 

the test set in turn, and the data from the other 6 speakers as the training set. The 

accuracies reported are the means of the seven trials. 

Table 6.7: Confusion matrix for the HMM based automatic emotion classification system 

 Neutral Anger Sad Happy Bored 

Neutral 59.6 % 0 % 19.2 % 6.4 % 14.9 % 

Anger 0 % 78.9 % 2.8 % 16.9 % 1.4 % 

Sad 13.1 % 1.6 % 49.2 % 14.8 % 21.3 % 

Happy 1.4 % 32.9 % 16.4 % 43.8 % 5.5 % 

Bored 6.5 % 0 % 28.6 % 10.4 % 54.6 % 

Overall Accuracy = 57.1 % 
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Comparing the accuracies reported in Table 6.4 with those reported in Table 6.7, it 

can be seen that the recognition rates for anger, sadness and boredom are similar, while 

the automatic classifier is not as good as humans in recognising neutral speech but is 

better than humans at recognising happiness. When comparing confusion rates, it can be 

seen that automatic classification and human classification are very different from each 

other, suggesting that the information contained in the pitch contours are used in different 

ways. While this is interesting, it suggests that direct comparisons of the two sets of 

accuracies must be done with a lot of care. 

As previously mentioned, the value of modelling the pitch contour rather than just the 

statistical distribution of pitch values (without taking into consideration any temporal 

dependence) can be estimated by comparing the performance of a GMM based 

classification system that uses pitch values as its features, with the performance of the 

system described above. In fact, the performance of such a GMM based system is 

reported in section 3.2.4 and repeated here (Table 6.8) for convenience. 

Table 6.8: Confusion matrix for the GMM based automatic emotion classification system (No temporal 
pattern) 

 Neutral Anger Sad Happy Bored 

Neutral 47.2 % 0 % 24.5 % 3.8 % 24.5% 

Anger 0 % 75.7 % 1.4 % 23.0 % 0 % 

Sad 31.1 % 1.4 % 50.0 % 12.2 % 5.4 % 

Happy 0 % 29.4 % 18.8 % 47.1 % 4.7 % 

Bored 47.8 % 2.2 % 21.7 % 8.7 % 19.6 % 

Overall Accuracy = 46.6 % 

In the GMM-based system, the mixture models capture all the statistical information 

present in these values but not the temporal information that may be contained in the 

shape of the pitch contours. On the other hand, the HMM-based system that models the 

feature sequences based on linear approximations to the pitch contour captures this 
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temporal information along with the pitch values. Thus, the contribution of temporal 

information towards recognising emotions can be determined by comparing the 

recognition rates of these two systems. 

Comparison of Table 6.7 with Table 6.8 shows that the performance of the HMM-

based system was much better than that of the GMM-based system: in terms of overall 

accuracy, 56.4% as opposed to 46.6 %. This lends support to the claims in (Burkhardt et 

al. 2000) and (Mozziconacci et al. 1999) that temporal information contained in the shape 

of the pitch contour is useful in conveying and perceiving emotions and that this 

information is preserved by the linear approximations to the pitch contours to a large 

extent. A comparison with a GMM-based system that uses delta-pitch along with pitch as 

its features (overall accuracy of 53%) also indicated that the addition of temporal 

information increases the recognition rate. The overall classification accuracies for both 

human and automatic classification reported in this section are listed in Table 6.9.  

Table 6.9: Summary of overall accuracies 

Classification Test Accuracy 

Human – Actual Speech 63.6 % 

Human – Re-synthesised with estimated F0 60.0 % 

Human – Re-synthesised with approximate F0 53.3 % 

Automatic – using temporal information 57.1 % 

Automatic – without any temporal information 46.6 % 

6.3 Temporal Parameter Contours 

While pitch contours have been analysed in a large number of contexts, other parameters 

of the speech production model (source-filter model) also vary with time and contours of 

these parameters can also be considered, i.e., we can generalise the temporal modelling 

approach of section 6.2 to any frame-based parameter. For instance, another commonly 
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considered set of contours are the formant contours. Given that the source-filter model 

describes speech as the response of an all pole filter modelling the vocal tract to the 

glottal flow excitation, all aspects of the model can be compactly represented by a small 

number of model specific parameters. In the case of the vocal tract, the formant 

frequencies which are the dominant frequencies of the system can be used to parameterise 

it. Also, given that the vocal excitation is a series of glottal pulses, the shape of the glottal 

flow derivative (considering the glottal flow and lip radiation together) can be 

parameterised by ܨ and ܣ as outlined in section 6.1.1, while the period of each pulse is 

parameterised by pitch. Thus voiced speech can be described by a small set of parameters 

(Figure 6.7), each of which evolves with time. 

Also, if these model parameter contours in each voiced segment of speech can be 

further parameterised by linear approximations, as previously outlined for pitch contours 

(section 6.2.1), an utterance can be compactly represented by a sequence of vectors, ॽ: 

 

ॽ ൌ ൦

ठ
ठ
ڭ

ठࡺ

൪ (6.4)

where, ܰ is the number of voiced segments in the utterance and ठ is a vector 

corresponding to the ݅௧ voiced segment. 

 ठ ൌ ݏൣ ܾ
ݏ ܾ

… ൧ (6.5)ݔ

where, ݔ is the length of the ݅௧ voiced segment; ݏ and ܾ 
 are the linear coefficients 

(slope and bias) that describe the contour of parameter ݆ in the ݅௧ voiced segment; and ݆ 

is one or more of the 3-part source filter model parameters (Figure 6.7), i.e. 

 ݆ א ൛ܨଵ, ,ଶܨ ,ଷܨ ,ଵܣ ,ଶܣ ,ଷܣ ,ܨ ,ܣ ൟ (6.6)݄ܿݐ݅

Note that the lengths of the contours are identical for all model parameters within 

each voiced segment. Hence only one element, ݔ, in each vector is required to represent 
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contour length. This representation also lends itself for use as a front-end to a 

classification system. 

 
Figure 6.7: Parameter Contours – elements of the 3-part source-filter model based speech characterisation 
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6.3.1 Evaluating the use of contours as features 

A comparison of the performances of AER systems that make use of parameter contours 

to those that model the parameter distributions without taking into account temporal 

patterns can be expected to provide some insight into the significance of the temporal 

patterns, both in a broad sense and on a feature-by-feature basis. Section 6.2.4  described 

such a comparison for pitch contours. Similar comparisons were performed here for 

glottal and filter (vocal tract) parameters and the results are reported in Table 6.10, Table 

6.11, Table 6.12 and Table 6.13. ܨ and ܣ, describing the glottal formant, were used as 

glottal parameters and the frequencies and magnitudes of the first three formants, 

ሾܨଵ, ,ଶܨ ,ଷܨ ,ଵܣ ,ଶܣ -ଷሿ were used as vocal tract parameters. As in the previous section, a 3ܣ

state HMM based system (with a 4 mixture GMM in each state) using parameterised 

contours as features that made use of the temporal patterns was compared to a GMM 

based system (section 3.5) that did not make use of temporal information. 

Table 6.10: Confusion matrix for HMM based AER system using contours of glottal parameters 

 Neutral Anger Sad Happy Bored 

Neutral 53.2 % 0 % 14.9 % 6.4 % 25.5 % 

Anger 1.4 % 80.3 % 0 % 18.3 % 0 % 

Sad 16.4 % 3.3 % 31.2 % 6.6 % 42.6 % 

Happy 9.6 % 19.2 % 6.9 % 50.7 % 13.7 % 

Bored 13.0 % 1.3 % 31.2 % 9.1 % 45.5 % 

Overall Accuracy = 52.6 % 

Table 6.11: Confusion matrix for GMM based AER system using glottal parameters (No temporal pattern) 

 Neutral Anger Sad Happy Bored 

Neutral 58.5 % 0 % 24.5 % 1.9 % 15.1% 

Anger 0 % 81.1 % 0 % 17.6 % 1.4 % 

Sad 47.3 % 1.4 % 20.3 % 9.5 % 21.6 % 

Happy 1.2 % 21.2 % 5.9 % 56.5 % 15.3 % 

Bored 48.9 % 0 % 13.0 % 14.1 % 23.9 % 

Overall Accuracy = 46.6 % 
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Table 6.12: Confusion matrix for HMM based AER system using contours of formant parameters 

 Neutral Anger Sad Happy Bored 

Neutral 55.3 % 2.1 % 14.9 % 17.0 % 10.6 % 

Anger 4.2 % 46.5 % 0 % 26.8 % 9.9 % 

Sad 6.6 % 8.2 % 32.8 % 24.6 % 27.9 % 

Happy 1.4 % 21.9 % 15.1 % 37.0 % 24.7 % 

Bored 2.6 % 9.1 % 20.8 % 27.3 % 40.3 % 

Overall Accuracy = 41.6 % 

Table 6.13: Confusion matrix for GMM based AER system using formant parameters (No temporal pattern) 

 Neutral Anger Sad Happy Bored 

Neutral 49.1 % 0 % 9.4 % 15.1 % 26.4% 

Anger 2.7 % 73.0 % 2.7 % 20.3 % 1.4 % 

Sad 16.2 % 6.8 % 35.1 % 14.9 % 27.0 % 

Happy 12.9 % 15.3 % 15.3 % 44.7 % 11.8 % 

Bored 15.2 % 9.8 % 25.0 % 8.7 % 41.3 % 

Overall Accuracy = 48.2 % 

A summary of the overall classification accuracies of the GMM and HMM based 

systems using pitch, glottal and vocal tract parameters as features is given in Table 6.14.  

Table 6.14: Summary of overall accuracies 

Parameters 
Overall Accuracy 

Modelling Contours Modelling Statistics 

Pitch 57.1 % 46.6 % 

Glottal 52.6 % 46.6 % 

Vocal Tract 41.6 % 48.2 % 

A comparison of the performances of the three classes of parameters indicates that 

parameter contours related to the vocal source (pitch and glottal parameter contours), are 

more suitable as features for an AER system than formant contours. Two possible reasons 

for this are 
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• The formant contours contain a significant amount of phonetic and speaker 

specific information which degrade emotion classification performance. The 

comparison of speaker dependent and speaker independent performance of 

formant features (Table 4.1) supports this conjecture. 

• The pitch and glottal contours do not vary significantly within each voiced 

segment and can be approximated well by straight lines, but formant contours 

exhibit a larger degree of variation. This is suggested by informal observations of 

the contours and their corresponding linear approximations. 

6.3.2 Alternative Contour Description 

It was observed that in some cases the linear curve fitting was inaccurate due to either 

• outliers in the parameter values estimated caused by errors in the estimation stage, 

or 

• the contour shape being more complex and a straight line not being an adequate 

approximation. 

In the first case, both the bias and the slope values can be very different from ideal 

values, even if the linear fit is the best possible one in a least squares sense. One way of 

overcoming this problem is to use the value of the midpoint of the linear fit to describe it 

rather than the slope and bias (Figure 6.8). Since outliers typically affect only one small 

section of the contour, the sensitivity of the midpoint will be lower than that of the bias 

and/or slope (Figure 6.9). The cost of using the midpoint rather than the slope and bias is 

a reduction in the amount of information available to the back end. 
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Figure 6.8: Midpoint, ܯ may be used in place of Offset, ܾ, and slope, ݏ. 
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Figure 6.9: Midpoint error vs. Bias error in case of outlier. 

In order to determine if any of the model parameter contours would benefit from the 

midpoint description rather than the slope and bias description, AER systems that used 
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the midpoints as features were implemented and their performances compared to those 

obtained when the slope and bias description was used (see section 6.3.1). The 

classification accuracies obtained are reported in Table 6.15, Table 6.16 and Table 6.17. 

A summary of the overall accuracies, comparing the midpoint description to the slope-

bias description is given in Table 6.18. 

Table 6.15: Confusion matrix for the AER system using pitch contours (MIDPOINT) 

 Neutral Anger Sad Happy Bored 

Neutral 63.8 % 0 % 14.9 % 4.3 % 17.0 % 

Anger 0 % 77.5 % 2.8 % 18.3 % 1.4 % 

Sad 13.1 % 0 % 39.3 % 26.2 % 21.3 % 

Happy 4.1 % 27.4 % 16.4 % 49.3 % 2.7 % 

Bored 10.4 % 1.3 % 28.6 % 7.8 % 52.0 % 

Overall Accuracy = 56.2 % 

Table 6.16: Confusion matrix for the AER system using glottal parameters (MIDPOINT) 

 Neutral Anger Sad Happy Bored 

Neutral 72.3 % 0 % 14.9 % 0 % 12.8 % 

Anger 0 % 83.1 % 0 % 15.5 % 1.4 % 

Sad 6.6 % 1.6 % 36.1 % 9.8 % 45.9 % 

Happy 1.4 % 23.3 % 2.7 % 54.8 % 17.8 % 

Bored 16.9 % 0 % 33.8 % 15.6 % 33.8 % 

Overall Accuracy = 55.0 % 

Table 6.17: Confusion matrix for the AER system using vocal tract parameters (MIDPOINT) 

 Neutral Anger Sad Happy Bored 

Neutral 42.6 % 4.3 % 25.5 % 14.9 % 12.8 % 

Anger 0 % 66.2 % 8.5 % 16.9 % 8.5 % 

Sad 6.6 % 8.2 % 37.7 % 11.5 % 36.1 % 

Happy 8.2 % 19.2 % 19.2 % 37.0 % 16.4 % 

Bored 3.9 % 7.8 % 29.9 % 18.2 % 40.3 % 

Overall Accuracy = 45.0 % 



TEMPORAL PARAMETER CONTOURS 
 

138 
 

Table 6.18: Summary of overall accuracies 

Parameters 
Overall Accuracy 

Slope-Bias Description 

(from Table 6.14) 
Midpoint Description 

Pitch 57.1 % 56.2 % 

Glottal 52.6 % 55.0 % 

Vocal Tract 41.6 % 45.0 % 

Comparing the accuracies of the systems using the midpoint descriptions with that of 

the systems using the slope-bias description, it can be seen that the midpoint description 

improves the systems based on glottal parameter and vocal tract parameter contours. 

However, the slope-bias approach appears to be better suited for modelling pitch 

contours. 

6.3.3 Combining Contours in an AER System 

The results from the sections 6.2.4.3, 6.3.1 and 6.3.2 indicate that the contour modelling 

approach is better than the static distribution modelling approach for pitch and glottal 

formant parameters. Also, the pitch, glottal and vocal tract parameters describe 

independent (based on the source-filter model) and distinct components in the speech 

production mechanism and are hence independent of each other. Consequently, their 

contours can be expected to be complementary (unless the back end models identical 

information from the different parameter contours in each voiced segment). This suggests 

that a system, such as the one described in section 6.2.4 to model pitch contours (and used 

to model the other parameter contours in section 6.3.1), can be used to model all the 

contours by simply concatenating the contour descriptors (slope-bias or midpoint) to form 

the feature vector. It should be noted that while a static distribution modelling approach 

was better that the contour modelling approach for the vocal tract parameters, they would 

still contribute towards a combined system if they are complementary to the other 
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parameters. Such a system was constructed and its performance evaluated in a speaker 

independent manner (using leave one speaker out cross validation) and the classification 

accuracies obtained are reported in Table 6.19. This system uses the slope-bias 

description for pitch contours and the midpoint description for glottal and vocal parameter 

contours. The choice of midpoint vs. slope-bias description was based on the results 

reported in Table 6.18 and a summary of the overall accuracies of all contour modelling 

(HMM based) systems is given in Table 6.20. 

Table 6.19: Confusion matrix for the HMM based AER system using all model parameters 

 Neutral Anger Sad Happy Bored 

Neutral 55.3 % 0 % 23.4 % 4.3 % 17.0 % 

Anger 0 % 81.7 % 0 % 16.9 % 1.4 % 

Sad 3.3 % 0 % 57.4 % 14.8 % 24.6 % 

Happy 0 % 23.3 % 5.5 % 60.3 % 11.0 % 

Bored 3.9 % 0 % 32.5 % 7.8 % 55.8 % 

Overall Accuracy = 62.6 % 

Table 6.20: Summary of overall accuracies 

Classification Test Accuracy 

Human – Actual Speech 63.6 % 

Automatic – using pitch contours (slope-bias) 57.1 % 

Automatic – using glottal parameter contours (midpoint) 55.0 % 

Automatic – using vocal tract parameter contours (midpoint) 45.0 % 

Automatic – using all model parameters 62.6 % 

The classification accuracies obtained by the system making use of all the model 

parameter contours is higher than accuracies obtained by any of the individual systems, as 

expected. It should also be noted that the emotion specific classification accuracies 

(diagonal elements of the confusion matrix) are all higher than 55% indicating that the 

system does not suffer from any inherent bias against one or more of the emotions. 
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Moreover the performance of the combined system compares very well against human 

classification performance. 

The best performing AER that did not make use of any temporal information (static 

modelling) had an overall classification accuracy of 59.0 %. This system modelled the 

distributions of all three component (pitch, glottal and vocal tract) parameters. The best 

performing AER system (also static modelling and did not make use of any temporal 

information) that made use of features discussed in Chapter 3 used pitch, energy and 

MFCCs (PE + MFCC) and had an overall classification accuracy of 58.9 % when the 

number of Gaussian mixtures in the GMM based back-end was optimised empirically. 

6.4 Summary 

This chapter has taken a second look at the traditional source-filter model widely used in 

speech processing tasks and in particular the assumption about the vocal excitation that is 

inherent in common feature extraction procedures. Namely, it has examined the 

assumption that the glottal spectrum can be modelled as the response of a system with a 

fixed transfer function even though literature indicates that the shape of the vocal 

excitation and consequently the shape of the glottal spectrum varies and determines voice 

quality. The first section of this chapter described the glottal flow spectrum and proposed 

the use of glottal formant frequency and magnitude as a 2-dimensional feature in emotion 

recognition systems. 

While the source-filter model parameters can be viewed as characterising the speech 

spectrum at any instant in time, the longer-term (more than the few frames involved in 

delta features) temporal evolution of these parameters are typically not taken into account 

in automatic emotion recognition literature. The modelling of the temporal patterns of 

pitch contours in particular is the focus of the next section. Here the use of a simple 
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technique based on linear approximations of pitch contours was proposed, and sequences 

of these linear coefficients were employed to model the pitch contour for classification 

purposes. Listening tests validated the use of these linear approximations. A comparison 

of the classification accuracy of a system that models pitch contours to that of another 

system that models only the statistical distribution established that the shape of the 

contours does contain emotion specific information. 

Finally, the idea of modelling contours was extended from pitch to the other model 

parameters in the third section of this chapter. Since these parameters tend to vary 

significantly more than pitch and/or contain more errors in their estimation, a less 

descriptive but more robust description of the linear approximations was introduced. 

Comparisons of systems that model contours with those that model statistical 

distributions were included to establish the significance of taking into consideration the 

contour shapes. The classification accuracy of a system that combined all model 

parameters (pitch, glottal parameters and vocal tract parameters) was found to be 

comparable to human classification accuracy. 
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Chapter 7 
 
Conclusion and Future Work 

7.1 Conclusions 

This thesis reports research conducted into automatic emotion recognition based on 

speech with the aim of: (i) developing an understanding of the relationship between 

speech parameters and emotions and in turn investigating novel features; (ii) 

understanding and reducing variability in these parameters not related to emotions; (iii) 

exploring different approaches to modelling emotion specific variations in the parameters; 

and (iv) investigating the modelling of temporal contours of parameters as opposed to 

their static distributions. 

7.1.1 Investigation of Novel Features 

Chapter 3 outlined several novel features proposed for use in AER systems: GFCCs, 

group delay, FM features, weighted frequency, wavelet scale feature, LPRCCs and fractal 

dimension. All of them, apart from fractal dimension, were interpreted in terms of the 

traditional source-filter model of speech production; which led to comparisons, in terms 

of classification accuracies, of features describing similar components of the speech 

production model in similar levels of detail. Such comparisons indicated that 

• GFCCs and FM features, while usable as features, were not sufficiently superior 

to the traditional and established MFCCs to warrant a replacement. 
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• Group delay is characteristic of the formant bandwidth but is not directly 

representative of other information contained in the magnitude spectrum. 

• The EMD based weighted frequency outperformed the other broad measures of 

the spectral power distribution, including the novel wavelet scale feature. 

7.1.2 A Novel Speaker Normalisation Technique 

Section 4.1.2 presented a novel technique to reduce the variance in feature that arises due 

to differences between speakers that are characteristic of them in order to improve the 

performance of a speaker independent emotion classification system. The proposed 

method involves the use of cumulative distribution mapping to transform features from 

each speaker, such that they are all mapped to the same distribution. Since all the features 

from all emotions from each speaker are mapped onto the same distribution, the relative 

distributions within the feature space for each speaker are not changed and consequently 

the emotion specific variability is maintained. However the different feature spaces for 

each speaker are shifted onto the same region of a new feature space to reduce speaker 

specific variability. 

7.1.3 Investigation of Variability 

Section 4.2 and section 4.3 report the investigation of speaker dependent and phoneme 

dependent variability in the context of emotion recognition. The performances of speaker 

independent AER systems with different front-ends using the proposed normalisation 

were compared with the performances of AER systems using the same front-ends but 

without normalisation since the differences in performance can be attributed to speaker 

specific variability. The analysis of phonetic variability reported was carried out by 

performing phone recognition prior to emotion modelling and then comparing the 
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recognition rates obtained by phoneme specific emotion models with those obtained by 

phoneme independent emotion models. 

These comparisons revealed that MFCCs are very discriminative but are also very 

characteristic of the speaker. They also indicated that source specific features such as 

pitch and energy lend themselves more to normalisation than detailed spectral features 

such as MFCCs and group delay, suggesting that MFCCs may not be the front-end of 

choice in a speaker independent system. The phonetic analyses indicated that emotions 

are better conveyed by some phonemes than others. However, speaker specific variability 

has a larger effect on emotion models. 

7.1.4 Investigating Classification Approaches 

Investigations into the choice of classifier, the necessity of a pre-classification stage and 

the question of turn vs. frame based classification are reported in Chapter 5. In section 

5.1, the abilities of three static classifiers, namely Gaussian mixture models, probabilistic 

neural networks and support vector machines, to model emotions were compared in terms 

of classification accuracy. None of them made explicit use of temporal emotions and all 

of them modelled patterns based on the distribution of training data (hence the term static 

classifiers as opposed to dynamic classifiers). The overall classification accuracies of 

AER systems based on all three were found to be similar. However, the recognition rates 

of the individual emotions indicated a bias towards ‘boredom’ in the PNN and SVM 

based systems, suggesting that a Gaussian mixture model based classifier was the 

preferable. 

The investigation into the question of turn based vs. frame based classification 

approaches, reported in section 5.3, also indicated that the dimensionality of the features 

played a role. The turn based approach consisted of estimating statistics from the set of 
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features extracted from all frames in a turn (utterance) and modelling these statistics, 

while the frame based approach consisted of modelling the distribution of the features 

directly and hence implicitly modelling the statistical parameters. A comparison of the 

recognition rates obtained when using both approached suggested that the higher level of 

abstraction of the turn based approach suited high dimensional features while the frame 

based approach was preferable for low dimensional features. 

7.1.5 Investigating 3-Component Source-Filter Model Parameters 

The use of parameters derived from a source-filter speech production model to represent 

speech and subsequently as features in an AER system is explored in Chapter 6. In the 

first section, the use of an explicit glottal model in the traditional source-filter model 

framework was investigated and the glottal parameters were used as features in an AER 

system. The recognition rates achieved indicated that these glottal parameters were 

indicative of emotions. 

The remainder of the chapter studied the temporal evolution of these model 

parameters and their use as features. Initially pitch contours were analysed and a linear 

approximation based contour parameterisation approach, validated by subjective 

evaluations, adopted for compact representation. The approximate parametric 

representation was used as features and the classification accuracies obtained were 

compared with those obtained when only static modelling was performed (i.e., contour 

shapes were not considered). The comparison indicated that modelling of the temporal 

variation in the form of contour shape, increased classification accuracy significantly. 

Finally, the idea of contour shape modelling was extended to other model parameters 

and similar comparison of systems that model contour shapes to those that model only 
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static distributions indicated significant improvements in classification accuracies could 

be gained by taking temporal variations into account. 

The overall accuracies (speaker independent) of the best performing systems that 

make use of static modelling approach and that models contour shapes are reported in 

Table 7.1, along with the classification accuracy achieved by humans. 

Table 7.1: Summary of overall accuracies 

Classification Test Accuracy 

Human – Actual Speech 63.6 % 

Automatic – Static modelling 59.0 % 

Automatic – Modelling all parameter contours 62.6 % 

7.2 Future Work 

The research outlined in this thesis involved an investigation of the use of acoustic and 

prosodic parameters from speech for automatic recognition of emotions. However, these 

are not the only cues available from speech; and based on what is known about how 

humans recognise emotions a number of other cues can also be exploited. An exploration 

of their use in an automatic emotion recognition framework offers a number of possible 

avenues for future work. It is also important to acknowledge some of the limitations of 

the studies reported in this thesis. Future work should also involve addressing some if not 

all of these limitations. Some of the avenues that address the limitations and those that 

would be natural extensions of the work described in this thesis are listed below. 

• All the experiments reported were performed on a single database which was 

limited in size, contained speech in only one language (English) and consisted of 

acted emotional speech. This in turn limits the work reported in this thesis to an 

exploratory investigation that unearthed interesting hypotheses that need to be 
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validated on other larger databases under different contexts (different languages, 

elicited emotions as opposed to acted ones, etc.) 

• When humans recognise emotions from speech, its taken for granted that they also 

recognise what is being said. It is also known that the linguistic content plays a 

role in human emotion recognition. In order for automatic emotion recognition 

systems to approach human capabilities, it is essential to investigate the 

relationship between the linguistic content  of speech and emotions. 

• The performance of various features on a common back end is included in this 

thesis and is useful for comparison purposes. However, the use of classifiers 

individually optimised for different features, followed by a fusion of their 

predictions was not investigated and is an obvious avenue for future research. This 

is in fact an area of considerable ongoing research around the world. 

• The work reported in this thesis indicates that modelling temporal variations of 

speech parameters leads to an inprovement in system performance. This suggests 

that an investigation to determine the optimum representation, if any, and suitable 

modelling approaches of these temporal contours is warranted. 

• The human brain simultaneously recognises linguistic and paralinguistic (speaker 

identity, gender, age, emotion, cognitive load, etc.) information and it is most 

likely these tasks are integrated, unlike automatic systems which deal with only 

one of these issues each. Moreover in any automatic classification system, the 

other categories act as  sources of variability and noise, degrading performance. 

An investigation into the combined modelling of linguistic and paralinguistic 

information could lead to improvement in all individual recognition tasks. 
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Appendix A    

Classification Accuracies for the Features 
Reported in Chapter 3 

A.1 Typical Features used in AER Systems 

A.1.1 Mel Frequency Cepstral Coefficients (MFCCs) 

Table A-1: Confusion matrix for Speaker INDEPENDENT AER system using MFCCs 

 Neutral Anger Sad Happy Bored 

Neutral 45.3 % 0 % 24.5 % 0 % 30.2 % 

Anger 0 % 74.7 % 1.4 % 22.9 % 0 % 

Sad 12.2 % 0 % 37.8 % 10.8 % 39.2 % 

Happy 2.4 % 16.5 % 11.8 % 56.5 % 12.9 % 

Bored 20.7 % 0 % 29.4 % 15.2 % 34.8 % 

Overall Accuracy = 49.7 % 

Table A-2: Confusion matrix for Speaker DEPENDENT AER system using MFCCs 

 Neutral Anger Sad Happy Bored 

Neutral 100.0 % 0 % 0 % 0 % 0 % 

Anger 3.6 % 85.7 % 0 % 10.7 % 0 % 

Sad 3.6 % 3.6 % 64.3 % 10.7 % 17.8 % 

Happy 3.1 % 12.5 % 6.3 % 65.6 % 12.5 % 

Bored 8.6 % 0 % 17.1 % 2.9 % 71.4 % 

Overall Accuracy = 74.8 % 
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A.1.2 Formant Frequencies 

Table A-3: Confusion matrix for Speaker INDEPENDENT AER system using formant information 

 Neutral Anger Sad Happy Bored 

Neutral 43.4 % 0 % 17.0 % 1.9 % 37.7 % 

Anger 1.4 % 82.4 % 0 % 13.5 % 2.7 % 

Sad 27.0 % 5.4 % 37.8 % 6.8 % 23.0 % 

Happy 5.9 % 27.1 % 9.4 % 32.9 % 24.7 % 

Bored 16.3 % 7.6 % 32.6 % 16.3 % 27.2 % 

Overall Accuracy = 43.7 % 

Table A-4: Confusion matrix for Speaker DEPENDENT AER system using formant information 

 Neutral Anger Sad Happy Bored 

Neutral 81.3 % 0 % 0 % 0 % 18.8 % 

Anger 3.6 % 64.3 % 0 % 28.6 % 3.6 % 

Sad 7.1 % 0 % 64.3 % 10.7 % 17.8 % 

Happy 3.1 % 12.5 % 18.8 % 53.1 % 12.5 % 

Bored 22.9 % 0 % 17.1 % 17.1 % 42.8 % 

Overall Accuracy = 58.3 % 

A.1.3 Reflection Coefficients 

Table A-5: Confusion matrix for Speaker INDEPENDENT AER system using reflection coefficients 

 Neutral Anger Sad Happy Bored 

Neutral 35.9 % 0 % 5.7 % 11.3 % 47.2 % 

Anger 0 % 74.3 % 5.4 % 16.2 % 4.1 % 

Sad 6.8 % 4.1 % 37.8 % 20.3 % 31.1 % 

Happy 8.2 % 14.1 % 4.7 % 52.9 % 20.0 % 

Bored 5.4 % 4.4 % 28.3 % 20.7 % 41.3 % 

Overall Accuracy = 48.9 % 

Table A-6: Confusion matrix for Speaker DEPENDENT AER system using reflection coefficients 

 Neutral Anger Sad Happy Bored 

Neutral 93.8 % 0 % 0 % 0 % 6.3 % 

Anger 0 % 85.7 % 0 % 14.3 % 0 % 

Sad 10.7 % 0 % 57.1 % 3.6 % 28.6 % 

Happy 3.1 % 6.25 % 3.1 % 81.3 % 6.3 % 

Bored 11.4 % 0 % 17.1 % 20.0 % 51.4 % 

Overall Accuracy = 71.2 % 
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A.1.4 Pitch (Fundamental Frequency) 

Table A-7: Confusion matrix for Speaker INDEPENDENT AER system using pitch 

 Neutral Anger Sad Happy Bored 

Neutral 47.2 % 0 % 24.5 % 3.8 % 24.5% 

Anger 0 % 75.7 % 1.4 % 23.0 % 0 % 

Sad 31.1 % 1.4 % 50.0 % 12.2 % 5.4 % 

Happy 0 % 29.4 % 18.8 % 47.1 % 4.7 % 

Bored 47.8 % 2.2 % 21.7 % 8.7 % 19.6 % 

Overall Accuracy = 46.6 % 

Table A-8: Confusion matrix for Speaker DEPENDENT AER system using pitch 

 Neutral Anger Sad Happy Bored 

Neutral 93.8 % 0 % 6.3 % 0 % 0 % 

Anger 3.6 % 57.1 % 0 % 39.3 % 0 % 

Sad 17.9 % 7.1 % 35.7 % 21.4 % 17.9 % 

Happy 6.3 % 25.0 % 12.5 % 50.0 % 6.3 % 

Bored 20.0 % 2.9 % 22.9 % 11.4 % 42.9 % 

Overall Accuracy = 51.8 % 

A.1.5 Intensity (Energy) 

Table A-9: Confusion matrix for Speaker INDEPENDENT AER system using energy 

 Neutral Anger Sad Happy Bored 

Neutral 26.4 % 7.6 % 32.1 % 13.2 % 20.8% 

Anger 16.2 % 60.8 % 9.5 % 10.8 % 2.7 % 

Sad 36.5 % 13.5 % 29.7 % 14.9 % 5.4 % 

Happy 22.4 % 29.4 % 20.0 % 23.5 % 4.7 % 

Bored 29.4 % 14.1 % 31.5 % 16.3 % 8.7 % 

Overall Accuracy = 28.8 % 

Table A-10: Confusion matrix for Speaker DEPENDENT AER system using energy 

 Neutral Anger Sad Happy Bored 

Neutral 62.5 % 6.3 % 6.3 % 6.3 % 18.8% 

Anger 28.6 % 17.9 % 17.9 % 28.6 % 7.1 % 

Sad 17.9 % 17.9 % 32.1 % 14.3 % 17.9 % 

Happy 18.8 % 25.0 % 15.6 % 12.5 % 28.1 % 

Bored 25.7 % 11.4 % 22.9 % 20.0 % 20.0 % 

Overall Accuracy = 25.2 % 
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A.1.6 Energy Slope (Spectral Slope) 

Table A-11: Confusion matrix for Speaker INDEPENDENT AER system using energy slope 

 Neutral Anger Sad Happy Bored 

Neutral 60.4 % 0 % 5.6 % 3.8 % 30.2% 

Anger 1.4 % 78.4 % 2.7 % 16.2 % 1.4 % 

Sad 27.1 % 5.4 % 24.3 % 23.0 % 20.3 % 

Happy 9.4 % 15.3 % 22.4 % 41.2 % 11.8 % 

Bored 39.1 % 1.1 % 27.2 % 9.8 % 22.8 % 

Overall Accuracy = 43.4 % 

Table A-12: Confusion matrix for Speaker DEPENDENT AER system using energy slope 

 Neutral Anger Sad Happy Bored 

Neutral 93.8 % 0 % 0 % 0 % 6.3% 

Anger 3.6 % 85.7 % 0 % 10.7 % 0 % 

Sad 17.9 % 0 % 42.9 % 14.3 % 25.0 % 

Happy 6.3 % 15.6 % 15.6 % 50.0 % 12.5 % 

Bored 20.0 % 2.9 % 25.7 % 8.6 % 42.9 % 

Overall Accuracy = 59.0 % 

A.1.7 Zero Crossing Rate (ZCR) 

Table A-13: Confusion matrix for Speaker INDEPENDENT AER system using ZCR 

 Neutral Anger Sad Happy Bored 

Neutral 47.2 % 0 % 24.5 % 7.5 % 20.7% 

Anger 1.4 % 81.1 % 0 % 17.6 % 0 % 

Sad 36.5 % 2.7 % 14.9 % 14.9 % 31.1 % 

Happy 3.5 % 15.3 % 8.2 % 50.6 % 22.4 % 

Bored 25.0 % 2.2 % 8.7 % 21.7 % 42.4 % 

Overall Accuracy = 47.1 % 

Table A-14: Confusion matrix for Speaker DEPENDENT AER system using ZCR 

 Neutral Anger Sad Happy Bored 

Neutral 62.5 % 0 % 18.8 % 6.3 % 12.5% 

Anger 0 % 82.1 % 7.1 % 3.6 % 7.1 % 

Sad 46.4 % 0 % 35.7 % 3.6 % 14.3 % 

Happy 9.4 % 21.9 % 15.6 % 40.6 % 12.5 % 

Bored 25.7 % 0 % 37.1 % 11.4 % 25.7 % 

Overall Accuracy = 46.8 % 
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A.1.8 Spectral Centroid 

Table A-15: Confusion matrix for Speaker INDEPENDENT AER system using spectral centroid 

 Neutral Anger Sad Happy Bored 

Neutral 60.4 % 0 % 11.3 % 1.9 % 26.4% 

Anger 1.4 % 70.3 % 1.4 % 25.7 % 1.4 % 

Sad 23.0 % 9.5 % 10.8 % 20.3 % 36.5 % 

Happy 4.7 % 25.9 % 14.1 % 42.4 % 13.0 % 

Bored 43.5 % 2.2 % 9.8 % 18.5 % 26.1 % 

Overall Accuracy = 40.2 % 

Table A-16: Confusion matrix for Speaker DEPENDENT AER system using spectral centroid 

 Neutral Anger Sad Happy Bored 

Neutral 62.5 % 0 % 6.3 % 0 % 31.3% 

Anger 0 % 67.9 % 3.6 % 17.8 % 10.7 % 

Sad 10.7 % 10.7 % 28.6 % 10.7 % 39.3 % 

Happy 6.3 % 18.8 % 15.6 % 46.9 % 12.5 % 

Bored 34.3 % 2.9 % 20.0 % 14.3 % 28.6 % 

Overall Accuracy = 44.6 % 

A.1.9 Phoneme Rate 

Table A-17: Confusion matrix for Speaker INDEPENDENT AER system using phoneme rate 

 Neutral Anger Sad Happy Bored 

Neutral 49.1 % 1.9 % 9.4 % 15.1 % 24.5% 

Anger 25.7 % 8.1 % 14.9 % 12.1 % 39.2 % 

Sad 39.2 % 12.2 % 8.1 % 12.1 % 28.4 % 

Happy 37.7 % 9.4 % 14.1 % 11.8 % 27.1 % 

Bored 38.0 % 19.6 % 4.4 % 5.4 % 32.6 % 

Overall Accuracy = 20.6 % 

Table A-18: Confusion matrix for Speaker DEPENDENT AER system using phoneme rate 

 Neutral Anger Sad Happy Bored 

Neutral 18.8 % 25.0 % 3.1 % 18.8 % 6.3% 

Anger 14.3 % 21.4 % 25.0 % 14.3 % 25.0 % 

Sad 7.1 % 21.4 % 32.1 % 25.0 % 14.3 % 

Happy 9.4 % 12.5 % 28.1 % 21.9 % 28.1 % 

Bored 8.6 % 11.4 % 40.0 % 20.0 % 20.0 % 

Overall Accuracy = 23.0 % 
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A.2 Novel Features 
A.2.1 Gammatone Filter Cepstral Coefficients (GFCCs) 

Table A-19: Confusion matrix for Speaker INDEPENDENT AER system using GFCCs 

 Neutral Anger Sad Happy Bored 

Neutral 73.6 % 0 % 11.3 % 0 % 15.1% 

Anger 0 % 79.7 % 0 % 18.9 % 1.4 % 

Sad 17.6 % 0 % 33.8 % 12.2 % 36.5 % 

Happy 1.2 % 20.0 % 16.5 % 47.1 % 15.3 % 

Bored 19.6 % 0 % 21.7 % 7.6 % 51.1 % 

Overall Accuracy = 55.6 % 

Table A-20: Confusion matrix for Speaker DEPENDENT AER system using GFCCs 

 Neutral Anger Sad Happy Bored 

Neutral 93.8 % 0 % 0 % 0 % 6.3% 

Anger 0 % 85.7 % 3.6 % 7.1 % 3.6 % 

Sad 0 % 0 % 71.4 % 7.1 % 21.4 % 

Happy 0 % 9.4 % 9.4 % 65.6 % 15.6 % 

Bored 8.6 % 0 % 20.0 % 11.4 % 60.0 % 

Overall Accuracy = 72.6 % 

A.2.2 LP Model Group Delay 

Table A-21: Confusion matrix for Speaker INDEPENDENT AER system using Group Delay 

 Neutral Anger Sad Happy Bored 

Neutral 58.5 % 0 % 7.6 % 11.3 % 22.6% 

Anger 0 % 59.5 % 0 % 40.5 % 0 % 

Sad 24.3 % 1.4 % 20.3 % 28.4 % 25.7 % 

Happy 8.2 % 15.3 % 14.1 % 50.6 % 11.7 % 

Bored 18.5 % 1.1 % 27.2 % 21.7 % 31.5 % 

Overall Accuracy = 42.9 % 

Table A-22: Confusion matrix for Speaker DEPENDENT AER system using Group Delay 

 Neutral Anger Sad Happy Bored 

Neutral 93.8 % 0 % 0 % 0 % 6.3% 

Anger 0 % 85.7 % 3.6 % 7.1 % 3.6 % 

Sad 7.1 % 0 % 57.1 % 7.1 % 25.0 % 

Happy 9.4 % 12.5 % 6.3 % 71.9 % 0 % 

Bored 11.4 % 2.9 % 20.0 % 11.4 % 54.3 % 

Overall Accuracy = 69.8 % 
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A.2.3 Frequency Modulation 

Table A-23: Confusion matrix for Speaker INDEPENDENT AER system using FM 

 Neutral Anger Sad Happy Bored 

Neutral 15.1 % 0 % 37.7 % 3.8 % 43.4 % 

Anger 4.1 % 85.1 % 1.4 % 9.5 % 0 % 

Sad 12.2 % 0 % 27.1 % 17.6 % 43.2 % 

Happy 2.4 % 25.9 % 18.8 % 45.9 % 7.1 % 

Bored 18.5 % 1.1 % 34.8 % 4.4 % 41.3 % 

Overall Accuracy = 44.4 % 

Table A-24: Confusion matrix for Speaker DEPENDENT AER system using FM 

 Neutral Anger Sad Happy Bored 

Neutral 75.0 % 0 % 6.3 % 0 % 18.8% 

Anger 7.1 % 67.9 % 0 % 25.0 % 0 % 

Sad 7.1 % 3.6 % 50.0 % 10.7 % 28.6 % 

Happy 3.1 % 15.6 % 6.3 % 75.0 % 0 % 

Bored 5.7 % 2.9 % 17.1 % 17.1 % 57.1 % 

Overall Accuracy = 64.0 % 

Table A-25: Confusion matrix for Speaker INDEPENDENT AER system using GFCC + FM 

 Neutral Anger Sad Happy Bored 

Neutral 56.6 % 0 % 22.6 % 7.6 % 13.2 % 

Anger 0 % 78.4 % 0 % 20.3 % 1.4 % 

Sad 21.6 % 0 % 33.8 % 17.6 % 27.0 % 

Happy 2.4 % 30.6 % 14.1 % 44.7 % 8.2 % 

Bored 26.1 % 0 % 34.8 % 9.8 % 29.4 % 

Overall Accuracy = 47.1 % 

Table A-26: Confusion matrix for Speaker DEPENDENT AER system using GFCC + FM 

 Neutral Anger Sad Happy Bored 

Neutral 93.8 % 0 % 0 % 0 % 6.3% 

Anger 3.6 % 78.6 % 3.6 % 14.3 % 0 % 

Sad 0 % 0 % 71.4 % 10.7 % 17.9 % 

Happy 3.1 % 9.4 % 12.5 % 75.0 % 0 % 

Bored 0 % 0 % 22.9 % 17.1 % 60.0 % 

Overall Accuracy = 73.4 % 
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A.2.4 EMD based Weighted Frequency (WF) 

Table A-27: Confusion matrix for Speaker INDEPENDENT AER system using Weighted Frequency 

 Neutral Anger Sad Happy Bored 

Neutral 58.5 % 0 % 18.9 % 3.8 % 18.9% 

Anger 0 % 77.0 % 0 % 20.3 % 2.7 % 

Sad 21.6 % 0 % 24.3 % 24.3 % 29.7 % 

Happy 5.9 % 15.3 % 14.1 % 57.7 % 7.1 % 

Bored 34.8 % 0 % 18.5 % 19.6 % 27.2 % 

Overall Accuracy = 47.6 % 

Table A-28: Confusion matrix for Speaker DEPENDENT AER system using Weighted Frequency 

 Neutral Anger Sad Happy Bored 

Neutral 68.7 % 0 % 6.3 % 0 % 25.0% 

Anger 0 % 82.1 % 3.6 % 10.7 % 3.6 % 

Sad 17.9 % 7.1 % 32.1 % 10.7 % 32.1 % 

Happy 6.3 % 15.6 % 15.6 % 56.3 % 6.25 % 

Bored 14.3 % 2.9 % 31.4 % 14.3 % 37.1 % 

Overall Accuracy = 53.2 % 

A.2.5 Wavelet Scale based Feature 

Table A-29: Confusion matrix for Speaker INDEPENDENT AER system using Wavelet Scale feature 

 Neutral Anger Sad Happy Bored 

Neutral 39.6 % 0 % 50.9 % 0 % 9.4% 

Anger 0 % 81.1 % 1.4 % 17.6 % 0 % 

Sad 55.4 % 0 % 10.8 % 21.6 % 12.2 % 

Happy 2.4 % 17.7 % 5.9 % 65.9 % 8.2 % 

Bored 37.0 % 0 % 31.5 % 17.4 % 14.1 % 

Overall Accuracy = 41.8 % 

Table A-30: Confusion matrix for Speaker DEPENDENT AER system using Wavelet Scale feature 

 Neutral Anger Sad Happy Bored 

Neutral 87.5 % 0 % 6.3 % 0 % 6.3% 

Anger 3.6 % 71.4 % 0 % 25.0 % 0 % 

Sad 28.6 % 0 % 53.6 % 10.7 % 7.1 % 

Happy 6.3 % 21.9 % 6.3 % 53.1 % 12.5 % 

Bored 28.6 % 0 % 34.3 % 8.6 % 28.6 % 

Overall Accuracy = 54.7 % 



 
 

156 
 

A.2.6 LP Residue Cepstral Coefficients (LPRCC) 

Table A-31: Confusion matrix for Speaker INDEPENDENT AER system using LPRCCs 

 Neutral Anger Sad Happy Bored 

Neutral 49.1 % 0 % 13.2 % 1.9 % 35.8% 

Anger 0 % 77.0 % 5.4 % 17.6 % 0 % 

Sad 17.6 % 1.4 % 41.9 % 12.1 % 27.0 % 

Happy 4.7 % 18.8 % 22.4 % 49.4 % 4.7 % 

Bored 39.1 % 1.1 % 19.6 % 4.3 % 35.9 % 

Overall Accuracy = 50.0 % 

Table A-32: Confusion matrix for Speaker DEPENDENT AER system using LPRCCs 

 Neutral Anger Sad Happy Bored 

Neutral 81.3 % 0 % 12.5 % 0 % 6.3% 

Anger 0 % 71.4 % 3.6 % 25.0 % 0 % 

Sad 0 % 7.1 % 57.1 % 10.7 % 25.0 % 

Happy 6.3 % 15.6 % 0 % 71.9 % 6.3 % 

Bored 5.7 % 0 % 20.0 % 8.6 % 65.7 % 

Overall Accuracy = 68.4 % 

A.2.7 Fractal Dimension (FD) 

Table A-33: Confusion matrix for Speaker INDEPENDENT AER system using FD 

 Neutral Anger Sad Happy Bored 

Neutral 62.3 % 0 % 13.2 % 1.9 % 22.6% 

Anger 1.4 % 81.1 % 2.7 % 14.9 % 0 % 

Sad 18.9 % 0 % 43.3 % 27.0 % 10.8 % 

Happy 5.9 % 20.0 % 22.4 % 42.4 % 9.4 % 

Bored 40.2 % 1.1 % 28.3 % 15.2 % 15.2 % 

Overall Accuracy = 46.3 % 

Table A-34: Confusion matrix for Speaker DEPENDENT AER system using FD 

 Neutral Anger Sad Happy Bored 

Neutral 43.8 % 0 % 31.3 % 0 % 25.0% 

Anger 0 % 64.3 % 7.1 % 21.4 % 7.1 % 

Sad 10.7 % 0 % 42.9 % 39.3 % 7.1 % 

Happy 9.4 % 18.8 % 15.6 % 40.6 % 15.6 % 

Bored 40.0 % 0 % 22.9 % 17.1 % 20.0 % 

Overall Accuracy = 41.0 % 
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Appendix B   

Empirical Mode Decomposition 

B.1.1 Analytic Representation  - Instantaneous Frequency 

Writing a signal as an analytic signal allows for a definition of instantaneous frequency as 

the time derivative of the phase of the complex valued analytic signal. 

ሻݐሺݖ  ൌ ሻݐሺݔ  ݅ሼݔሺݐሻሽ (B.1)

where, ݔሺݐሻ is the real valued signal and ሼ·ሽ  is the Hilbert transform operator and 

 .ሻ is the analytic signalݐሺݖ

 
߶ሺݐሻ ൌ arctan ቆ

ሼݔሺݐሻሽ
ሻݐሺݔ ቇ (B.2)

 
ሻݐሺߠ ൌ

݀߶ሺݐሻ
ݐ݀  (B.3)

 ܽሺݐሻ ൌ ඥݔଶሺݐሻ  ሼݔሺݐሻሽଶ (B.4)

where, ߶ሺݐሻ is the instantaneous phase, ߠሺݐሻ is the instantaneous frequency and ܽሺݐሻ is 

the instantaneous amplitude. 

B.1.2 Decomposition 

The necessary conditions for a meaningful definition of instantaneous frequency based on 

the analytic representation of the signal are that the signal is symmetric with respect to the 

local zero mean, and has the same number of extrema and zero crossings (Huang et al. 

1998). Functions satisfying these conditions are referred to as intrinsic mode functions 

(IMF) in (Huang et al. 1998). The empirical mode decomposition (EMD) enables any 

signal to be written as a sum of a few intrinsic mode functions and in some cases a 
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monotonic residue that represents the overall trend of the signal. The empirical mode 

decomposition process begins by extracting the first intrinsic mode function, which 

consists of oscillations on the smallest scale, locally by a sifting process. This IMF is then 

subtracted from the signal and the process is iterated until all possible intrinsic mode 

functions have been extracted and only a monotonic residue is left (Figure B.1). 

 
Figure B.1: Overview of Empirical Mode Decomposition 

B.1.3 EMD and Speech 

Due to the present lack of a mathematical framework for the EMD, there are limitations 

to the study of its properties. However, its application to speech signals may be 

investigated empirically to a certain extent. 

Typically, speech signals sampled at 22050 Hz contain between 14 and 19 IMFs and 

the instantaneous amplitudes and frequencies derived from all these intrinsic mode 

functions (together with the residue) contain all the information present in the signal. In 

informal experiments it was observed that for speech signals in general approximately the 

first five modes (IMFs) contained most of the perceptually significant information. 

An investigation of this observation, was conducted by measuring the PESQ scores of 

speech reconstructed from the M most significant modes together with mean IMF 

frequencies and mean IMF energies from over 9 min of 22050 Hz sampled speech. 

Results from this experiment, together with informal listening tests, showed that speech 

reconstructed from the first five modes (IMFs) was of sufficiently high quality for 
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classification tasks. Thus, only the first five modes were used in all the work reported in 

this thesis. Average PESQ scores obtained for speech signals reconstructed with different 

number of IMFs, and the mean instantaneous frequency of each intrinsic mode function 

are shown in Figure B.2. 

 
Figure B.2: (a) Average PESQ scores for reconstructed speech using different number of IMFs; (b)Mean 

Instantaneous frequency and mean energy for first 8 IMFs 
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Appendix C  

Pre-Classification: Self Organising Maps 

Pre-classification can identify and separate large clusters prior to emotion recognition 

within these clusters. An example of a two dimensional feature space is depicted in 

Figure C.1, showing the distribution of feature vectors. In the space depicted, it can be 

seen that apart from emotion specific clustering, other clusters are present as well, making 

emotion classification a complex problem. Identifying these clusters and performing a 

pre-classification to separate them divides the feature space and simplifies the emotion 

classification problem within each division (Figure C.2). The example depicted here is 

exaggerated in its simplicity to illustrate the idea, and in a realistic scenario the reduction 

in complexity may not be very significant. 

 
Figure C.1: A synthetic example of a 2-dimensional feature space (not necessarily representative of real 

data) 
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Figure C.2: The 2-D feature space after pre-classification 

Multi-layer Kohonen maps have been shown to be useful in clustering applications 

involving low-level acoustic features with high dimensionality (Wang et al. 2007). In this 

case, a 3-layer Kohonen map was used to identify clusters from the training data and pre-

classify all feature vectors as belonging to one of these clusters. The first layer was a 100 

by 50 array of neurons and the second layer was a 40 by 20 array of neurons. The 

dimensions of the third and uppermost layer were chosen based on the number of clusters 

required. The inputs to the first layer were the feature vectors themselves while the inputs 

to the successive layers are the neuron weights (outputs) of the previous layer. 

Cluster specific and cluster independent GMM based emotion models were trained in 

a manner similar to the experiment reported in section 4.3. A comparison of cluster 

specific and cluster independent classification accuracies should reveal any advantage 

that could potentially be gained from this type of pre-classification. Since the number of 

clusters must be fixed prior to training the self organising map (SOM), and since the 

optimum number was not known, two comparisons were performed with a different 
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number of clusters each time. In the first case, 18 clusters were chosen (preliminary 

analyses indicated that choosing more resulted in empty clusters) and the second case 

used 6 clusters. These AER systems used a front-end comprising of pitch, energy and 

weighted frequency and the classification tests were carried out in a speaker independent 

fashion, utilising the speaker normalisation technique proposed in section 4.1.2. 

Sevenfold cross-validation was used again as in all speaker independent experiments, 

with a new SOM trained with the training data in each of the 7 repetitions. Both cluster 

specific and overall accuracies are reported and since feature vectors estimated from 

different frames of the same utterance (turn) can belong to different clusters, only frame 

level classification accuracies are reported in this section (once again similar to section 

4.3). Table C-1and Table C-2 report the classification accuracies obtained using an 18 

cluster and a 6 cluster SOM based pre-classifier. 

Table C-1: Cluster accuracies for a system using an 18 cluster pre-classifier (P+E+WF) 

Clusters 

Accuracy 

Clusters 

Accuracy 

Cluster 

Independent 

GMMs 

Cluster 

Specific 

GMMs 

Cluster 

Independent 

GMMs 

Cluster 

Specific 

GMMs 
1 45.1 % 40.1 % 10 40.6 % 24.3 % 

2 41.3 % 40.1 % 11 32.7 % 24.9 % 

3 42.0 % 39.1 % 12 44.9 % 37.1 % 

4 42.3 % 38.4 % 13 47.4 % 47.0 % 

5 39.1 % 32.3 % 14 48.7 % 41.3 % 

6 45.2 % 37.2 % 15 48.8 % 41.6 % 

7 44.2 % 40.8 % 16 47.1 % 35.5 % 

8 37.5 % 39.3 % 17 37.0 % 29.9 % 

9 35.6 % 26.8 % 18 42.8 % 42.1 % 

   Overall 43.8 % 38.2 % 
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Table C-2: Cluster accuracies for a system using a 6 cluster pre-classifier (P+E+WF) 

Clusters 
Accuracy 

Cluster Independent 

GMMs 

Cluster Specific 

GMMs 

1 38.5 % 39.7 % 

2 36.5 % 32.2 % 

3 45.2 % 40.2 % 

4 41.0 % 35.3 % 

5 43.3 % 36.0 % 

6 53.8 % 49.4 % 

Overall 43.8 % 40.1 % 

These results indicate that pre-classification offers no advantage to the AER system 

and in fact it adversely affects overall system performance. However, it can be argued 

that spectrally richer features would exhibit more definite patterns in the feature space 

and could take better advantage of the pre-classifier. In order to ascertain if this was 

indeed that case, the comparisons were repeated with an AER system using a MFCC 

based front-end and the results are reported in Table C-3 and Table C-4. 

Table C-3: Cluster accuracies for a system using an 18 cluster pre-classifier (MFCC) 

Clusters 

Accuracy 

Clusters 

Accuracy 

Cluster 

Independent 

GMMs 

Cluster 

Specific 

GMMs 

Cluster 

Independent 

GMMs 

Cluster 

Specific 

GMMs 
1 37.2 % 32.7 % 10 35.4 % 31.5 % 

2 35.2 % 38.5 % 11 29.7 % 34.3 % 

3 25.4 % 27.4 % 12 49.0 % 47.7 % 

4 30.9 % 30.0 % 13 39.3 % 35.3 % 

5 35.1 % 30.0 % 14 40.5 % 37.4 % 

6 37.9 % 39.0 % 15 44.2 % 35.6 % 

7 36.9 % 32.4 % 16 39.5 % 39.6 % 

8 30.7 % 26.8 % 17 40.6 % 42.2 % 

9 38.4 % 37.3 % 18 37.0 % 34.3 % 

   Overall 37.4 % 35.3 % 
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Table C-4: Cluster accuracies for a system using a 6 cluster pre-classifier (MFCC) 

Clusters 
Accuracy 

Cluster Independent 

GMMs 

Cluster Specific 

GMMs 

1 46.8 % 46.2 % 

2 35.2 % 32.5 % 

3 28.8 % 32.0 % 

4 35.8 % 35.2 % 

5 35.8 % 34.5 % 

6 33.9 % 34.2 % 

Overall 37.4 % 37.3 % 

The classification accuracies obtained when using a MFCC based front-end also 

indicate that pre-classification based on unsupervised clustering offers no advantage to 

the AER system in terms of overall classification accuracy. 

The overall frame level classification accuracies however weight all clusters equally. 

If the ultimate aim is to classify each utterance (turn), a few frames classified with high 

likelihood values could outweigh a larger number of frames classified with low likelihood 

values resulting in the utterance being classified correctly even though a majority of the 

frames are classified incorrectly (or vice versa). In order to take this into account, turn 

level classification accuracies were determined by making turn level decisions based on 

the sum of the likelihoods of the emotions for each frame in the turn (as described in 

section 3.5). The accuracies thus obtained for all the above mentioned conditions are 

reported in Table C-5. 

Table C-5: Summary of overall accuracies (UTTERANCE/TURN level) 

 
P + E + WF MFCC 

18 Clusters 6 Clusters 18 Clusters 6 Clusters 

Cluster Independent GMMs 56.4 % 56.4 % 48.9 % 48.9 % 

Cluster Dependent GMMs 53.7 % 54.5 % 49.7 % 51.3 % 
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The turn level classification accuracies indicate that the cluster specific modelling of 

emotions provides no benefit when using the low dimensional pitch, energy and weighted 

frequency based front-end, while exhibiting a small increase in performance for the 

MFCC based front-end. This may be explained by the larger amount of information 

contained in the MFCCs as opposed to the other front-end. However, the increase in 

performance for the MFCC based system is too small to draw any definite conclusions. 

Moreover, the performance gain is insignificant compared to the loss due to the higher 

dimensionality and speaker specific information; which contribute to higher variability 

and consequently, degradation of AER performance. 
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