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Abstract— Live monitoring of athletes during sporting events
can help maximise performance while preventing injury, and
enable new applications such as referee-assist and enhanced
television broadcast services. A major challenge is the extraction
of athlete physiological data in real-time, since the radio range
of body-worn sensor devices is limited, necessitating multi-hop
routing mechanisms. However, little is known about the highly
dynamic operating conditions on a soccer field under which
communication protocols need to operate.

In this work we conduct field experiments in which we outfit
first-division soccer players with sensor devices and record their
inter-connectivity during a real game. Our first contribution
profiles the key properties of the dynamic wireless topologies
arising in the soccer field, and highlights the consequences for
routing mechanisms. We show that the topology is in general
sparse, with short encounters and power-law distributed inter-
encounters. Importantly, the co-ordinated movement of players
in the field gives rise to significant correlations amongst links,
an aspect that can potentially be exploited by routing. Our
second contribution develops a model for generating synthetic
topologies that mirror connectivity in a real soccer game, and
can be used for simulation studies of routing mechanisms. Its
novelty lies in explicitly modelling the underlying auto-correlation
and cross-correlation properties of the links, from which derived
measures such as inter-encounter times and neighbourhood
distributions follow. Our study is an important first step towards
understanding and modelling dynamic topologies associated with
sports monitoring, and paves the way for the design of real-time
routing algorithms for such environments.

I. INTRODUCTION

Advances in sensing and communications technologies are
enabling new low-cost and lightweight devices that allow
measurement and remote monitoring of an individual’s vital
physiological signs such as ECG, temperature and oxygen
saturation levels. Such technology, though designed primarily
for the healthcare industry, is being adapted to the massively
popular and growing field of sports science, specifically for
the purpose of athlete monitoring.

Biomedical technology has long been used by professional
coaches and trainers in striving to push their athletes’ bodies to
the edge of its capabilities. However, much of this examination
of the body has been performed under laboratory conditions
where results attained in the artifical environment may not
parallel those observed in competition [1]. Devices are now
starting to emerge in the market that are making the leap from
monitoring athletes in training (e.g. SPI Elite [2] platform from
GPSports) to monitoring them during competition (e.g. e-AR
[3] and VxSport [4]). We are partnering with Toumaz Tech-
nologies in the UK who are manufacturing a platform called

SensiumTM[5] that integrates low power wireless technology
with miniaturised sensors and lightweight flexible batteries
[6]. This platform, weighing just a few grams, will allow
non-intrusive collection and real-time wireless transmission of
athlete physiological data during competition.

We seek to apply the above wearable platforms to moni-
toring athletes in field sports, specifically soccer. Soccer is a
hugely popular sport throughout the world, and attracts large
financial investment, particularly in Europe. Several soccer
clubs in the UK have expressed great interest in monitoring
their athletes on the field, predominantly to reduce the risk
of injury and improve player substitution decisions. Soccer
organisers have also expressed some interest in using real-time
position and impact information for referee-assist services, and
television channels are eager to augment live broadcasts with
player parameters (e.g. heart-rate during clutch events, speed
and acceleration, impact levels during collisions, etc.) so as to
heighten the level of engagement for audiences.

While hardware platforms for athlete monitoring are ma-
turing rapidly, there is much research needed in developing
communication protocols that can operate under the unique
conditions arising in the soccer field: (a) Rapid accelera-
tion and impact are part of the sport, and this restricts the
monitoring device to be small, lightweight, unobtrusive and
non-protruding so that the players’ degree of freedom is not
limited. This is in contrast to devices tried in sports such as
rowing [7] or cross country skiing [8] that have form-factor
akin to a mobile phone. Consequently, monitoring devices
for soccer can be expected to have extremely limited battery
power and restricted radio range, placing severe energy and
reach constraints on the communication protocols. (b) The
playing area in soccer is very large at over 4000m2. Given the
limited transmission range of body-worn devices, coupled with
attenuation effects arising from attachment to the human body
(profiled in the next section), real-time extraction of player
data would require multi-hop routing. One-hop communication
from the device to base-station, such as proposed for ice-
hockey in [9], or the protocols proposed in [10] for monitoring
team-sports such as basketball and volleyball having a small
playing area, would not suffice for soccer. (c) Soccer players
move very rapidly in the field, and this makes the topology
highly dynamic at short time-scales (seconds). Designing rout-
ing mechanisms that can deliver data to base-stations within
stringent time and energy constraints over multiple hops in
this time-varying environment promises to be challenging.



In order to design appropriate communication protocols
(specifically for multi-hop routing), it is essential to have a
good understanding of the dynamics of the wireless topology
that arises in the soccer field. To the best of our knowledge
no such data or characterisation from real soccer games
is available in the literature today. We therefore undertake
experimental work in which we outfit first-division soccer
club players with sensor devices and collect data on their
connectivity (with each other and with base-stations around
the field) over multiple games. Using the collected data we
make two important contributions: (1) We provide a stochastic
characterisation of key aspects of the topology, such as the
number of wireless neighbours of a player (indicating the
number of alternate routes that may be available) and dis-
tributions of the encounter and inter-encounter times between
players (indicating the length of time for which routes may
persist or vanish). Additionally, we show that several links
can exhibit correlations with each other, i.e. the presence of
link between one pair of players can affect the probability
(positively or negatively) of link between another pair. Our
study is the first to quantify these metrics for a soccer game,
providing valuable input to the design of routing algorithms
for emerging athlete monitoring applications. (2) We develop a
novel mathematical model for generating dynamic topologies
that stochastically match empirical traces. Our model explicitly
considers the underlying auto-correlation and cross-correlation
structure of links, from which derived metrics such as inter-
contact times and neighbourhood distribution follow. Unlike
existing (individual and group) mobility models in the litera-
ture that rely on certain movement patterns, our model is the
first to directly generate connectivity topology for arbitrarily
specified link (auto- and cross-) correlations. Our study sets
the stage for design of multi-hop routing algorithms that can
in the near future enable real-time physiological monitoring
of athletes during live competition games.

The rest of this paper is organised as follows: Section II
describes the experimental set-up to monitor soccer players
during a game. Statistics of the observed data are presented
in Section III, while Section IV highlights the correlations
between links. A model for generating dynamic topologies
with correlated links is presented in Section V, and a summary
and directions for future work are outlined in Section VI.

II. EXPERIMENTAL SETUP

With the objective of gaining an understanding of wireless
connectivity in a soccer field, we outfitted all players of the
University of New South Wales Football Club (UNSWFC)
first-division men’s team with wireless monitoring devices.
We collected data over two trial games held on 28 October
2008 and 5 February 2009. In this paper we use the more
comprehensive data we were able to collect in the second
game, since by then we were able to improve on aspects such
as device attachment to the body and base-station placement.

A. Mounting the Device on the Body

The body-worn devices we used were the MicaZ motes [11]
from Crossbow technologies. These are off-the-shelf devices

Fig. 1. RSSI contour for arm worn monitoring device
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operating in the 2.4 GHz band that are readily available
today. We intend to replace these with emerging platforms
custom-built for body-area-networking as they become avail-
able. Though the MicaZ motes were not designed for body-
worn applications, they have been used before for body health
monitoring, such as in Harvard’s Code Blue project [12], and
in our own prior work [13] in profiling the body channel for
patients with chronic illnesses.

Finding a good way to mount sensor nodes on athletes turns
out to be quite a challenge. Taking into consideration aspects
such as attenuation of the wireless signal by the body, ease and
stability of attachment, and possibility of damage to the device
itself, we decided to go with an arm mounted attachment
using an arm-band. We conducted experiments to profile the
propagation of wireless signals around the athlete in an open
field (see our paper [14] for a detailed study), and show in
Fig. 1 a contour map of the received signal strength (RSSI)
at various distances and directions from the body-mounted
mote device, which transmits data every second at the highest
available power level of 1mW. In the plot the athlete wearing
the device is located at (0, 0) and is facing north, while the
device is attached to the subject’s right arm. Not surprisingly,
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the reach is much larger to the right (at around 27m the signal
fades to below −95dBm) than to the left (signals barely reach
beyond 3m), and there is a 10-15m reach to the front and
back of the player. We also tried other mounting positions
(e.g. back), but found such mountings to either cast a larger
“shadow” region of poor signal, or create discomfort for the
athlete due to clothing impediments or increased chance of
injury/damage during a fall. We therefore proceeded with an
arm-mounted position for all our subsequent studies.

B. Game Layout and Data Collection
The game was played on a full size field with dimensions

93m x 70m. Each of the 11 players wore a monitoring device
on their arm, and 8 base-stations were positioned (at a height
of about 1m from the ground) along the sidelines of the
playing area. Fig. 2 shows the nominal playing positions
and associated node identification numbers. Unfortunately the
devices worn by players 2 (back) and 4 (left back) were
damaged during play and we could not obtain data from them,
as was base-station B3 which got hit by the ball.

We implemented software on each of the body-worn devices
such that it broadcasts, once every second, at the highest
available power level of 1mW, a packet containing its unique
identifier and a sequence number, during the entire measure-
ment period. All devices (body-worn as well as base-stations)
that successfully receive this packet record this event in their
on-board memory. As the game proceeds, each node (and
base-station) will be cataloguing which other nodes it could
hear at each time instant. To prevent collisions in-the-air,
each second is divided into 11 slots each of approximate
duration 90ms, and each of the 11 body-worn devices is given
a unique such slot for transmission every second. Just prior
to commencement of the game, the master base-station sends
a clock synchronisation message to all nodes, upon receipt of
which each node starts recording connectivity data in on-board
memory. Data collection stops after 25 minutes, and at the end
of the game data from each node is extracted by the master
base-station for off-line analysis.

III. PROFILING PLAYER CONNECTIVITY

The data collected above tells us how the wireless connec-
tivity between players evolves from second-to-second during

the game. In this section we analyse this data and highlight
several aspects that are pertinent to the design of routing
protocols for real-time extraction of player physiological data.
Though we recognise that each soccer game is different and
data acquired from repeat trials would undoubtedly yield a
different composition of results, our aim is to highlight key
common characteristics and trends associated with player con-
nectivity arising in a real first-division soccer game. We have
developed a Java GUI animation that displays the connectivity
data collected for this game, and can be viewed at our web-site
[15]. The data was collected for 25 minutes; in this paper we
will use only the data from the 10 minute interval from 900s
to 1500s, since during that period there were no substitutions
and no play stoppages. We strongly encourage the reader to
observe the Java GUI animation, specifically for the interval
900s-1500s, to get a better feel for the data obtained from the
experiment.
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A. Number of Neighbours

In Fig. 3 we show the time-evolution of the number of
neighbours for selected nodes. Specifically, for each selected
node, we show at each instant of time, the number of other
nodes whose transmissions are successfully received. To give
a flavour of the diversity we pick players from forward (node9:
striker), middle (node 8:centre midfield B), and backward
(node 11: goalkeeper) playing positions, as well as the (ag-
gregation of all 8) base-stations. Important observations that
emerge from these plots are:
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Fig. 5. Distribution of inter-encounter time on (a) log-linear scale and (b) log-log scale

• The number of neighbours changes very rapidly, literally
from second-to-second, which is not surprising given that
soccer players move very fast. Routing therefore has to
contend with a highly dynamic topology wherein routes
may not persist for long.

• The average number of neighbours is generally low,
indicating that the topology is in general sparse (this
can also be confirmed visually in our Java GUI). This is
because the range of the body-worn device is small (due
to battery current-draw limitations and body attenuation
effects) compared to the playing area of the soccer field.
Fig. 4 plots the probability distribution of the number of
neighbours for several nodes, and shows that it is often
0 or 1, indicative of a very sparse topology.

• Connectivity varies with playing position: for example,
Fig. 3(b) shows that the midfielder better connectivity
(due to prime location in the centre of the field) than
the striker or goalkeeper (Fig. 3(a)), both of whom are
more likely to be at the extremes of the field. This is
also confirmed in Fig. 4 which shows the midfielder is
more likely than not to have at least one link at any
time, whereas the extreme positions (striker, back, and
goalkeeper) have no connectivity very often. Routing can
exploit this information to bias its choice of next-hop
towards nodes that are more richly-connected on average.

• Connectivity to the base-stations (put together, as shown
in Fig. 3(a)) is in general quite poor, which implies that
multi-hop routing will be essential if real-time delivery
of data from players to the base-stations is required.

B. Encounter Duration and Inter-Encounter Time

Another metric that is known to have an important bearing
on the route-selection algorithm in mobile ad-hoc networks
is the inter-encounter time [16] (also known as inter-meeting
or inter-contact time) between nodes. Most prior studies have
relied on exponentially distributed inter-encounter times for
tractable anaysis of routing performance; however, recent

studies such as [17] have shown that non-exponential be-
haviour can lead to unbounded routing delays. To see which
model best fits the soccer field environment, in Fig. 5 we
show the distribution of the inter-encounter time amongst all
pairs of nodes, as well as between all transmitters and a
specific receiver 8 (the centre midfield B, chosen for its rich
connectivity), as obtained from our experimental data.

Fig. 5(a) shows the Complementary Cumulative Distribution
Function (CCDF) of the inter-encounter time on log-linear
scale. The non-linear nature of the curve, particularly at time
scales ranging from 1 to 200 seconds, indicates that the inter-
encounter delays do not follow an exponential distribution
at such time-scales. In Fig. 5(b) we therefore depict the
inter-encounter time on log-log scale, and notice that in the
range of 10-100 seconds the inter-encounter delay curve (over
all pairs of nodes) is roughly linear, indicative of power-
law behaviour in that range. The power-law exponent in this
region is estimated at around α ≈ 1.6. Though [17] estimates
analytically that α < 2 leads to unbounded routing delays,
it does so by extrapolating the inter-encounter delay tail to
infinity as a power-law. Our experimental data shows that
the curve flattens out (on log-linear scale) beyond around
200 seconds, and in this region inter-encounters are better
modelled as exponential. This combination of power-law and
exponential behaviour is consistent with reported mixtures
[18] seen in inter-meeting times for regular human activity,
and result in bounded routing delays unlike the pessimistic
estimates in [17].

Another aspect in which the soccer field environment de-
parts from typical mobile ad-hoc networks is the length of time
for which two nodes are in continuous contact with each other
for exchanging routing messages and data packets. In Fig. 6
we plot the CCDF of the duration for which encounters last (on
log-linear scale) over all pairs of nodes and with node 8 (centre
midfielder B) as receiver. It is seen that encounters are in
general very short (over 90% of encounters lasts no more than
4 seconds), and their duration falls exponentially (the curves



are near-linear on log-linear scale). A routing algorithm cannot
therefore assume sufficient contact time with a neighbour in
order to be able to forward all its stored messages, or sufficient
time for bidirectional communication with the neighbour.
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To characterise the encounter and inter-encounter distribu-

tions and their auto-correlations in a succinct way (which we
later employ in our model in section V), we borrow a technique
used for the analysis of long-range dependent (LRD) traffic.
Considering a link between a pair of nodes, at a given time
step, we use a 1 to depict presence of the link and 0 its absence.
For this link, we therefore have from our experimental data
a time-sequence of 0s and 1s. We consider this sequence
in blocks of 2s samples, for given s, and for this resulting
sequence we compute the mean, variance, and coefficient-of-
variation β(s) (in effect these metrics are computed at time-
scale 2s). Log-log plots of β(s) versus s are routinely used
in the literature to depict self-similarity and to estimate the
corresponding Hurst parameter H ∈ [0.5, 1). In Fig. 7 we
show such a plot for several links (we picked two links each
from centre, forward, and backward playing positions), and

observe that the curves can be approximated as straight-lines
with slope −(1 −H), yielding a Hurst parameter H ≈ 0.75.
This single-parameter captures in a succinct way the link auto-
correlations, and will be used in the connectivity model we
develop in section V.

IV. LINK CORRELATIONS

Unlike many mobile ad-hoc networks in which we can
reasonably assume that users move independently, in a soccer
game we would expect player movements to have significant
correlations. For example, when the team is attacking the
opponent’s goal, several players in the forward and midfield
positions can be expected to move towards the opponent’s goal
simultaneously, and conversely when the home goal is being
attacked the defenders and midfielders will likely fall back
towards the home goal to protect it. This leads to correlations
amongst links, an aspect which can have a significant impact
on the performance of routing algorithms.

Correlations are computed as follows: if xt is a binary
variable that is 1 or 0 depending on whether link x is present
or absent at time step t, then the cross-correlation at time lag
k between two links x and y is given by [19, Sec 12.1.2]:

ρxy(k) =
1
n

∑n−k
t=1 (xt − x̄)(yt+k − ȳ)

σxσy
, k = 0,±1,±2, . . .

(1)
where n is the number of sample points, x̄ is the estimated
mean and σx the estimated standard deviation of x.

In Fig. 8(a) we show the correlation between node 3’s
(centre midfield A) and node 10’s (centre back) links to node 8
(the centre midfield B) for lags in the range [−20, 20] seconds.
Two things are noteworthy from this plot: (a) the correlations
are positive, meaning that when node 3 is close to node 8,
node 10 is also likely to be close to node 8; this suggests
nodes 3 and 10 move in a co-ordinated way quite often, and
(b) the correlations are high (> 0.2) for lag close to 0, and
decay rapidly as the lag moves away from 0. This is not
surprising, because the fast nature of the game implies that the
locations of the players can vary significantly from one minute
to the next, making them nearly independent. In Fig. 8(b)
we show the correlation between node 1’s (centre attack) and
node 10’s (centre back) with node 8 (centre midfield B). This
time we notice that the correlations are predominantly negative
(< −0.2 for lags close to 0), which is understandable: when
the team is attacking, the midfielder is more likely to be close
to the striker and far from the defender, while the converse
is true when the team is defending their own goal. Again we
notice that the anti-correlations decay with time due to the
rapid movement of players in the game.

Having seen specific examples of correlated and anti-
correlated links, let us now examine how pervasive the corre-
lations are amongst all links. We have data from 9 transmitters
(as stated earlier the devices on two players got damaged and
the data was lost) and 10 receivers (9 players and a “virtual”
base-station which aggregates the data from all base-stations),
giving us a total of 81 possible uni-directional links. During the
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10 minute measurement period, 60 of these links had sufficient
(at least 10) packet receptions to be statistically significant,
and so we compute pair-wise cross-correlations for these 60
links. To eliminate random chance of correlated values, we
also estimate the P-value [20] (used for statistical hypothesis
testing) for each pair, and only retain those that are statistically
significant (i.e. have P ≤ 0.05). To help the reader visualise
the correlations, we place the 60 links as nodes on a circle
in Fig. 9 and draw a line between two nodes if they have
significant correlation: blue lines depict positive correlation
while red lines depict negative correlation, and the higher the
correlation (or anti-correlation), the thicker the line. Also, links
have been ordered on the circle so that the two directions of
the link are adjacent to each other (so that correlations between
the two directions of a link do not clutter the plot). We see that
often links to a given player (say player 8, the centre midfielder
B) can have strong correlations with each other, but some links
with distinct end-points can also be correlated (for example,
link 1→ 10 is correlated with links 8→ 3, 5→ 3 and 7→ 3,
indicating that when an attacker 1 is close to a defender 10,
many players are likely to be huddled closer to the ball, and
hence more likely to be connected to a midfield player such as
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Fig. 10. Correlations shown as a matrix

3). To give an idea of how widespread the correlations are, in
Fig. 10 we show the elements of the 60x60 correlation matrix
that are significant. The matrix is seen to be relatively sparse,
which suggests that determining the entire matrix (needed as
input to our model) may not be as onerous as one may think.

V. A CONNECTIVITY MODEL FOR SOCCER PLAYERS

We now develop a model that can generate synthetic dy-
namic topologies with similar stochastic properties to those
observed empirically. Such a model would be useful in gen-
erating long traces to simulate the performance of different
routing strategies for soccer player monitoring, and also al-
low key parameters such as link auto- and cross-correlations
(which may depend on a team’s playing style) to be varied to
study their impact on routing performance.

A. Prior Work on Mobility and Connectivity Modelling

There are two broad approaches to modelling the topology
arising in an ad-hoc network: the first models the mobility
of individual nodes in terms of their physical location, and
deduces connectivity between two nodes at any time instant
based on their proximity to each other. Mobility models
abound in the literature (see [21], [22] for a survey), and can
consider nodes independently (e.g. Random Waypoint model,
Levy Walk model [23], etc.) or as groups (e.g. Reference Point



Group Mobility model and Pursue Mobility model). While
it may be possible to fit the movement of soccer players
to one of the mobility models in the literature (indeed one
such attempt is made in [24] using a learning automata fed
by player position information obtained via optical tracking
from multiple cameras), such an approach has limitations:
(a) it requires empirical data on player location at each
time instant, which is not easy to obtain, (b) it often makes
assumptions about how nodes behave, which may be difficult
to validate, and (c) it typically assumes a circular transmission
range, which ignores body-orientation effects in the athlete
monitoring context.

The approach we choose to take in this paper is to model
directly the evolution of connectivity (aka topology), rather
than inferring it from a mobility model. There is little prior
work based on this approach: one example is [25] that
proposes a statistical encounter-based model in the context
of delay tolerant networks (DTNs). However, their model
assumes links to be independent, which is inadequate for
capturing correlations that we have shown to exist in team
sports such as soccer. The model we present next overcomes
this important limitation.

B. Model Requirements

We seek a model that takes the following inputs: (a) Number
of players, base-stations, and links, (b) Mean and variance for
each link (the link is binary in each time-step: 0 if down and
1 if up), (c) Auto-correlation of the links (to keep the model
simple we assume that all links have similar auto-correlations),
specified via the Hurst parameter (section III-B) or auto-
regressive coefficients (discussed in the next subsection), and
(d) Cross-correlation between each pair of links, specified as
a covariance matrix.

The model should output for each successive time-step the
connectivity topology, i.e., the set of links that are up at that
time-step. If an empirical trace is available from which the
input parameters were derived, then the generated topology
should statistically match the empirical trace in the following
metrics: (a) for each link, the on/off (0/1) distribution, (b) the
distribution of the number of active links in the network, (c)
the distributions of encounter durations and inter-encounter
times, and (d) the correlations between every pair of links.

C. The Model

We use W to denote the total number of links (player-
to-player as well as player-to-base). The covariance matrix
(which is an input to the model) is denoted by C, and is
of dimension W × W . Element Cij denotes the covariance
between the i-th and j-th links, and is related to the correlation
defined in Eq. (1) by Cij = σxσyρij(0) (note that to reduce
complexity our model directly incorporates correlation at lag
0 only; correlations at other lags will follow from cross-
correlations at lag 0 combined with the auto-correlations of
the links). Further, each diagonal entry Cii corresponds to the
variance of the binary variable associated with the i-th link.

Generate
Auto-correlated
Time Series 1 

Generate
Auto-correlated
Time Series W

Cross-correlate
the W Time Series
to generate a new
set of W correlated
Time Series

Convert Time Series 1
to Binary values

Generate
Auto-correlated
Time Series 2

Convert Time Series 2
to Binary values

Convert Time Series W
to Binary values

Fig. 11. Flow diagram of our model for generating time-varying topology

A valid covariance matrix is required to be symmetric (i.e.
Cij = Cji) and positive definite (aka C > 0).

The general flow of our model is shown pictorially in
Fig. 11, and broadly consists of three steps: step 1 generates
independent random variables, one per link, with the appro-
priate auto-correlation, step 2 mixes them to create the correct
cross-correlations, and step 3 converts them from continuous
to discrete (binary) values so they correspond to links being
up or down in each time-step. These steps are elaborated next.

1) Generating Auto-Correlated Time Series: The first step
is to generate W independent time-series of link variables with
desired auto-correlation. Different methods could be used for
generating the time-series based on how the auto-correlation
is specfied. We try two methods based on analysis of the
field data we collected. The first method uses the long-range
dependent characterisation of link connectivity we presented in
Fig. 7. In this approach the link auto-correlation can be spec-
ified very succinctly by a single number: the Hurst parameter
H , which for our experimental data was H ≈ 0.75 across
all links. We generate long traces of normalised fractional
Gaussian noise (fGn) (with zero mean and unit variance) for
this H , using the filtering method developed in [26]. The W
fGn time-series thus generated each have the requisite auto-
correlation properties; subsequent steps will cross-correlated
them, and shift/scale them to have the appropriate link-specific
mean and variance.

The second method we use to generate the auto-correlated
time-series assumes a linear stationary auto-regressive (AR)
model [19] of appropriate order. An order p AR process
derives the sample x(t) at time-step t as:

x(t) =
p∑

k=1

akx(t− k) + w(t) (2)

The auto-correlation in the above process stems from the fact
that the sample at time-step t is a weighted sum of the previous
p samples, with an additional random noise component that
has zero mean and constant variance. Based on the auto-



correlation properties of links at different lags, we estimated
that an AR process of order p = 20 matched our experimental
data well. We then used the Yule-Walker method (aryule
in Matlab) to estimate the AR coefficients, which were then
applied as a filter to sequences of random white Gaussian noise
to yield the desired auto-correlated time-series.

2) Cross-Correlating the Time Series: Having generated
W sequences of independent variables with appropriate auto-
correlations, this step introduces the cross-correlations as per
the specified covariance matrix C. The general idea is to take
appropriate linear combinations of the W independent random
variables to generate a new set of W random variables that
have the desired cross-correlations. To this end we first deter-
mine the Cholesky decomposition of the covariance matrix,
i.e. find the lower-triangular matrix L such that C = LLT

where LT denotes the transpose of L. The symmetric positive
definite nature of C ensures that such decomposition exists and
can be computed relatively easily (using chol in Matlab).
However, for computation stability it is desirable to have L
as sparse as possible. To this end we tried several methods
to permute the rows and columns of C to make it more
diagonally dominant, and chose the symmetric approximate
minimum degree permutation (symamd in Matlab) to obtain
the most sparse Cholesky decomposition L.

Given a vector of W uncorrelated random variables x(t) =
(x1(t) . . . xW (t)), we generate a vector of W correlated
random variables y(t) = (y1(t) . . . yW (t)) with covariance
as per matrix C using:

y(t)T = Lx(t)T (3)

where L is the Cholesky decomposition of C.
3) Converting to Binary Variables: Random variable yi(t)

above corresponds to link-i at time-step t, and already has req-
uisite correlation with yi(t′) (i.e. auto-correlation) as well as
with yj(t) (i.e. cross-correlation with other links). In this step
we convert continuous-valued yi(t) to corresponding binary
values zi(t) by comparing with threshold Ti, i.e. zi(t) = 1 if
yi(t) > Ti, and 0 otherwise. The threshold Ti is chosen so
that

P [yi(t) > Ti] = P [zi(t) = 1] (4)

The right side is the mean value E[zi(t)] of the link, which
is available as input to the model. Random variable yi(t)
is a linear combination of Gaussian variables xj(t), with
weights known from the Cholesky decomposition matrix and
the fGn/AR parameters, and therefore yi(t) is also Gaussian
with known variance. Using tabulated values of the CDF of
the normal distribution, the threshold Ti in Eq. (4) can easily
be computed, and this threshold is then used for converting
the model output to binary.

D. Validating the Model

To validate the model we compared its synthetic output with
the empirical trace obtained in the field. Parameters estimated
from the empirical trace, such as mean and variance of each
link, their auto-correlations, and the covariance matrix, were

fed as input to the model. The trace output by the model
(i.e. binary time-series for each link) was subjected to the
Kolmogorov-Smirnov (K-S) “goodness of fit” test and found
to match the distribution seen in experiment for all links.
Moreover, the statistical metrics directly controlled by the
model, such as link mean, variance, auto-correlations, and
cross-correlations, were found to match well.
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We show that metrics that are not directly controlled by the
model corroborate well with experiment. One such important
metric is the inter-encounter time, which is a by-product of
link auto-correlation. In Fig. 12 we show that the CCDF of
the inter-encounter time seen in model trace data matches very
well with experiment, confirming that our model has captured
auto-correlations correctly. Another important metric is the
number of links in the topology at any time-instant, which
in turn is influenced by the cross-correlations amongst links.
The PDF of the number of links shown in Fig. 13 again shows
that our model matches well with experiment, affirming that
the cross-correlations are also captured correctly by our model.
Several other metrics (such as node degrees) seen in our model
output were also found to match well with empirical data, and
are omitted here due to lack of space.



E. Using the Model

Our model is fairly general: it takes as input the mean and
variance of individual links, their auto- and cross-correlations,
and outputs an arbitrary-length time-series of dynamic topolo-
gies with desired stochastic properties in terms of number
of links, inter-encounter times, neighbour distributions, etc.
Our model does not make any assumptions specific to the
operating environment, and as such can be applied to model
dynamic topologies arising in any mobile ad-hoc or delay
tolerant network studies.

Deducing the input parameters to the model, in particular
the cross-correlations between links, requires access to suffi-
cient experimental data. Even then, estimating the parameters
can be tricky: for example, the same soccer team plays
each game differently depending on their strategy and their
opponent. Nevertheless, we think reasonable approximations
can often be made: for example, we can expect that links
between players in similar positions (e.g. defending) are more
highly correlated with each other than with a link between
players in different positions (e.g. defender and forward), or
that a midfielder’s link to a left-wing player will generally
be negatively correlated with his link to a right-winger. We
believe that capturing even a few key correlations (in a sparse
covariance matrix) can give us much more realistic dynamic
topologies for routing studies as compared to using overly
simplistic models that ignore correlation effects.

VI. CONCLUSIONS

In this paper we have studied the wireless connectivity
that arises amongst soccer players in the field. Understanding
such connectivity is important for designing algorithms for
multi-hop routing of athlete physiological data in real-time to
base-stations positioned around the field. We outfitted a first-
division soccer club team with wireless devices and collected
empirical data on their connectivity during multiple games,
something that to the best of our knowledge has not been
undertaken before. Our first contribution profiles the connec-
tivity data to highlight several aspects relevant to the design
of appropriate routing mechanisms, such as that the topology
is sparse and highly dynamic, and that inter-encounter times
have a power-law distribution. Importantly, we identified that
links in the soccer field can have significant correlations, due
to the inter-dependent way in which players move, and this
can impact routing. For our second contribution we therefore
develop a novel model for synthetic generation of dynamic
topologies arising in the soccer field. Our model is quite
general, and considers both auto-correlations within and cross-
correlations between links. It is shown to generate traces that
match empirical data in key stochastic metrics, and forms the
basis of routing studies for environments such as the soccer
field that exhibit correlated mobility.

Our current work in [27] develops multi-hop routing
schemes appropriate for soccer player monitoring. We will also
undertake further experimental work replacing the Crossbow
motes with wearable body-area networking devices as they
become available.
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