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Abstract—Recent research has demonstrated that two commu-
nicating parties can generate shared secret keys by exploiting
characteristics of the wireless fading channel between them.
These channel characteristics are symmetric, dependent on po-
sition and orientation, highly sensitive to motion, and cannot
be deduced in detail by an eavesdropper. One problem with
this approach, however, is that over small channel sampling
intervals, successively sampled values are correlated in time,
which therefore yields keys with reduced entropy. In this paper,
we undertake experiments to determine the efficacy of using
channel hopping to increase diversity and improve secret key
entropy, in the context of body area networks.

We conduct extensive experiments using off-the-shelf IEEE
802.15.4 devices, mounted on the human body, in a real indoor
environment. Our experimental results show that: (i) channel
hopping increases frequency diversity and effectively decorre-
lates successive channel samples, significantly increasing entropy
(at minimum approximately 20%) and thereby improving the
strength of the secret key, (ii) the benefit can be maximized by
devising a hopping strategy that takes into account the number
of channels available, the spacing between them, and the activity
of the user.

I. INTRODUCTION

In recent years there has been increasing application of

body area networks for healthcare and sports fitness. Wear-

able sensor devices such as the Toumaz Sensium [1] and

FitBit [2] measure the user’s vital signs (such as heart rate,

temperature, blood glucose level, etc.) or profile his activity

and wirelessly communicate the information to a remote

basestation. Securing this date is essential given the strict

ethical and legal obligations attached to medical and personal

data. However, these miniature devices are severely limited

in resources and public-key mechanisms prove too expensive

in terms of computation, memory, and overhead, for frequent

use [3]. Designing lightweight security mechanisms for these

devices is still an open research area.

The problem we examine in this paper is that of secret

key agreement. To secure communication, two parties need

to be in possession of a shared secret. The Diffie-Hellman

key exchange is typically used for this purpose, but results

[4] have shown that it is not very practical for small devices.

A promising alternative approach [5] is exploiting the unique

properties of the wireless channel between two communicating

devices. Wireless communication is fundamentally insecure

but the channel between two communicating parties is unique

to them and symmetric [6]. If one party, say Alice, transmits to

Bob, the signal traverses multiple paths, experiencing different

degrees of attenuation and phase shift, and Bob receives the

summation of these multipath signals. If Bob responds in

the exact same conditions, Alice’s impulse response would

be highly correlated to Bob’s. This shared information can

be used to generate a secret key. A third party, Eve, lo-

cated at least half a wavelength away from either Alice or

Bob, eavesdropping on all transmissions, measures a different

channel, and for a dynamic multipath environment, and it

is near-impossible to guess Alice-and-Bob’s channel impulse

response.

Physical layer secret key generation schemes typically com-

prise four stages: two communicating parties continuously

sample the channel by exchanging probe packets and mea-

suring reciprocal channel state. These channel estimations are

then quantized to yield key bits. However, mostly due to

small-scale noise effects (that are random and uncorrelated)

some generated bits may disagree between the two parties, and

an information reconciliation process corrects the mismatch

by exchanging feedback. Additionally, some bits may be

correlated and privacy amplification is used to minimize

this advantage for an eavesdropper typically by employing a

transform operation.

In existing work, there are limitations on how frequently

Alice and Bob sample a single channel, thus limiting the

secret bit generation rate. The interval over which the channel

impulse response is constant is known as the coherence time

of the channel, and if successive sample values are collected

within this interval, they will be highly correlated. This has

the effect of reduced entropy and weaker keys. To counter this,

researchers have either prescribed compute-intensive privacy

amplification protocols [7], used multiple antennas to increase

path diversity [8], or sampled the channel at very slow rates

[9].

We consider the fact that existing off-the-shelf radio devices

can be enabled to communicate over a number of discrete

channels (14 for WiFi, 16 for 802.15.4), and this ability can

be leveraged to improve diversity. Sampling multiple channels

over a small time interval can be considered analogous to

sampling different communication paths. This should decor-



relate successive key bits, thereby improving entropy without

sacrificing bit rate. In this case the wider apart the channels are

spaced, the more diverse and uncorrelated the paths will be. On

the other hand, the more discrete channels that are available,

the greater the number of paths, allowing for greater temporal

diversity, i.e. successive samples taken on a single channel

will be spaced wider apart in time, ideally a period greater

than the coherence time of the channel. In practice, however,

bandwidth is limited and there is a tradeoff between channel

spacing and the number of channels available. If the channel

spacing is too small, the paths will not be very diverse, and

if samples on a single channel are timed too close together,

existing paths will be reused. In both cases, sample values will

be correlated.

The coherence time, typically in the order of milliseconds,

we note, is also highly responsive to user activity, and this

affects key entropy. Our results indicate that if the user is very

active, even sampling on a very small number of channels will

give good entropy because the communication paths change

very rapidly. For low activity, however, where paths are slow

to change it becomes important to sample intelligently on

different channels while trying to maximize channel spacing.

Our contributions in this paper are:

• We perform extensive experiments using bodyworn de-

vices to measure the efficacy of channel hopping in

decorrelating secret bits and improving key entropy. Our

results, using the approximate entropy metric, show an

increase of up to 20% in some cases.

• Our results further indicate that this advantage can be

maximized by devising an intelligent hopping strategy

that takes into account the number of channels available

to the communicating parties, the spacing between them,

and the activity of the user.

This paper is organized as follows: in Section II, we discuss

prior work. Section III describes our experimental setup and

highlights the effect of channel hopping on decorrelation of

samples. In Section IV, we present key generation results

for different hopping strategies and compare for varied user

activity. We conclude in Section V.

II. PRIOR WORK

Recent years have witnessed growing interest in exploiting

wireless channel characteristics to generate shared secrets.

A theoretical foundation for this approach is laid in [6]

and [10] which suggest that two parties can generate shared

secrets using correlated random variables in the presence of

an eavesdropper. Wireless channel characteristics used for key

generation include signal phase, time delay, angle of arrival

and received signal strength(RSS). RSS is commonly used

because it is easy to obtain on most off-the-shelf radio devices.

In [11], the authors describe a method to extract key

bits from a statistical Gaussian channel. They validate this

mechanism using WiFi in an indoor environment and generate

bits at a rate of 1 bit/sec with very high bit agreement at both

ends. This approach is extended in [12], where the authors

gather empirical measurements of RSS over a single channel

for various environments using laptops with WiFi hardware

and propose a multi-bit quantization method. The authors use

privacy amplification to strengthen the generated keys.

In [13], the authors aim for a very high bit generation rate

of 40 bits/s over a single channel using TelosB motes. A

transform operation is used especially to decorrelate secret key

bits, adding to the computational complexity of the process.

In [14], the authors demonstrate an RSS-based key gen-

eration scheme for body area networks where the Savitzky

Golay filter is used to isolate different frequency components

of the dynamic wireless channel, highlighting their individual

contribution to key generation. Temporal diversity is ensured

by sampling the wireless channel at very low rates. On the

other hand, [8] increase secret key entropy by using multiple-

antenna devices, thereby increasing the number of statistically

independent communication paths available.

All of the aforementioned works expressly rely on de-

vice movement to create path diversity, giving rise to RSS

channel fluctuation which can be quantized to produce secret

bits. In [15], authors propose exploiting dynamic physical

environments, where human movements create the necessary

fluctuations.

To the best of our knowledge, only one work in the literature

employs channel hopping: in [5] the authors investigate how

hopping may provide path diversity and channel variation in

a purely static scenario. Their results demonstrate that basic

channel hopping is a good source for correlated randomness

for the two endpoints, but the amount of meaningful informa-

tion that can be extracted is limited because the channel is

very slow to decay in a static setting, and cannot be reused

often.

Our work differs in that we study hopping in a dynamic

scenario where, our results indicate, the sequence in which

hopping is performed becomes very important. Channel hop-

ping effectively decorrelates samples very closely spaced in

time, but, as we argue in this paper, the effect is strongly

influenced by user activity, and can be maximized by intel-

ligently choosing between the number of channels available

and the inter-channel spacing.

III. CHANNEL SPACING AND CORRELATION OF

SUCCESSIVE SAMPLES

In this section we examine how correlation between succes-

sive samples varies with channel spacing.

A. Experimental Setup

We conducted experiments using MicaZ motes, with 16

channels (channel 11 to channel 26) operating between 2.405

to 2.480 GHz frequency range with steps of 5 MHz. Exper-

iments were performed in an indoor office space consisting

of multiple cubicles and a pair of sensors motes(Alice and

Bob) were mounted on the subject’s right arm and left waist

as shown in Fig. 1. Both sensors were configured to transmit

probe packets at 0 dBm power at a rate of 50 packet/second.

During the experiment, the subject walked around the office
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Fig. 1: Bodyworn sensors mounted on male subject and

layout of office environment with Eve’s location and subject’s

walking path.

at about 1 m/s, the experiment lasted 40 minutes, and yielded

approximately 120,000 RSS values per sensor mote.

Channel hopping pattern is as follows: packets are sent in

both directions of the link every 20 ms, enabling endpoints

to sample the RSS reading. Each exchange is followed by a

reference exchange which uses channel 26 as a baseline for

comparison. Alice and Bob’s sampling order is therefore as

follows: probe on channel i, probe on channel 26, probe on

channel i+1, probe on channel 26, and so on. This ensures that

sample values all have the same delay and the same baseline

reference (channel 26) and channel spacing incrementally hops

by one channel every transmission, as illustrated in Fig. 2.

B. Correlation vs. Channel Spacing

To evaluate the correlation of successive sampling values,

we employ the Pearson correlation coefficient r:

r =

∑n

i=1
(Xi − X̄)(Yi − Ȳ )√∑n

i=1
(Xi − X̄)2

√∑n

i=1
(Yi − Ȳ )2

(1)

where Xi and Yi are the RSSI values of the reference

packets and successive packets on a different channel. The

correlation coefficient r returns a value in [-1,1], where -1 and

1 indicates anti-correlation and perfect correlation respectively,

and 0 indicates no correlation.

26 26 2625 2426 1226 1126

26 26 2625 2426 1226 1126

26 26 2625 2426 1226 1126

26 26 2625 2426 1226 1126

First Cycle

Correlation

Fig. 3: Probe packets received by an endpoint for correlation

analysis.

During the experiment, each sensor records a matrix of RSS

values as shown in Fig. 3. Here, each row represents one

sampling cycle with comparing channel hopping from channel

26 to 11, while in a column, sample values can be divided into

16 groups, each comprising a value from a reference exchange

(channel 26) and the successive value where the channel is

incrementally varied.

Taking two groups of column values in Fig. 4, for example,

adjacent sampling values are seen to be highly correlated

without hopping (i.e. both samples are taken for channel 26),

as compared to the case for successive sample values collected

when hopping from channel 26 and channel 11 in Fig. 4b,

which show greater variation.

This trend is also seen when correlation of successive

samples is plotted against channel spacing in Fig. 5, i.e. the

correlation decreases as channel spacing between successive

samples increases. Without channel hopping, successive values

have a correlation coefficient of about 0.75. For the same

sampling delay, if successive values are collected over a

channel spacing of at least 7 channels (i.e. 35MHz), the

correlation coefficient falls to less than 0.5, a significant drop.

However, we observe that the correlation cannot be reduced

to zero even the channel spacing is maximized (a spacing of

15, i.e. 75 MHz). This is due to the slow fading component in

the RSS profile, which has been noted by other researchers

too [11], [14], when sampling over a single channel. [11]

specifically has suggested using a moving average filter to
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Fig. 2: Channel hopping sequence: Alice and Bob exchange probe packets at 50 pkts/sec, all channels are sampled incrementally,

and channel 26 is the reference for each exchange.
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Fig. 5: Correlation of adjacent sampling with varying channel

spacing

remove this component. However, in body area networks, the

design and parameters of this filter are highly dependent on

device placement and user activity, and we choose to address

this question in future work.

IV. SECRET KEY GENERATION

In this section, we evaluate the randomness of the secret

bits generated using different hopping strategies for varied user

activity.

A. Experimental Setup

Our MicaZ motes were configured as described earlier in

Section III. We conducted two sets of experiments: in High

Activity, the user walked continuously around the office space

at about 1 m/s, while for Low Activity, the user sat at his

desk and worked on his computer. A third party Eve was

TABLE I: Channel Hopping Strategies

Spacing Channel Hopping Sequence

0 26-26-26-26 ...

1 26-25-24-23 ... 13-12-11-12 ... 24-25-26-25-24 ...

2 26-24-22-20-18-16-14-12-14-16-18-20-22-24-26 ...

4 26-22-18-14-18-22-26-22 ...

7 26-17-24-15-22-13-20-11-18-25-16-23-14-21-12-19-26-17 ...

8 26-18-26-18 ...

15 26-11-26-11 ...

introduced to eavesdrop on communication between Alice

and Bob, positioned as shown in Fig. 1, stationary on a

desk and always more than half wavelength(roughly 6.25cm)

away from the legitimate parties, Alice and Bob, which were

mounted on the subject’s waist and arm respectively. Overall,

we collected approximately 280,000 RSS values for each mote

in High Activity and approximately 180,000 RSS values in Low

Activity.

B. Channel Hopping Strategies

We tried seven hopping strategies with spacing as shown

in Table I, for both modes of activity. As noted earlier, the

maximum channel spacing is 15 channels. A spacing of 0

equates to the default single channel sampling case. A spacing

of 1 means that the devices will incrementally cycle through

all the channels in turn from channel 26 to channel 11 and

then cycle back from there. For a spacing of 4, the sequence

will be channel 26, channel 22, channel 18, channel 14, and

then cycling back, channel 18, channel 22, channel 26, and

so on. A spacing of 15 indicates that hopping back and forth

between two channels, channel 26 and channel 11.

A spacing of 7 is interesting for two reasons: as observed in

Fig. 5, the correlation between successive values falls to near

minimum from 0.7 to 0.5 when the channel spacing is 7 and

greater. Also, 7 is not a factor of 16, and if the channel count

is allowed to overflow, it will take a full 16 sampling intervals

for the device to cycle back to a single channel. The sequence

is listed in Table I. The hopping sequence is computed by the

formula:

channeli+1 = ((channeli − 11 + 7)mod16) + 11 (2)

where channeli is the current channel the device is on. This

strategy ensures all 16 channels are individually sampled in a

cycle and successive channels are separated by about 35MHz.

C. Quantization

To convert the RSS values into binary key bits, we use

the quantizer developed in [8]. This quantizer has multiple

quantization levels and guard bands, and produces equiprob-

able output. Quantization intervals and guard band values are

determined by:

∫ qi−gi

qi−1

f
h̃
dh̃ =

1− α

m
;

∫ qi

qi−gi

f
h̃
dh̃ =

m

1− α
(3)

where qi and gi are the quantization and guard band

thresholds respectively, α is the ratio of sampling values that
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Fig. 6: RSSI of the probe packets exchanged in High Activity

are discarded, m is the number of discrete quantization values,

and h̃ is the sampling values with probability distribution f
h̃

.

For each hopping pattern, RSS values are separated as per

their channel, quantized separately, i.e. there are individual bit-

strings produced for each channel, which are then interleaved

into a composite bit stream as per their sampling order.

D. Results

Figs. 6 and 7 show traces of RSS profile for High and Low

Activity for two hopping strategies, the first having a channel

spacing of 4 channels and compared with sampling over a

single channel without hopping. It is clear that greater variation

in RSS can be achieved by alternately sampling over different

channels than over one alone.

We use the approximate entropy metric [16] to evaluate the

randomness of the secret keys thus produced. The approximate

entropy test returns a value between 0 and 1 where higher

values indicate a more random bit stream.

As shown in Fig. 8, for High Activity, the approximate

entropy of secret key bit streams is below 0.75 for a single

channel case, and it increases to over 0.9 using a hopping

strategy with spacing 8 and over, an approximate 20% im-

provement. In this case, due to constant user activity, the

channel coherence time is very small and the best strategy,

therefore, is to sample a minimal number of channels with a

suitably large spacing.

For the Low Activity scenario, shown in Fig. 8, single

channel sampling again has the lowest approximate entropy

value at approximately 0.3. This is because the relatively slow

rate of movement causes communication paths to decay far

more slowly and successive sample values are highly cor-

related. Approximate entropy increases with greater channel

spacing but only till a spacing of 7 channels is reached after
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Fig. 7: RSSI of the probe packets exchanged in Low Activity

which it falls. This is interesting because it highlights the

essential tradeoff between spacing and number of channels: as

spacing increases from 0 to 1, there is a dramatic increase in

entropy (from approximately 0.3 to 0.8) because even though

the channels are closely spaced, temporal diversity is much

greater, i.e. it takes a full 16 sampling intervals before the

same channel is sampled again. As spacing increases however,

temporal diversity is reduced: at a spacing of 8, the time

between sample values on the same channel is only two sample

intervals, and the samples are therefore more correlated. This

trend is more evident if we consider Fig. 9 where we plot

approximate entropy against the number of channels used for

hopping. For Low Activity, entropy generally increases as a

larger number of channels is sampled. A channel spacing of

7 in this case, will sample each of the available channels with

sufficient temporal and frequency diversity to maximize the

entropy. This example highlights the importance of choosing

the right hopping strategy to maximize entropy, taking into

account user activity, the number of channels available, and

the inter-channel spacing.

Tables II and III show bit generation rate and mismatch for

Alice and Bob and Eve for High and Low Activity scenarios.

We assume that Eve knows the channel hopping sequence,

the quantization algorithm and parameter settings, and can

capture the probe packets exchanged by Alice and Bob. As can

be seen from Table II and Table III, most of the cases resulted

in approximately a 50% secret key bit mismatch for Eve which

means that her chances of guessing the bits generated by Alice

and Bob are equivalent to guessing for a fair coin toss, which

is the ideal scenario. In terms of bit generation rate and bit

mismatch for Eve, channel hopping on the part of Alice and

Bob consistently shows comparable or superior performance.
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TABLE II: High Activity: Key generation performance for dif-

ferent hopping strategies (quantizer settings: m = 2, α = 0.3.)

Space
Key Rate Alice and Bob: Eve:

(bits/s) Bit Mismatch Bit Mismatch

0 75.96 2.68% 50.95%

1 70.34 2.02% 49.96%

2 71.41 2.12% 52.67%

4 68.44 2.03% 50.52%

7 70.69 1.95% 50.16%

8 76.54 2.01% 51.76%

15 71.92 2.53% 51.41%

V. CONCLUSION

In this paper, we study the efficacy of the channel hopping

technique in decorrelating successive sample values for secret

key generation using the wireless channel. Furthermore, we

identify key parameters affecting performance, namely the

channel spacing, the number of available channels, and user

TABLE III: Low Activity: Key generation performance for dif-

ferent hopping strategies (quantizer settings: m = 2, α = 0.3.)

Space
Key Rate Alice and Bob: Eve:

(bits/s) Key Mismatch Key Mismatch

0 92.62 6.30% 34.89%

1 65.80 6.59% 49.00%

2 53.13 4.95% 51.25%

4 52.74 5.15% 45.55%

7 67.72 5.55% 48.06%

8 60.59 2.04% 50.00%

15 63.07 4.08% 47.29%

activity. Our results show that it is possible to devise a hopping

strategy to maximize the benefit by trading off between

channel spacing and number of channels to maintain high

temporal and frequency diversity. Our experiments indicate

a minimum of 20% increase in key entropy and improved

performance if channel hopping is used. A more systematic

study on intelligent channel hopping is left for future work.
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