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ABSTRACT

Reducing the power consumption of core Internet routers

is important for both Internet Service Providers (ISPs) and

router vendors. ISPs can reduce their Carbon footprint and

operational costs, while router manufacturers can achieve

higher switching capacity per rack space. In this work, we

examine the impact of packet buffers on the power consump-

tion of backbone router line-cards. We argue that Gigabytes

of always-on SRAM and DRAM buffers account for around

10% of the power, but are actively used only during tran-

sient periods of congestion. We propose a simple and practi-

cal algorithm for activating buffers incrementally as needed

and putting them to sleep when not in use. We evaluate our

algorithm on traffic traces from carrier and enterprise net-

works, via simulations in ns2, and by implementing it on a

programmable-router test-bed. Our study shows that much

of the energy associated with off-chip packet buffers can

be eliminated with negligible impact on traffic performance.

Dynamic adjustment of active router buffer size provides a

low-complexity low-risk mechanism of saving energy that is

amenable for incremental deployment in networks today.

1. INTRODUCTION

The ICT sector consumed 156 GigaWatts, or about
8% of the world’s total electricity consumption, in 2007.
Of this, 14% is attributed to network equipment [1]. In
addition to the large carbon footprint, the power den-
sity of modern core routers is becoming a serious con-
cern for ISPs – a single telecommunications rack today
consumes tens of KiloWatts of power, and requires com-
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plex cooling systems to manage heat dissipation. The
high power consumption and cooling costs account for
a significant fraction of the ISP’s operational expenses.
Though routing equipment is becoming more power ef-
ficient, the increase in efficiency is outpaced by annual
increase in throughput capacity [2], meaning that the
problem is likely to worsen with time.
The gravity of the problem has motivated major chip

vendors, equipment manufacturers, service providers and
academic researchers world-wide to collectively [3] find
ways to manage and reduce the power consumption of
telecommunications networks. The problem needs so-
lutions at multiple levels, ranging from more efficient
chips and components, to higher-level power manage-
ment techniques that turn off (or underclock) compo-
nents and sub-systems at certain times, or even re-
design the Internet for power efficiency. While several
such schemes proposed in the literature have the po-
tential to achieve (individually or in conjunction) con-
siderable power savings, they involve significant archi-
tectural and/or protocol changes in the network. The
cost and risk associated with such drastic changes in-
crease the barrier to adoption by network operators,
thus stretching the time-horizon at which they become
practical for wide-scale deployment. By contrast, in this
paper we propose a power saving scheme that is admit-
tedly more modest in its energy savings (around 10%),
but requires minimal changes to existing router design,
carries little risk of impacting network performance, is
almost entirely transparent to network operators, and
is ready for incremental deployment today.
Our specific focus is on adapting the packet buffer

memories in core routers for improved energy efficiency.
Today’s backbone routers operate with Gigabytes of
packet buffers per line-card to handle worst-case con-
gestion scenarios. We present evidence that such buffers
account for nearly 10% of the power consumed by a typi-
cal router line-card. Further, we examine data collected
over several years from nearly a hundred links in carrier



and enterprise networks, and find that high link-load
(indicative of congestion) is a relatively rare occurrence,
implying that it is wasteful in energy to keep the entire
packet buffer memory always-on. We therefore propose
that router buffer size be adapted dynamically to track
buffer usage, allowing much of the off-chip buffer mem-
ory to be put to sleep when not needed, thus saving
energy. Putting memory to sleep creates the risk of
packet loss that could have been avoided with always-
on buffers. Our scheme can be tuned to reduce this risk
at the expense of reduced energy savings. We validate
our mechanism for dynamic buffer control by analysis,
simulation and experimentation. Specifically, we apply
it off-line to traffic traces from operational networks,
simulate it on-line in ns2 with several thousand TCP
flows, and implement it to operate in real-time on an
experimental platform comprising an FPGA-based pro-
grammable router and hardware-based traffic genera-
tors. Our evaluations show that dynamic buffer control
typically saves most of the energy associated with off-
chip buffering (around 10% of the total energy), with
negligible impact on traffic performance. Our specific
contributions are:
• We argue that the energy costs associated with

always-on packet buffers in today’s routers are nearly
10%. We then present empirical evidence from several
carrier and enterprise networks that link loads (and by
inference buffer occupancies) are low for a large pro-
portion of the time, which presents an opportunity to
adapt router buffer size dynamically to save energy.
• We propose a practical mechanism for dynamic ad-

justment of buffer size. Our aim is to track buffer us-
age while still having some capability to absorb sudden
bursts of packet arrivals. This trade-off between energy
savings and risk protection can be controlled explicitly
in our algorithm.
• We quantify the impact of our scheme in terms

of energy savings and loss/throughput. We apply our
algorithm off-line to traffic traces derived from Inter-
net link data. We then simulate it in ns2, and profile
its impact on TCP performance. Finally, we imple-
ment dynamic buffer adaptation in the gateware of the
NetFPGA-based Gigabit router platform, and demon-
strate its feasibility in a test-bed with realistic traffic.
Our aim is to persuade router manufacturers to incor-

porate dynamic buffer adaptation in core routers, and
for network operators to trial them, as a relatively sim-
ple and safe way of reducing router power consumption.
The rest of this paper is organised as follows: §2

motivates our focus on packet buffers and the oppor-
tunities to reduce their power consumption. Relevant
background research is summarised in §3, while in §4
we present our dynamic buffer adjustment algorithm.
§5 evaluates the algorithm via analysis, simulation and
experimentation. The paper is concluded in §6.

2. THE CASE FOR REDUCING ROUTER

BUFFER ENERGY

In this section we argue why it is worthwhile to focus
on reducing power consumption associated with buffers
in today’s core routers. Our argument is laid out in
three stages: in §2.1, we argue that always-on buffers
account for around 10% of the router line-card’s power
consumption; in §2.2, we present empirical evidence
that link-loads seldom go high (by inference, congestion
is rare) on most links in observed carrier and enterprise
networks; and in §2.3, we derive explicit queue occu-
pancy traces from analysis and simulation to demon-
strate that there is ample scope to save energy related
to packet buffers with low risk of affecting performance.

2.1 Energy Cost of Packet Buffers

Core Internet routers have memory capacity to buffer
over a million packets during periods of congestion. More-
over, at 40 Gbps, a 40-byte packet can arrive every 8
ns. To achieve large storage capacity while meeting
such stringent throughput and latency requirements,
routers need to employ various (off-chip) memory com-
ponents in hierarchical configurations [4]. A core router
line-card today has a few Gigabytes of dynamic RAM
(DRAM), providing the bulk of the packet storage, as
well as several Megabytes of static RAM (SRAM), act-
ing as the packet cache. Focusing first on DRAM, power
calculators from Micron [5], a popular vendor of DRAM
components, show that a state-of-the-art DDR2 SDRAM
chip of 1 Gigabit capacity consumes about a Watt of
power under moderate-stress conditions. At lower work-
loads, i.e. when there are few read/write operations,
the power consumed by DRAM is lower but still non-
negligible. It should also be noted that router manu-
facturers typically use specialised low-latency DRAMs
such as Fast Cycle RAM (FCRAM) and Reduced La-
tency DRAM (RLDRAM), which consume about 40%
more power than mass-market DDR2 or DDR3 SDRAM.
The SRAM, which implements the packet cache, typi-

cally consumes more power than the bulk DRAM buffers:
for e.g., a 4 Megabyte SRAM chip (with synchronous
pipelined burst and with no bus latency NoBL) from
Cypress [6] consumes around 4 Watts. More impor-
tantly, a large fraction of the power consumption of
SRAM is due to the static component arising from leak-
age current, which is largely invariant to the load (i.e.
frequency of read/write operations). Based on these
power specifications, earlier works [7, 8, 9] have esti-
mated packet buffers to account for between 5 and 10%
of the power consumed by a router. As an example,
Cisco’s CRS-1 platform has reported that of the 375
Watts consumed by a line-card, memory accounts for
72 Watts (19%) [10], and around 10% of the total power
of the system is attributable to buffer memory.



In addition to powering the packet buffer memory,
power is also required to drive the memory controller
circuitry that implements the logic to move packets be-
tween main memory, cache memory, and on-chip mem-
ory. As shown in [4], this is particularly challenging in
high-speed routers which typically have long pipelines,
and cache misses (e.g. when a head-of-line packet ready
for transmission is not available in cache) introduce non-
determinism that can cause the system to lose through-
put in unpredictable ways. Other complicating factors
can include multiple output queues (e.g. for class-of-
service support), static (e.g. circular queues) versus
dynamic (e.g. linked-lists) buffer allocation, and mul-
tiple memory channels/banks across which packets are
spread. Memory controllers, which have the intelligence
for managing and moving packets across these buffers,
are typically integrated into custom ASICs on most
routers, making it very difficult to estimate their en-
ergy footprint accurately. A reasonable estimate can be
obtained by noting that the DRAM memory controller
on the AMD Opteron 6100-series multi-core processor
[11]) accounts for 15-20% of the chip’s power consump-
tion. For a network processor such as EZchip NP-4 [12]
(which operates at 50 Gbps and consumes 35 Watts),
DRAM controllers would conservatively account for 5-7
Watts. Bearing in mind that modern routers have com-
plex memory pipelines across DRAM, SRAM, and on-
chip buffers, and often have separate ingress and egress
queueing ASICs (as in the CRS-1), it would be reason-
able to expect that memory controllers consume at least
half as much power as the memory chips themselves.
Based on the above arguments we conservatively es-

timate that the power consumed by packet buffers (i.e.
memory chips and controllers) would amount to around
10% of the total power of a line-card in modern high-
speed routers. This number is high enough to motivate
the study in this paper to optimise the energy consump-
tion of buffer memory, particularly because buffers are
meant to absorb congestion, which is a relatively infre-
quent event in operational networks, as discussed next.

2.2 Link Congestion in Operational Networks

Having seen that buffers consume a non-negligible
fraction of the energy in a core router, we now present
empirical evidence from carrier and enterprise networks
that link loads are quite low for a vast majority of
the time, implying that the buffer capacity built into
routers to deal with worst-case congestion situations
are needed only rarely. We have obtained and anal-
ysed traces of link loads (at granularities of seconds,
minutes, hours, and days) spanning several years, over
nearly a hundred links from backbone and enterprise
networks. In this section, we briefly summarise our ob-
servations from two backbone networks (Internet2 and a
major Tier-1 carrier ISP), and two enterprise networks

(a large University of over 40,000 students and a large
governmental organisation of over 6,000 employees).
The first backbone network we discuss is Internet2

[13], chosen for the comprehensive data it freely pro-
vides on its national long-distance network. We anal-
yse load from over 50 links at 10-second granularity
over the past three years (spanning Nov 2007 to Nov
2010). All links are of 10 Gbps capacity, and our gen-
eral observation was that nearly all links had light loads
(< 30%) most of the time. To depict this, we show
in Fig. 1(a) the complementary cumulative distribu-
tion function (CCDF) of the link utilisation, namely
the probability that in a random 10-second interval,
the load exceeds x% of the link capacity. The top two
curves, corresponding to links from Washington DC to
Atlanta and from Chicago to Kansas, were found to be
amongst the most heavily loaded links in the Internet2
core. In spite of that, the chance that either of these
links had load over 60% in any chosen 10-second in-
terval was no more than one in a hundred. The other
two curves corresponding to Seattle to Los Angeles and
Los Angeles to Salt Lake City, are more typical of most
links on Internet2, with load never exceeding 30%. In
fact the average load on many links was well below 20%.
At this point one may wonder that even if the load

over a 10-second interval is low, there might well be
many spikes in the traffic at smaller time-scales (say
over a millisecond), which use the large buffers in the
router over that interval. While it is very difficult to get
link-load data at time-scales finer than 10 seconds from
operational networks over any sustained period of time,
a simple argument can be made to show that there can
only be a bounded number of such traffic spikes. For
example, say the link load is 20% (or lower) over a 10-
second interval (we found this to be the case most of-
ten), but we are interested in traffic load at a much finer
time-scale, say a millisecond. We can use the Markov
inequality to bound the number of 1 millisecond slots
that have high loads: the Markov inequality states that
P (X > nE[X]) ≤ 1/n for non-negative X, and hence
at most one-third of the 1 millisecond slots within that
10 second interval can have a load greater than 60%,
which means that at least two-thirds of the slots have
a load lower than 60% (the bound is quite loose and in
reality many more slots would have a low load). Thus
no matter what the time granularity we pick, there will
be sufficient intervals of low load, which is a strong in-
dicator that the buffers for that link would be occupied
minimally during most periods.
In Fig. 1(b) we plot the CCDF of load on four links

belonging to a major Tier-1 ISP. The data for these
plots was obtained from CAIDA, and spans a period of
two years (2008-2010). For three of the links, the load
never exceeds 60%, and it does so with a 5% probability
for the fourth link (Chicago to Seattle). This should not
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Figure 1: CCDF of link load from two backbone networks
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Figure 2: CCDF of link load from two enterprise networks

come as a surprise, since carriers in general know their
traffic profiles quite well, and provision their links to en-
sure that loads are not consistently high. Nevertheless,
the data corroborates that links in carrier networks to-
day typically have low load for the most part, suggesting
that large buffers in core routers are used rarely. Note
that this does not preclude transient spikes in link loads
during which times large buffers may well be put to use.
We also obtained comprehensive load data for sev-

eral links in two enterprise networks: a large University
(UNSW) of 40,000+ students, and a large government
organisation (CSIRO) of 6000+ employees. Fig. 2(a)
shows the CCDF of load (in each direction) on the
University’s external link (to the Internet) and on an
internal link within the campus (the load in the two
directions was mostly symmetrical and hence only one
direction is shown in the figure), measured at 5-minute

intervals over a six-month period (July-Dec 2010). All
links had 1 Gbps capacity, and as the figure shows, the
loads never exceeded 25%. Fig. 2(b) shows the CCDF
of link loads on external (to Internet) and internal (be-
tween sites) links in the government organisation’s net-
work spanning several cities spread across Australia,
and again shows that links (of 1 Gbps) had low loads
(< 20%) for much of the time.

2.3 Buffer Occupancy - Analysis / Simulation

The previous subsection only depicted link load, which
is an indirect measure of congestion. In this subsection
we explicitly depict router buffer usage, derived from
analysis of the traffic load traces and ns2 simulations.

2.3.1 Trace Analysis

Our first approach is to take link load data from
operational networks, and generate synthetic traffic of
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Figure 3: 10-min link load and buffer occupancy traces (Poisson, LRD models) on an Internet2 link
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Figure 4: Buffer occupancy from ns2 of 1000 and 5000 TCP flows sharing a 1 Gbps core link

matching load, which is then fed into a FIFO queue
simulation to generate the buffer occupancy trace. We
used two models for generating traffic – a simple Poisson
model and a more sophisticated long-range dependent
(LRD) model that uses an underlying fractional Gaus-
sian noise (fGn) process with Hurst parameterH = 0.85
(the model is described in more detail in §5.1.1). To
illustrate the outcome, we consider the Internet2 link
from Chicago to Kansas, and show in Fig. 3(a) the load
on that link over a 10-minute period of high load (reach-
ing 96%) observed on 17 Sep, 2009. We used our Poisson
and LRD models to generate traffic with matching rate
(that changes every 10 sec), and show in Fig. 3(b) the
buffer occupancy derived by feeding the packet trace to
a FIFO queue simulation (for computational tractabil-
ity we scaled the link speed down from 10 to 1 Gbps).
As the figure shows, under the Poisson model, buffer
occupancy barely exceeds 40 KB, while with the LRD
model, the buffer occupancy shows more burstiness, and
is seen to spike occasionally to over 500 KB (which cor-
responds to about 4 ms of buffering at the link rate).
The point being made is that the traffic loads we are
observing on links in operational networks can lead to

large excursions in buffer occupancy, but these are very
rare, and it would seem wasteful in energy to have all
buffers active at all times to deal with such rare events.

2.3.2 ns2 Simulation

To corroborate that buffer occupancy fluctuations can
be seen with closed-loop TCP traffic, we conducted tens
of simulations in ns2. Space constraints limit the ob-
servations we can report from various topologies, link
speed settings, number of flows and mixes of short- and
long-lived flows. We consider one specific scenario with
TCP flows from 1000 users multiplexing at a 1 Gbps
core link. A vast majority of the TCP flows were short-
lived, transferring files with Pareto distributed sizes and
having exponential think times between transfers. The
scenario is described in more detail in §5.2. In Fig. 4
we plot the queue occupancy for two link loads over a
five second interval: Fig. 4(a) has 5 flows per user (5000
flows in total) creating a load of 91%, while Fig. 4(b)
has 1 flow per user (total 1000 flows) creating a load of
41%. In both cases the buffer size was set to 31.25 MB,
corresponding to the delay-bandwidth product. The
heavy load scenario shows buffer occupancy to be high



much of the time (between 5-25 MB), which presents
reduced opportunity for putting buffers to sleep to save
energy. The low load scenario on the other hand shows
that buffer occupancy seldom exceeds a few tens of KB.
This scenario presents ample scope to save energy by
putting off-chip buffers to sleep for much of the time.

3. RELATED WORK

In recent years there have been many proposals to
reduce the energy consumption of telecommunications
networks. Some works recommend that energy effi-
ciency be a major consideration in the network design
stage [14, 15], such as in choosing appropriate combina-
tions of grooming at the optical WDM layer and switch-
ing at the IP layer to reduce overall network energy con-
sumption [14], and in choosing the configuration of in-
terfaces and chassis to achieve the desired switching ca-
pacity [15]. Other approaches suggest selectively turn-
ing off or underclocking network elements such as inter-
faces and line-cards [16] to save energy during periods
of low load, and yet others suggest new routing mecha-
nisms [17, 18] to redirect traffic towards “greener” areas
of the Internet (such as powered by renewable sources).
We refer the reader to a recent survey paper [19] for a
more comprehensive discussion of proposals for energy
conservation in telecommunications networks. While all
the above approaches hold promise for substantial en-
ergy savings, they require major architectural and/or
protocol changes to the network (e.g. delaying packets
to aggregate them into bursts, and new routing proto-
cols). These incur high costs and/or overhead for ISPs,
making them less likely to be deployed in the imme-
diate future. By contrast, our approach in this paper,
though providing more modest energy savings (around
10% by our estimate), requires very minimal changes
and is virtually transparent to operators and users of
the network, and stands a much better chance of incre-
mentally being deployed in the short term.
Our work also draws inspiration from recent debates

on buffering capacity required at core Internet routers.
Studies have suggested that buffers can be safely re-
duced by two to three orders of magnitude [20], and
even made as low as a few tens of packets [21]. While
the debate about the right amount of buffering required
at a router continues (we refer the reader to our survey
article on the topic [22]), reality remains that vendors
continue to build routers with large buffers. That be-
ing the case, our approach, whereby router buffers are
dynamically activated only when needed (thereby con-
serving energy), is likely to be more palatable to oper-
ators, since it eliminates the risk of adverse impact on
traffic performance while still yielding a tangible bene-
fit in terms of energy savings. Moreover, since we ad-
just buffer size at run-time (rather than build-time),
ISPs can gradually become comfortable with the idea
of operating with reduced active buffers (which they

can control in our algorithm), making them more likely
to adopt routers built with smaller buffers in the future.
To the best of our knowledge our work is the first to

propose dynamic adaptation of router buffer size with
the primary aim of reducing energy consumption. Ear-
lier works such as [23] have proposed to adapt buffer size
primarily for meeting pre-specified loss criteria, delay or
utilisation bounds. Our approach is also different: we
do not use feedback-based schemes (which may warrant
new protocols) or operator input (since they are quite
likely to ask for zero loss and maximum throughput),
but instead try to make the buffer size adaptation nearly
invisible to the operator (i.e. the operator does not per-
ceive any noticeable effect on traffic performance).

4. DYNAMIC BUFFER ADJUSTMENT

We now develop a simple and practical dynamic buffer
adjustment algorithm. We begin by describing our buffer
architecture (§4.1), its energy model (§4.2), and then
present our algorithm (§4.3) and its analysis (§4.4).

4.1 Buffer Architecture

The focus in this work is on egress packet buffers,
which absorb output link congestion, and ingress buffers,
that can also absorb (link or fabric) congestion in archi-
tectures supporting back-pressure. We do not consider
buffers that internally segment and reassemble pack-
ets for transmission across the switching fabric(s). The
architecture of packet buffer memory varies from one
platform to another, and in this paper we consider a
fairly generic three-level hierarchical model (taken from
[4]). As shown in Fig. 5, it consists of on-chip (within
the Network Processor (NP) or ASIC) buffers, off-chip
cache (SRAM), and off-chip bulk memory (DRAM).
We assume that the on-chip buffer memory has ca-
pacity BI , typically a few tens or hundreds of Kilo-
bytes (for example EZchip’s 10-Gbps NP has 256 KB
of on-chip packet memory while the Metro NP used
in Cisco’s CRS-1 router can hold 188 packets on-chip).
The SRAM cache capacity is denoted by BS , of the or-
der of a few Megabytes, while the bulk DRAM has ca-
pacity BD, of the order of several Gigabytes. The buffer
memory can support multiple FIFO queues (per inter-
face and/or class-of-service), and head and tail blocks
of packets for each queue are moved between memory
hierarchy levels as needed in a pipelined fashion.
To meet the speed and latency requirements (for ex-

ample at 40 Gbps a packet can arrive every 8 ns), a
number of memory banks or chips are employed in par-
allel. To illustrate this in the architecture, Fig. 5 shows
four SRAM chips, each with 16 data-pins, that operate
in parallel to present a 64-bit data bus to the network
processor (via the controller) for increased throughput.
Since DRAM is slower than SRAM (by a factor of four),
DRAM is accessed via a wider data bus – the figure
shows DRAM organised as a 4 × 4 grid, with multiple
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chips within a row operating in parallel to increase data
width, while each successive row adds to buffer depth.
A packet stored in off-chip memory will therefore strad-
dle all chips within one row of DRAM (or SRAM). In
practice, each row (or each column, depending on the
data-bus widths inside the router) of DRAM chips could
be realised with a dual in-line memory module (DIMM).
The data-bus widths and number of memory chips in
the figure are chosen merely to illustrate the concept,
and would need to be adapted when analysing a specific
routing platform. To be generic, we use NR to denote
the number of rows of DRAM chips in this organisation.
Memory controllers are typically integrated into cus-

tom ASICs, and there are often several concurrent con-
trollers; however, for ease of depiction we have shown a
single aggregated controller for DRAM and similarly
for SRAM. Our algorithm will put to sleep or acti-
vate an entire row of memory chips (DRAM or SRAM).
As buffer occupancy falls, DRAM row-3 can be put to
sleep, followed by row-2, and so on, till at some point
the entire DRAM (and its controller) may be placed
in the sleep state. Conversely, when buffer size needs
to grow, row-0 is activated first (along with the con-
troller), followed by row-1, and so on. We note that the
FIFO nature of queues ensures that successive packets
can be stored in successive memory locations – such
compaction permits unused rows of memory chips to
be put to sleep. The DRAM controller is put to sleep
if and only if all DRAM memory chips are in the sleep
state, and likewise for the SRAM. Based on data-sheets
of SRAM and DRAM components, we estimate that
it takes no more than 50µs to switch on (i.e. to bring
from inactive to active state) the SRAM (controller and
memory), and likewise about 500µs for the DRAM.

4.2 Energy Model

The power consumed by DRAM is highly dependent
on the frequency of read/write operations. To keep our
energy model simple we approximate the DRAM as be-

ing in one of three states: active (i.e. high frequency of
read/write operations), idle (i.e. little or no read/write
operations), and sleep (i.e. read/write disabled). Each
row of DRAM (as shown in Fig. 5) of capacity 2 Giga-
bits consumes 2W when active, 200mW when idle, and
20mW when asleep – these numbers are derived from
Micron [5] DDR2 specifications. As shown in the figure,
larger DRAM buffer (1 Gigabyte in this case) is realised
using multiple rows of DRAM chips (4 rows of 2 Giga-
bits each), and the power therefore scales linearly with
buffer size. The DRAM controller, which controls the
entire DRAM buffers, is assumed to consume half the
power of the entire DRAM memory, namely 4W when
active (i.e. when any row of DRAM is active), 400mW
when idle (i.e. when no row of DRAM is active), and
40mW when asleep (i.e when all DRAM rows are in
sleep state). We believe this model for DRAM power
consumption is simple yet realistic, and can be cus-
tomised to the architecture of the specific router whose
buffer memory is being optimised for energy.
The power consumption of SRAM comprises two parts:

a static component due to leakage current that increases
with the number of transistors, and a dynamic compo-
nent that is proportional to switching frequency (i.e.
read/write operations). As the static power dominates
[24], for simplicity our model assumes that the SRAM
power is invariant to workload. We therefore consider
SRAM to be in one of two states: active and sleep. For
an SRAM of size 4 MB, we assume the active and sleep
state powers to be 4W and 40mW, respectively. These
are derived from Cypress [6] data-sheets. As before, the
SRAM controller is assumed to require half the power of
the SRAM (2W when active and 20mW when asleep).
In our evaluations further on in this paper, the base-

line power (i.e. one which does not employ our energy
management scheme for putting packet buffer elements
to sleep) is estimated by assuming that SRAM is al-
ways active, and a row of DRAM is active or idle de-
pending on whether the buffer occupancy spills over to
that row or not. Our algorithm additionally puts both
SRAM and DRAM rows into sleep state, and the re-
sulting power savings are expressed as a percentage of
the baseline. We only consider the power consumption
of off-chip buffer memory; the on-chip buffers internal
to the network processor are assumed to be always-on,
and their energy is therefore not explicitly modeled.

4.3 Algorithm for Dynamic Buffer Adjustment

To save maximum energy, it is desirable to have the
active buffer capacity track the actual queue occupancy,
and to put to sleep any off-chip buffer memory that is
not needed. However, the risk in doing so is that if a
sudden burst of traffic arrives, there may not be suffi-
cient time to activate buffer memory without dropping
packets from this burst. In order to control how ag-
gressively or conservatively we want to track the buffer



occupancy, we introduce a parameter α ∈ [0, 1) in our
algorithm. The broad idea is to make the total active
buffer capacity B at any time instant stay between the
lower bound of Q (the current queue occupancy) and
upper bound of BI +BS +BD (the maximum available
buffer space). One simple way to do this is to use a
linear combination of the two extremes, i.e. set B =
αQ+ (1− α)(BI +BS +BD). Choosing the extremely
conservative setting of α = 0 sets active buffers to max-
imum available buffers, essentially disabling power con-
trol. On the other (aggressive) extreme, choosing α = 1
would make the active buffer capacity track the exact
queue occupancy – this would be equivalent to saying
that buffer space is created (by activating memory) as
and when a packet arrives. Since memory takes non-
zero time to become active, this would result in high
loss. Choosing α in [0, 1) allows the energy versus loss
trade-off to be controlled. Our algorithm is presented
formally below, taking into account that memory can
only be activated/put to sleep in discrete quantities (i.e.
capacity of the SRAM or DRAM row):

Algorithm 1 Determine active buffer size B (in bytes)

Inputs: Constants: α, BI , BS , BD, NR

Variable: current queue occupancy Q
Output: Buffer capacity B that should be active

1: if Q < αBI then
2: B = BI /* on-chip buffers only */
3: else if Q < α(BI +BS) then
4: B = BI +BS /* on-chip and SRAM buffers */
5: else
6: BA = (1− α)BD + αmax{0, Q−BI −BS}
7: KD = ⌈ BA

BD/NR
⌉ /* number of DRAM rows */

8: B = KD.BD/NR +BI +BS

9: end if
10: output B

The algorithm above takes as input the user param-
eter α and the current queue occupancy Q (in bytes).
If the queue occupancy is found to be low, i.e. on-chip
buffer occupancy is below fraction α (step 1), all off-chip
buffers are put to sleep (step 2). Otherwise, if occu-
pancy of the on-chip and off-chip SRAM is below frac-
tion α (step 4), only on-chip and SRAM buffers are kept
on. If it is deemed that DRAM needs to be on (step 5),
the desired DRAM capacity BA is computed as a linear
combination of the total DRAM capacity (weighted by
1−α) and the current DRAM occupancy (weighted by
α) in step 6. The number of rows of DRAM chips that
need to be active to achieve this desired DRAM capacity
is deduced in step 7, and the corresponding buffer size
in bytes (including on-chip, SRAM and DRAM buffers)
is determined in step 8 and returned in step 10.

4.4 Discussion

Our algorithm is relatively easy to implement in hard-

ware. It is executed whenever the queue occupancy Q
changes, either due to packet arrivals or departures. If
1−α is chosen to be a negative power of 2 (e.g. α = 0.75
or 0.875), all steps can be performed without any mul-
tiplication or division operations, since the product in
steps 1 and 3 can be precomputed for given α, and
steps 6-8 can be realised using shift and add opera-
tions. When the algorithm returns an active buffer size
B higher than is currently active, an additional mem-
ory row (i.e. SRAM or a row of DRAM) is activated.
Likewise, when the required buffer size computed by the
algorithm is lower than the current active buffers, the
corresponding row of memory chips (i.e. SRAM or of
DRAM) is put to sleep. However, to prevent memory
components toggling between active and sleep states in
quick succession, it is wise to have some hysteresis pro-
tection; specifically, our implementation (described in
§5) mandates that any memory component, once ac-
tive, should not be put to sleep for at least 1ms.
Though it is easy to envisage more complex algo-

rithms for determining the best buffer size, such as by
attempting to predict how queue occupancy will evolve,
we believe they will be too complex for real-time hard-
ware implementation. We have intentionally chosen to
keep it simple, and have strived to have only one user
input parameter α. There are however some unavoid-
able risks in turning buffer memory elements on/asleep
to save energy. In the worst-case, on-chip buffers of size
BI = 100 KB can go from zero to full occupancy within
1.25µs at input rate of 640 Gbps (if each of the 16 CRS-
1 line-cards sends traffic at 40 Gbps to the same egress
line-card), which is much faster than the SRAM turn-on
time of 50µs. Likewise, SRAM of capacity BS = 4 MB
can fill within 50µs at 640 Gbps, an order of magnitude
quicker than the DRAM turn-on time of 500µs. How-
ever, such worst-case scenarios are exceedingly improb-
able, and were never observed in the traces, simulations,
and experiments we describe in §5. To protect against
typical bursts of packets that need to be absorbed while
buffer memory is being activated, we found that us-
ing α ∈ [0.8, 0.9] ensured sufficient vacant buffer space
for such transients, while still saving significant energy.
The router manufacturer may set α at a default value
in this range, and network operators can tune it if they
prefer a different trade-off point between the benefit
(of energy savings) and risk (impact on traffic perfor-
mance). The next section evaluates our algorithm via
trace analysis, simulation, and experimentation.

5. EVALUATION

We use three methods to evaluate our algorithm: off-
line application to traffic traces generated from real In-
ternet data (§5.1), on-line simulation of TCP flows in
ns2 (§5.2), and real-time implementation on an experi-
mental testbed of NetFPGA routers (§5.3).



5.1 Off-Line Trace Analysis

For our off-line study we generated synthetic Poisson
and long range dependent (LRD) traffic traces using
time-varying load obtained from empirical data in car-
rier and enterprise networks (as discussed in §2.2). The
packet trace was fed into a simulation of our algorithm,
and the resulting performance metrics such as power
savings and packet loss ratios were obtained.

5.1.1 Traffic Generation

For each link considered, we generated Poisson and
LRD traffic with mean rate varying as per the link load
trace for that link. For example, the load on the Inter-
net2 link from Chicago to Kansas (depicted in Fig. 3(a))
is measured every 10 sec, and we therefore changed
the mean rate of the generated traffic over each 10-
sec interval to match the measured load. Traffic from
the Poisson model did not exhibit sufficient burstiness
to cause queue occupancy to go high (as confirmed in
Fig. 3(b)), and henceforth we concentrate on the LRD
model, which generates burstiness more reflective of In-
ternet traffic. Our LRD traffic generator (derived from
Norros’ self-similar traffic model [25]) combines a mean
arrival rate that is constant over each 10-sec interval
with fractional Gaussian noise (fGn) having Hurst pa-
rameter H ∈ [1/2, 1). We use the filtering method from
[26] to generate long sequences of normalised fGn (zero
mean and unit variance) samples with H = 0.85. These
samples are scaled and added to the desired mean vol-
ume of traffic in each discretization interval, and the re-
sulting fluid volume is accumulated into packets of vari-
able size with distribution derived from CAIDA’s mea-
surements over 87 million packets at the NASA Ames
Internet Exchange (AIX) [27]. We note that to generate
traffic traces for sufficiently long periods (> 10 min), we
had to scale the 10 Gbps links down to 1 Gbps.

5.1.2 Dynamic Buffer Adaptation

The packet trace derived as described above from the
measured link load was fed to our algorithm for dy-
namic buffer size adjustment. The measured link loads
were very low for the most part, and to illustrate our
algorithm we pick here a 10-min period, observed on
17 Sep, 2009, of relatively heavy load on the Chicago
to Kansas Inernet2 link. The load and corresponding
queue occupancy have already been shown in Fig. 3,
and it was seen that even in this period of relatively
heavy load, queue occupancy does not exceed 600 KB.
This would easily fit in on-chip and off-chip SRAM, and
there would not be any need for storing packets in off-
chip DRAM buffers. Nevertheless, to illustrate the op-
eration of our algorithm, we assume that the router has
capacity to buffer 16 KB on-chip, 80 KB in off-chip
SRAM, and 512 KB in off-chip DRAM (organised as
shown in Fig. 5). In Fig. 6 we show a trace of the buffer
occupancy and buffer size set by our algorithm over a
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Figure 6: Trace of buffer occupancy and active
buffers for α = 0.8 and 0.9 from algorithm

chosen 2-sec interval. As the figure shows, the buffer
size is initially set at 16 KB (i.e. all off-chip buffers are
in the sleep state). As the buffer occupancy increases
(at around 179.2 sec), the algorithm reacts by first ac-
tivating SRAM and then successively each of the rows
of DRAM, which subsequently become inactive when
the buffer occupancy falls beyond 180.2 sec. The im-
pact of parameter α on how aggressively the algorithm
tries to save energy can also be seen: there are several
instances where the α = 0.9 curve is seen to track the
actual occupancy curve more closely than the α = 0.8
curve. Two things to note here are: there are instants
where the buffer occupancy overshoots the buffer size
(e.g. at around 179.5 sec, see inset) since it takes time
to activate each memory element, and this causes loss
that could have been avoided if buffers were always-on.
Second, while we have chosen a narrow period of par-
ticularly high load, in general loads are quite low and
much of the off-chip memory can safely be put to sleep,
saving most of the off-chip buffering energy. This trade-
off between energy-savings and loss is quantified next.

5.1.3 Power vs. Loss Trade-Off

Continuing with our above example of traffic on Inter-
net2’s Chicago to Kansas link, we applied our algorithm
off-line to the trace with various values of the parameter
α to measure power savings and impact on packet loss.
When α = 0, the algorithm is effectively turned off. We
progressively increased α, and found that for α < 0.7,
the power savings were not very significant (typically
< 50% because the SRAM was active for over 80% of
the time), and alongside there were no packet losses in-
duced by the algorithm. This is because at low values
of α the algorithm is very conservative, and activates
off-chip memory well in advance of the on-chip buffers
overflowing. The SRAM state transition frequency (i.e.
from active to sleep and vice-versa) varied between 5
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Figure 7: Power-savings versus loss trade-off

and 10 times/sec, while it was < 1 for the DRAM rows.
For the range α ∈ (0.7, 1), the performance of the al-
gorithm is depicted in Fig. 7. Taking the point corre-
sponding to α = 0.8, we found that our algorithm ac-
tivated SRAM for only 2.66% of the time (significantly
lower than when α = 0.7), and the four DRAM rows
for 0.83%, 0.61%, 0.20% and 0.05% of the time, respec-
tively. We found that SRAM toggled between states
62.4 times/sec, while the DRAM rows toggled states
between 0.1-2.7 times/sec. While the baseline power
consumption was 6.66W, our algorithm reduced the av-
erage power consumption to 0.34W, which is only about
5.17% of the baseline power. However, this comes at
the cost of increased packet loss due to sudden bursts
arriving when the buffer memory is in the sleep state:
for α = 0.8, there is loss for about 2 × 10−5 packets
(which is within the tolerance of 10−3 typical of many
SLAs, e.g. [28]). The figure shows that as α increases to
1, power consumption (left axis) falls, while loss (right
axis) increases. The operating point on this trade-off
curve can be chosen by the operator, and will depend
on the memory configuration and size, as well as traffic
characteristics, cost of power, and criticality of traffic.

5.2 On-Line ns2 Simulations with TCP

Though the previous study demonstrated tangible
benefits when dynamic buffer adaptation was applied
off-line to traces from operational networks, it did not
tell us how losses would affect TCP performance, which
carries over 90% of Internet traffic. We therefore in-
corporated our algorithm in ns2 and ran several tens of
simulations with different topologies, link speeds, num-
ber of flows, and mixes of long-/short-lived TCP flows.
Here we present results for a small subset of scenarios to
illustrate the efficacy of dynamic buffer adaptation with
a realistic traffic mix under different loading conditions.
The topology we used comprised of a three-level hi-

erarchy: one core bottleneck link fed by 50 edge links,
with each edge link aggregating traffic from 20 access
links. There were thus 1000 source hosts generating
TCP traffic. The core and edge links had capacity 1
Gbps, while the access links had capacity uniformly dis-

Workload Load AFCT Power saved
Low 21.5% 2.233 sec 97.4%

Medium 41.1% 2.244 sec 97.2%
High 59.8% 2.250 sec 83.4%
Heavy 78.6% 2.295 sec 52.9%

Very heavy 90.9% 2.757 sec 11.6%

Table 1: Power savings and average flow com-
pletion times (AFCT) from ns2 simulations

tributed in [100, 300] Mbps. The mean RTT for the
flows was 250 ms. The total number of TCP (Reno)
flows was varied from 1000 to 5000 (by varying the
number of flows per user) to simulate different loading
conditions. Our simulations comprised of both short-
and long-lived flows. The former models HTTP trans-
fers with Pareto distributed file-sizes (mean 100 KB
and shape parameter 1.2) and exponentially distributed
think-times of mean 1 sec, while the latter represents
persistent FTP transfers. The number of long-lived
flows (50) accounted for only a small fraction of the
total number of flows. These parameter settings are
consistent with prior literature and based on measure-
ment studies of Internet traffic. The maximum win-
dow size was set to a very large value so that transfers
are never limited by the window size. Our simulations
ran for over 180 sec, and all links were equipped with
delay-bandwidth buffers. The simulation settings (link
speeds, number of flows) are at the limit of the memory
and CPU constraints available on our ns2 environment.
A sample trace of queue occupancy obtained via sim-

ulation from two of the above representative scenarios
have already been shown in Fig. 4. We repeated the sim-
ulations with our algorithm for dynamic buffer adapta-
tion (implemented at the core link), and tried parameter
settings α in [0.75, 0.95]. The results are summarised in
Table 1. At low to medium workloads (up to 41%) the
off-chip SRAM and DRAM buffers were used very spar-
ingly (≈ 0.25%), thus saving over 97% of the off-chip
buffering energy. There were no packet losses induced
by buffers turning active/asleep, and so the average flow
completion time (AFCT) for HTTP flows was identical
to the case when all buffers were always-on. In addition,
all values of α in [0.75, 0.95] gave identical results.
Next, when the load went relatively high (i.e. 59.8%),

we observed that the off-chip buffers were used about
12.3% of the time. In spite of this, our algorithm re-
sulted in over 83% energy savings. It however induced a
very small fraction of packet loss (of the order of 10−7),
which barely increased AFCT by a few ms. Even under
heavy workload regime (corresponding to 78.6% load),
we found that our algorithm could save over 50% of the
off-chip buffering energy as the SRAM/DRAM buffers
were used for only 40% of the time. Increase in packet
loss (of 10−6) and AFCT (< 4 ms) were also negligible.
Finally, under very heavy load (> 90%), off-chip buffers



were (unsurprisingly) used nearly 82% of the time, and
power savings are limited to about 11%. Even for this
scenario, our algorithm induced very small loss (i.e.
< 10−6, which is again within the tolerance of typical
SLAs [28]), and AFCT was barely affected (by no more
than 6 ms). These results clearly show that our algo-
rithm performs well across a wide range of workloads
with negligible impact on TCP traffic performance.

5.3 Real-Time Implementation in a Router

The aim of this section is to demonstrate the fea-
sibility of deploying our scheme in hardware, and to
quantify the power savings in the presence of real TCP
traffic. To do so, we consider the programmable NetF-
PGA platform in conjunction with hardware-based traf-
fic generators and delay emulators, as described next.

5.3.1 Implementation and Set-Up

Our algorithm is implemented in the hardware data-
plane using Verilog and extends the gateware available
at the NetFPGA website for router buffer sizing studies
[29]. Specifically, we incorporated our algorithm in the
evt capture oq plugin.v file located in the output queues
module. Since the gateware provides 512 KB of out-
put queue capacity (internally implemented on off-chip
SRAM), we evaluated our algorithm by partitioning this
buffer capacity (virtually) into 16 KB of on-chip, 48 KB
of SRAM, and 448 KB of DRAM buffers respectively,
organised as four rows (as shown in Fig. 5). The al-
gorithm is executed at every packet arrival or depar-
ture instant to determine the size of buffers that should
be active. The queue size register oq queue full thresh,
whose value determines the capacity of the output queue,
is then updated by the algorithm which takes effect after
a few clock cycles. Note that our implementation does
not explicitly put memory elements to sleep nor does
it artificially introduce delays to model memory state
transition latencies. The objective of our experimental
work is to demonstrate the feasibility of implementing
our scheme in hardware and quantifying the potential
power gains. We tried various settings of α, and the re-
sults described are for α = 0.8, which was found to yield
a good balance between power and loss performance.
The hardware packages several (typically 340) events

at the output queue into a special “event packet” that
is sent to the host software for display on the GUI. We
extended the software to extract the queue size infor-
mation and also log all queuing/dequeuing events, so we
can plot and analyse them. For our tests the focus was
on a single output link at the NetFPGA router. Since
the NetFPGA has only four ports, to emulate a large
fan-in we rate-limited the output port; this also lets us
make that port a bottleneck link for some tests.

5.3.2 Validation with UDP Traffic Burst

The first objective is to validate our hardware imple-
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Figure 8: Buffer adjustment for UDP burst

mentation. To this end we rate-limited the output port
to 62 Mbps and fed in a burst of UDP traffic at four
times the output link rate. The burst was generated
using a high-precision hardware-based IXIA [30] traf-
fic generator. Fig. 8 shows (lower blue curve) how the
queue occupancy rises from being empty to nearly full
(about 500 KB) in just a couple of ms. Our algorithm
is able to detect and respond to these changes in real-
time. The figure denotes (upper red curve) the active
buffer size triggered by the algorithm during various
stages of the UDP traffic burst. At its peak, the active
buffers hits the maximum available buffer size of 512
KB. Once the input burst stops at 2782 ms, the output
queue begins to drain and goes empty after roughly 62
ms. The algorithm keeps track of the changes in queue
occupancy and adjusts the active buffer size accordingly
(the red step lines), finally setting it to 16 KB (the on-
chip buffer size) when the queue occupancy hits zero.

5.3.3 Power Savings with TCP Flows

In this experiment we had 150 concurrent TCP flows
(generated using Iperf) sharing the 123 Mbps link un-
der observation for 180 sec. The RTT was set, using
a hardware-based delay emulator from Anue Systems
[31], to 35 ms so that the 512 KB of available buffers
corresponds to the delay-bandwidth product. To em-
ulate network conditions where this link may or may
not be the bottleneck at all times, we introduced on-off
UDP traffic (using IXIA) in another downstream link so
that the link under observation toggles between being
and not being a bottleneck every few sec.
With our algorithm running on the NetFPGA, the

output queue occupancy trace and the dynamically ad-
justed buffer size over a 7-sec interval for a chosen run
are shown in Fig. 9. The link is a bottleneck at around
86 and 90.1 sec, when the queue occupancy rises above
400 KB (all 4 DRAM rows are active), while the link
is clearly not a bottleneck between 87-89 sec, when the
queue occupancy is just a few KB (only SRAM gets
activated). It is seen that our algorithm adapts dynam-
ically to buffer occupancy.
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The algorithm used SRAM buffers 44.3% of the time,
while DRAM rows 1-4 are used 38.7%, 27.6%, 17.5%
and 7.6%, respectively. This corresponds to a saving of
nearly 40% of the off-chip buffering energy. The reader
may note that the 40% energy savings for this scenario
(88.7% load) are larger than the 11% savings for the
similar simulation scenario (90.9% load, see Table 1)
of the previous section – this is explained by the fact
that in the current scenario the link toggles periodically
between being and not being a bottleneck link (unlike
the simulation scenario in which the link stays a bottle-
neck), and this fluctuation in load (for the same mean)
presents increased opportunity for energy savings.

6. CONCLUSIONS

We believe that much of the off-chip packet buffer
energy (typically 10% of the total line-card energy) in
backbone routers can be saved by selectively putting
to sleep memory components when not needed. While
packet buffers are just one component of a router, and
the energy savings from our proposal are thus limited to
around 10%, this reduction comes at virtually no cost:
the hardware/software changes required for dynamic
buffer size adaptation are minimal. Since these changes
are contained within a router, the scheme can be de-
ployed incrementally today without requiring any new
network protocols or architectures. The risk of affect-
ing traffic performance is also minimal, since losses will
only happen during transients when the memory com-
ponents are transitioning from sleep to active state, and
these can be mitigated to some extent by adjusting the
threshold parameter α in the algorithm. The scheme is
therefore almost fully transparent to the operator and
the user of the network. We hope our work can per-
suade router manufacturers and operators to consider
dynamic buffer size adjustment as a relatively safe and
easy way of reducing power consumption.
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