
User Control of Quality of Experience
in Home Networks using SDN

Himal Kumar
Department of Electrical Engineering

Indian Institute of Technology, Patna, India
Email: himal.ee10@iitp.ac.in

Hassan Habibi Gharakheili, Vijay Sivaraman
School of Electrical Engineering and Telecommunications

UNSW, Sydney, Australia
Email: {h.habibi, vijay}@unsw.edu.au

Abstract—Home networks are becoming increasingly com-
plex, with many household devices (PCs, tablets, phones, media
gateways, smart TVs) and diverse user applications (browsing,
video streaming, peer-to-peer, VoIP, gaming) sharing the single
broadband access link. In today’s architecture the traffic streams
compete for bandwidth on a best-effort basis, resulting in poor
quality of experience for users. In this paper, we leverage the
emerging paradigm of software defined networking (SDN) to
enable the ISP to expose some controls to the users to manage
service quality for specific devices and applications in their
household. Our contributions are to develop an architecture
and interface for delegation of such control to the user, and to
demonstrate its value via experiments in a laboratory test-bed
using three representative applications: video, web-browsing, and
large downloads.

I. INTRODUCTION

The home network is becoming increasingly complex.
Internet-capable household devices are proliferating, ranging
from computers, phones and tablets to TVs, game consoles,
smart meters, and domestic appliances. These devices are
running increasingly demanding applications, ranging from
streaming video and tele-conferencing to gaming and large
downloads. It is becoming increasingly untenable for these
devices and applications to continue to share the broadband
Internet access capacity on a best-effort basis. For example,
if the desktop computer starts downloading a large software
update while the user is streaming video to their iPad or
playing a real-time game on their Xbox, quality of experience
can degrade significantly, leading to user frustration. Indeed,
large-scale studies are showing that the impact of access link
congestion on video quality, in the form of startup delays
and rebuffering events, is leading to higher user abandonment
[1], and the consequent customer dissatisfaction may also be
responsible for ISP churn [2].

The problem posed by increasing home network com-
plexity may provide an opportunity for ISPs to differentiate
their services by tapping into the service quality dimension.
By giving end-users some means to control service quality
for their traffic streams, they can let users customize it to
their needs – such a feature is not only monetizable, but also
increases customer satisfaction and retention. For example, the
user may be allowed to configure bandwidth allocation priori-
tization on a per-device or per-application basis, say by giving
the kids’ iPad lower priority than the work-related laptop, or
YouTube traffic higher priority than peer-to-peer downloads.
This empowers the user, while allowing ISPs to innovate,

monetize, and distinguish themselves from competitors via
new mechanisms for quality support, and is hence a win-win
situation for both.

It might seem at first glance that the user can improve
service quality by upgrading their home gateway to support
queueing features for prioritization. While this may suffice for
uplink traffic, reality is that most traffic (be it video streaming
or downloading) is downstream, for which queue management
is required in the ISP infrastructure. Any modification therefore
requires the user to contact the ISP (such as via a phone call
or account management portal) to indicate their changes, often
requiring manual configuration to the ISP equipment, which is
both time-consuming and expensive. Alternatively, users may
use specialized protocols for certain applications (e.g. TCP
Nice for background transfers) – however these are limited in
the applications they can serve, are too onerous on the user,
and require sophistication beyond the reach of most.

We instead believe that the emerging paradigm of software
defined networking (SDN) offers the ideal technological plat-
form on which to achieve this capability. SDN allows the ISP
to have a programmatic interface by which to interact with the
user device or application. This allows the user to dynamically
ask the ISP to slice resources for the various services, via
a negotiation that is automated and real-time. While this is
conceptually simple, there are several challenges that need to
be surmounted: (1) how should the user-interface be designed
such that it gives the user control across their devices and
applications without demanding high sophistication?, (2) how
should the programmatic interface be structured such that it is
simple to implement and yet general enough to operate across
services?, and (3) how is the effect of user control on quality of
experience evaluated and quantified? This paper is our attempt
at developing and demonstrating an architecture that addresses
these challenges. Our specific contributions are:

• We develop the architecture of a system that allows
service quality negotiation between the user and ISP,
and apply it to use-cases relating to streaming, brows-
ing, and downloading,

• We design a GUI that allows a typical user to specify
their requirements on a per-device and per-application
basis, and the associated API that the ISP needs to
expose to facilitate this capability, and

• We prototype our system and demonstrate its value by
quantifying the performance benefits when streaming,

browsing, and downloading applications that share the
household Internet access link.

Our work is a first step towards allowing users to control
quality of experience across their household devices and ap-
plications, and for ISPs to support such capability using SDN
technology.

The rest of the paper is organized as follows: §II explains
the use-cases considered in this paper. §III gives our system
architecture and trade-offs. In §IV we describe our prototype
implementation including the GUI, the APIs, and traffic mod-
els, and §V describes our experimental results. Relevant prior
work is summarized in §VI, and the paper concludes in §VII.

II. USE-CASES AND OPPORTUNITIES

The set of applications that can benefit from explicit
network support for enhanced service quality is large and
diverse: real-time and streaming videos can benefit from
bandwidth assurance, gaming applications from low latencies,
voice applications from low loss, and so on. In this paper we
start with three application use-cases: video streaming, chosen
due to its growing popularity with users, non-real-time large
downloads chosen for their large volume, and web browsing
chosen for their high value to users. The APIs we develop and
demonstrate for these use-cases will help illustrate the value
of our approach, and can be extended in future work for other
application types.

A. Streaming Video

Streaming video, driven by providers such as NetFlix,
YouTube, and Hulu, is already a dominant fraction of Internet
traffic today, and expected to rise steeply in coming years. To
enhance user quality of experience over best-effort networks,
these providers use techniques such as client-side playback
buffering, server-side bit-rate adaptation, and TCP instrumen-
tation. However, large-scale studies [3], [1] confirm that video
delivery quality is still lacking, with video “freeze” con-
tributing to reduced viewing time and startup delays reducing
customer retention. Since variability in client-side bandwidth
is one of the dominant contributors to quality degradation,
an ideal solution is to have the network “sliced” to explicitly
assure bandwidth to the video stream. As mentioned earlier,
this slicing has to be performed by the ISP on the user’s
access link in the downstream direction, and therefore requires
some signalling between the user and the ISP. By exposing
this signalling via an API, the ISP can monetize the quality
dimension, and can obtain explicit stream attributes without
requiring to infer them via expensive operations such as deep
packet inspection (DPI).

B. Large Downloads

After video, bulk transfers are the next biggest contributors
to network traffic. Examples include peer-to-peer file-sharing,
video downloads (for offline viewing), software updates, and
cloud-based file storage systems. Unlike video, large download
do not need a specific bandwidth, and user happiness generally
depends on the transfer being completed within a “reasonable”
amount of time. This “elasticity” creates an opportunity for the
ISP to dynamically size the network bandwidth “slice” made

Internet

OpenFlow

Controller

API Op

Co

ISP Network

GUI

Home

Gateway

OpenFlow

Switch

Home

Network

Fig. 1. Home network topology

available to bulk transfers, based on the criticality of other
traffic in the network. This can allow the ISP to reduce network
peak load, which is a dominant driver of capital expenditure,
and release capacity to admit more lucrative traffic streams
(e.g. streaming video) requiring bandwidth assurances.

C. Web Browsing

Though web-browsing constitutes much lower traffic vol-
ume than streaming or downloads, it has high monetary value
(e.g. Google searches) for users and online retailers. Large
online providers like Google and Amazon have acknowledged
that even a small increase in web-page load times can result in
lost conversions and reduced customer satisfaction, impacting
customer loyalty. Retailers, ISPs and users therefore have an
interest in ensuring that the network is responsive to short flows
associated with web-page views.

III. SYSTEM ARCHITECTURE

We now propose a system architecture for user control
of quality of experience (QoE) in the home network. We
first outline the major architectural choices and trade-offs
(§III-A), then describe the operational scenario (§III-B), the
APIs (§III-C) and the algorithm (§III-D).

A. Architectural Choices and Trade-Offs

The aim is to slice the access link resources dynamically
amongst flows in a programmatic way, so that the network
is used as efficiently as possible for enhancing service perfor-
mance. Unlike current practise whereby ISP use DPI and other
expensive tools for classifying traffic flows, we advocate the
use of open APIs. This allows home users to choose a resource
requirement commensurate with the value of the service, and
for the ISP to obtain application parameters (addresses/ports
and bandwidth/delay requirements) directly rather than having
to infer them. In this paper we focus only on slicing the access
link capacity, rather than an end-to-end network resource
allocation, since the latter requires coordination across network
domains that is deemed a long-term goal; moreover, there is
evidence [4] that network bottlenecks often lie in the access
and not at the interconnects between networks. Lastly, the
API we design is for home users (the primary beneficiaries of
improved quality, as noted in [5]), though it can be extended
for use by enterprise customers or indeed by content providers
themselves.

B. Operational Scenario

Fig. 1 shows a typical access network topology. Each
residence has a home gateway to which household devices

connect. The home gateway offers Internet connectivity via a
(DSL, Cable, or PON) broadband link, connecting to a line
termination device at the ISP local exchange, which is in turn
back-ended by an Ethernet switch that has SDN capability.
The Ethernet switches at each local exchange connect via
metro- or wide-area links to the ISP’s backhaul network. The
ISP network houses an SDN controller that exposes the APIs
discussed below, and executes the slicing functionality on the
user access link.

The operational flow of events is as follows. The user’s
input on desired device and application slice is obtained via a
simple GUI (described in the next section) installed on a PC
in the home. The GUI then translates these requests into the
appropriate API calls exposed by the SDN controller hosted in
the ISP network. The controller then executes an algorithm to
verify the sanity of the request and determine an appropriate
resource allocation for the request, which it then configures
into the switching hardware associated with that user’s access
link. In what follows we describe the APIs in more detail and
elaborate on the specific actions required by the user and the
ISP.

C. The APIs

We develop a minimalist specification of the APIs; detailed
specifications are left for future standardization. The most im-
portant API relates to bandwidth assurance, and specifies the:
(a) Caller id: The identity of the entity requesting the service.
Authentication of some form (such as digital signature of the
message) is assumed to be included, but we do not discuss
security explicitly in this work. (b) Call Type: A type field
indicates the service being requested, in this case minimum
bandwidth assurance. (c) Flow tuple: The tuple comprising
the IP source and destination addresses, and potentially source
and destination ports, that identify the flow (consistent with
the OpenFlow specification). Note that wildcards can be used
to denote flow aggregates. (d) Bandwidth: The bandwidth
(in Kbps) that is requested by the flows. This API can be
used to assure minimum bandwidth to a service like video
streaming, as illustrated in our prototype in the next section.
Note that the flow can avail of extra bandwidth if available,
and is not throttled or rate-limited by the network. Further, we
have intentionally kept it simple by using a single bandwidth
number, rather than multiple (e.g. peak and average) rates.
Additional APIs for capabilities such as delay control (for
elastic applications including large downloads) and parental
control (to drop or limit traffic from specified sites) were
developed but are not discussed in this paper.

D. The Controller Algorithm

When the requests come in to the SDN controller operated
by the ISP, an algorithm is run to determine the feasibility of
the request, e.g. ensuring that the bandwidth slices requested
by applications from a residence do not exceed the bandwidth
capacity on the access link to that household. If feasible,
the controller installs rule(s) corresponding to the application
parameters obtained from the API call into the switch serving
that customer premises. This may involve setting up a new
queue to which the application traffic is mapped, and ensuring
a resource slice for that queue. An example is provided in the
next section that describes our prototype implementation.

(a) Device level control (b) Application level control
Fig. 2. Graphical user interface: (a) device level (b) application level

IV. PROTOTYPE IMPLEMENTATION

We developed and prototyped our scheme on a small
testbed, depicted in Fig. 3, to emulate a small part (a home with
multiple clients) of a residential ISP network. The objective is
to demonstrate the feasibility of our scheme with real equip-
ment and traffic, and to evaluate (next section) the benefits
of slicing for real video, web-browsing and large download
streams.

A. Graphical User Interface (GUI) Design

Our first contribution is to design a GUI that allows the
home user to control their household devices and applications
in an easy and intuitive way without requiring much technical
sophistication. Fig. 2 shows screenshots of our GUI, developed
in Java, and running as an application on any client device in
the user’s house.

Fig. 2(a) shows the screen that allows the user to specify
client device level controls. For example, this screen shows
four household devices: a desktop machine (shared by the
household members), a laptop (belonging to the father), a
Macbook (belonging to the mother), and an iPad (belonging
to the child). The super-user (say the father) who operates
this control panel can configure a “priority”, on a scale of
1− 10, for each device, with 10 denoting the highest priority.
As will become clear later, a higher priority is associated with
a larger bandwidth slice for that device. When a new device is
added, the super-user needs to name the device and specify the
MAC address associated with this device (this requires some
technical sophistication, but can at some point in the future be
obviated via automatic discovery of devices).

The user can choose a specific device and configure prior-
ities for specific applications on that device. Fig. 2(b) shows
an example screenshot whereby the laptop has been configured
with two applications: YouTube has been given a 30% share
and Facebook 10%. Further applications can be added, using
the drop-down menu that lists popular applications such as
NetFlix. Applications can also be edited or removed using
this panel, and parental control (bottom button) can also be
exercised to restrict access to certain sites from this device.

The device-level priorities and application shares (if spec-
ified) on each device are hierarchically used to determine the
nominal bandwidth slices as follows: A device is allowed a
bandwidth share that corresponds to its weight divided by the
combined weights of all devices. For example, the laptop in the

Open vSwitch

C1

C2

C1

C2

Internet

10 Mbps
100 Mbps

ISP access

Home network

C3 C3

Floodlight ht

Home

gateway

Fig. 3. Architecture of our prototype

above example will get fraction 9/(6+9+7+3) = 0.36 of the
access bandwidth allocated as a minimum, preventing it from
getting starved of bandwidth by other devices in the household
(e.g. kid’s iPad). When a device has application-level control
specified, the bandwidth assured for that application is the
specified percentage of the device’s bandwidth assurance;
continuing with the above example, YouTube on the laptop
will be assured 30% of the laptop’s bandwidth fraction, i.e.
an overall fraction 0.3 ∗ 0.36 = 0.108 of the access link
capacity. Note that every device will by default obtain “best-
effort” service that contains applications that have not been
configured; such service will be assured bandwidth residual
from the configured applications.

The configuration set by the user using the GUI are then
communicated to the ISP using an API. The API we designed
conveys a simple set of parameters using JSON encoding: our
minimum bandwidth assurance API format is: {hello: juke-
box, type: minbw, numQueue: 2, qid:1, nwsrc: 203.5.76.0/24,
nwdst: 149.171.37.162/32, bw: 5500, qid: 2, nwsrc: 0.0.0.0/24,
nwdst: 149.171.37.115/32, bw: 4000}. In this case the API call
is requesting two queues in the ISP network, with a minimum
bandwidth of (a) 5.5 Mbps on the path from YouTube server
(which in Australia corresponds to 203.5.76.0/24) to client C1
(i.e. 149.171.37.162) and (b) 4 Mbps on the path from any
source to client C2 (i.e. 149.171.37.115). Another example
API that allows for parental control is: {hello: jukebox, type:
block, nwsrc: 203.5.76.0/24, nwdst: 149.171.37.115/32, action:
drop}, which blocks YouTube access for client C2. Lastly, our
GUI also allows the user to see bandwidth allocation and usage
statistics for each configured device and application (bottom
right button in Fig. 2(a)).

B. Network and Traffic Setup

We now briefly describe the experimental setup, shown in
Fig. 3, on which we implemented the functionality related to
the GUI described above.

Network Topology: Two home clients (C1 and C2) are
connected to the access point TP-LINK WR1043ND (i.e.
home gateway). The gateway has broadband capacity 10 Mbps
(achieved by disabling auto-negotiate and forcing the interface
speed), emulating a DSL/cable/PON service. The gateway con-
nects back to an OpenFlow capable Ethernet switch (emulating
ISP access device). That switch connects to the Internet via 100
Mbps link and also the controller (that implements the API).
The controller server is hosted in the corporate network.

Openflow switch: Our switch is a DELL PowerEdge
R620 server with 8 Gigabit Ethernet ports, running the Open
vSwitch 1.10.0 (OVS) [6] on Linux Fedora 19. It sup-
ports OpenFlow protocol, provides fine-grained QoS control,

and is compatible with the Floodlight controller. The switch
has a default best-effort FIFO queue, and a separate queue
is created for each (device or application specific) flow that
makes a successful API call to the controller. Linux Hierar-
chical Token Buckets (HTBs) are used to assure minimum
bandwidth to each queue, providing the “slicing” functionality.
High-priority flow table entries programmed by the network
controller override the switch’s default layer-2 forwarding
decision.

Network controller: We installed the Floodlight [7] Open-
Flow controller for the ISP network, and developed Java
modules along with static flow pusher that used the messenger
class to execute the API calls using JSON. Successful API
calls result in the installation of a flow table entry at the OVS
to direct the traffic into the desired queue.

User clients: The home has two clients, implemented using
standard computers. Client C1 represents a small-screen device
(e.g. laptop/tablet/phone) on which user watches videos or
does web-browsing, while client C2 represents a PC or media
gateway that does large downloads.

User Traffic: Client C1 runs PowerShell scripts to auto-
matically generate traffic representative of the average home.
C1 can be in idle, browsing, or video-streaming states, the
transitions being determined by a Markov chain. For browsing
it opens IE and loads the first author’s Facebook home-page
from the Internet with a size of about 1-1.5MB. The user is
assumed to read the web-page for 10 seconds, reload the web-
page, and the process repeats. We disabled IE’s cache so that
it downloaded the full web page on every access, which lets
us compare the download times for the page across various
runs. Client C1 streams an HD video of 720p resolution from
YouTube. Client C2 is either idle or downloading a large file.
In our experiment, C2 downloads an ISO format image of
Fedora 19 Desktop Edition (64-bit) with a size of 951 MB.

Metrics: The video streaming quality is measured in terms
of Mean Opinion Scores (MOS). To automatically evaluate
MOS, we rely on the technique of [8] that combines initial
buffering time, mean rebuffering duration, and rebuffering
frequency to estimate the MOS (with a configured playback
buffer of 3 seconds). Our VLC IE plugin was instrumented
with Javascript to measure these parameters and compute the
MOS. Our client script also measured the times taken for web-
page download.

V. EXPERIMENTAL EVALUATION

We present results from three evaluation runs: QoE
improvement from device-level prioritisation, and from
application-level slicing using synthetic iPerf traffic and real
downloads using the IDM download manager.

A. Device-level Slicing

To demonstrate the performance over today’s best-effort
networks, we conduct two experiments: in the first, client C1
is browsing continuously (by loading the Facebook web-page
described above), and client C2 starts downloading a large
file (the Fedora ISO image as mentioned above) about 175
seconds into the experiment. Fig. 4(a) shows the web-page
download rate (upper plot) and the web-page download times

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

Time (s)

W
e
b
p
a
g
e
 d

o
w

n
lo

a
d
 r

a
te

 (
K

b
p
s
)

Webpage only

Webpage + Download

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

Time (s)

W
e
b
p
a
g
e
 l
o
a
d
 t
im

e
 (

s
)

(a) Web browsing

0 50 100 150 200 250 300 350 400 450
0

0.5

1

Time (s)

V
id

e
o

 d
o

w
n

lo
a

d
 r

a
te

 (
M

b
p

s
)

Video only

Video + Download

0 50 100 150 200 250 300 350 400 450
1.5

2

2.5

3

3.5

Time (s)

M
O

S
 v

a
lu

e

(b) Video stream

Fig. 4. Best-effort performance: (a) web browsing, (b) video streaming.

0 50 100 150 200 250 300
0

100

200

300

400

Time (s)

W
e
b
p
a
g
e
 d

o
w

n
lo

a
d
 r

a
te

 (
K

b
p
s
)

Webpage only

Webpage + Download

0 50 100 150 200 250 300
0

5

10

15

20

25

Time (s)

W
e
b
p
a
g
e
 l
o
a
d
 t
im

e
 (

s
)

(a) Web browsing

0 10 20 30 40 50 60 70 80 90
0

0.5

1

Time (s)

V
id

e
o
 d

o
w

n
lo

a
d
 r

a
te

 (
M

b
p
s
)

Video only

Video + Download

0 10 20 30 40 50 60 70 80 90
1.5

2

2.5

3

3.5

Time (s)

M
O

S
 v

a
lu

e

(b) Video stream

Fig. 5. Device-level slicing: (a) web browsing, (b) video streaming.

(lower plot). It is clearly seen that till time 175s, the web-
page load-time is 7.34s on average, with standard deviation
1.26s. However, once the large download from client C2
commences at time 175s, the average page-load time on C1
nearly doubles to 14.11s, and the standard deviation also
increases considerably to 3.30s, indicating that page-load times
become more erratic due to the presence of the large download
from C2. The upper plot also clearly shows a notable reduction
in rate for C1 when C2 starts downloading.

In the second experiment, again demonstrating perfor-
mance in today’s best-effort networks, we have a YouTube
video stream playing continuously on client C1, and client C2
commences downloading a large file 175s into the experiment.
Fig. 4(b) shows the video rate (upper plot) and the video mean-
opinion-score or MOS (lower plot) as a function of time. It
is clear that prior to the download starting, the video has a
perfect MOS of 3.25 (the MOS continues to be high for a few
more seconds after the download commences due to playback
buffers), and thereafter drops to 2.32 for the duration of the
download due to a reduction in the rate it can get from sharing
the access link with the download. This clearly demonstrates
how a user can be frustrated by poor QoE when downloads
interfere with their video viewing.

We now employ our solution to show how the user can
address this problem. Using the GUI, the user now specifies
the two devices C1 and C2 with priority scores of 8 and 2
respectively. Consequently, clients C1 and C2 are ensured at
least 80% and 20% of the access link capacity of 10 Mbps
respectively (note that no application-level slicing is specified
at the moment). The GUI then makes an API call into the ISP
network via a JSON message to the network controller: {hello:
jukebox, type: minbw, numQueue: 2, qid:1, nwsrc: 0.0.0.0/0,
nwdst: 149.171.37.162/32, bw: 8000, qid:2, nwsrc: 0.0.0.0/0,
nwdst: 149.171.37.115/32, bw: 2000}. Note that by specifying
the source to be a wildcard, the API is in effect allocating a
queue and minimum bandwidth on a per-client basis.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

T
C

P
 t
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (s)

0 100 200 300 400 500 600
0

2

4

6

8

U
D

P
 r

a
te

 (
M

b
p
s
)TCP

UDP

0 100 200 300 400 500 600
1.5

2

2.5

3

3.5

M
O

S
 v

a
lu

e

Time (s)

(a) Best-effort

0 100 200 300 400 500 600
0

0.5

1

T
C

P
 t
h
ro

u
g
h
p
u
t(

M
b
p
s
)

Time (s)

0 100 200 300 400 500 600
0

0.5

1

U
D

P
 r

a
te

 (
M

b
p
s
)

TCP

UDP

0 100 200 300 400 500 600
1.5

2

2.5

3

3.5

M
O

S
 v

a
lu

e

Time (s)

(b) Sliced

Fig. 6. Effect of iperf cross traffic on video QoE over: (a) best-effort quality,
and (b) sliced, home network.

0 50 100 150 200 250 300 350 400
0

1

2

3

4

time (s)

d
o

n
w

n
lo

a
d

 r
a

te
 (

M
b

p
s
)

Video

IDM download

0 50 100 150 200 250 300 350 400
1.5

2

2.5

3

3.5

M
O

S
 v

a
lu

e

Time (s)

(a) Best-effort

0 100 200 300 400 500 600
0

0.5

1

time (s)

d
o

n
w

n
lo

a
d

 r
a

te
 (

M
b

p
s
)

Video

IDM download

0 100 200 300 400 500 600
1.5

2

2.5

3

3.5

Time (s)

M
O

S
 v

a
lu

e

(b) Sliced

Fig. 7. Effect of IDM download on video QoE over: (a) best-effort quality,
and (b) sliced, home network.

We now repeat the above two experiments with slicing
enabled. Fig. 5(a) shows that with client C1 browsing and C2
starting a large download at time 160s, the average web-page
load time remains relatively unaffected at around 6.63s with
standard deviation of 1.44s. Fig. 5(b) shows that when client
C1 is viewing video and client C2 commences a download
(At time 60s), the video MOS for C1 remains stable at 3.25
(the initial low score is due to playback buffer ramp-up).
Needless to say, this QoE improvement comes at the cost
of slowing down the large download: in our experiments
the large-download rate reduced from the range [3.13, 3.25]
Mbps in best-effort queueing to the range [800, 920] Kbps
with isolated queues performing slicing. This is expected and
indeed desired, since the improvement in user QoE for video
streaming and web browsing is well worth the elongation in
download transfer time for non-critical traffic such as software
updates.

B. Application-level Slicing

We now illustrate the ability of our tool to allow the user to
perform application-level slicing for any chosen device. This is
useful when the device may be performing several applications
at the same time, e.g. downloading updates while also viewing
videos or web-browsing. In Fig. 6 we generate a synthetic
mix of TCP and UDP traffic using iPerf to demonstrate how
slicing can protect video viewing. Fig. 6(a) lower plot shows
that YouTube video on client C1 gets a perfect MOS of
3.25 till about 300s, at which point the iPerf UDP cross-
traffic commences and clogs the link (red line in upper plot),
and degrades video MOS to the range 1.75-2.5, making it
unwatchable. To overcome this problem, the can open up
our home network management GUI, and configure client
C1 with an application slice for YouTube of 80%. The GUI
calls the ISP API, resulting in creation of a separate queue
for YouTube traffic (configured in our experiment as the IP
block corresponding to the YouTube servers in Australia) with

8 Mbps minimum bandwidth allocation. Fig. 6(b) shows that
with this configuration, the video MOS is now perfect at 3.25
without being affected by the iPerf TCP/UDP cross-traffic,
while the UDP rate is suppressed to 600 Kbps.

We now repeat the above experiment with real rather
than synthetic traffic. We install IDM, which is an aggressive
download accelerator, on C1. Fig. 7(a) shows that the user
is watching video, with perfect MOS of 3.25, till about time
40s, at which point a series of downloads are started. IDM
accelerates these downloads by opening several parallel TCP
sessions, rapidly ramping up its bandwidth as shown by the
red curve in the upper plot. Consequently, YouTube video
quality suffers, with MOS falling to below 2.5. When the
user configures application specific slice for YouTube using
our GUI, the resulting API call to the ISP network creates a
separate queue for YouTube traffic, protecting video quality
and maintaining a perfect MOS of 3.25 as shown in Fig. 7(b).
Though one can argue that the user could have stopped or
paused their downloads while streaming video, this requires
manual action on the part of the user each time they run
multiple applications; by contrast our solution allows a user
to specify an application priority or slice once using the GUI,
after which it takes effect each time they are performing
multiple actions.

VI. RELATED WORK

The idea of using SDN to virtualize network infrastructure
for improving service quality is not new. In [9] it is suggested
that the network controller detect sensitive priority flows via
header inspection and then apply a rate-limiter. The NANDO
framework [10] virtualizes the access network to allow multi-
ple service providers to share infrastructure, and consumers to
select the network operator to use for each service (e.g. video,
voice, or data) based on QoS requirements. Home networks are
sliced in [11], allowing multiple providers of services, such as
smart grid metering, network management and video content
providers, to share common home network infrastructure. The
extension in [12] gives the home user control of how their
network is sliced. Unlike many of these prior works that
consider slicing to accommodate multiple service providers per
household, our focus is on device or application-level slicing
over the access link served by one ISP.

The work that comes closest to our is the PANE framework
[13], developed in parallel to ours, that allows end-users
and their applications to participate in network configuration
through programmable interfaces. While their work develops
APIs that can directly be incorporated into applications, our
approach is different, in that it develops a GUI and correspond-
ing API through which the user can adjust their home network
performance over a slower time-scale, while continuing to use
legacy devices and applications.

Other works related to the “parental control” like feature
we propose include [14], that facilitates home network security
management using a sliced architecture in which third party
controller collects home traffic information in a centralised
way, and HNDR [15] that addresses the security, performance
and troubleshooting concerns of home user by an off-site
controller monitoring the network activity.

VII. CONCLUSIONS

As household devices and applications proliferate and
home networks become more complex, quality of experience
is becoming more important, both for content providers like
Google and Amazon, and for ISPs who want to reduce
customer churn. This paper is an attempt to encourage ISPs
to tap into the service quality dimension for differentiation
and new monetization opportunities. We have shown that it is
possible to develop a simple and easy-to-use GUI by which
the user can prioritise their devices and applications. The GUI
translates these high-level requirements and communicates
them to the ISP via low-level APIs, who can then dynamically
slice the access link as per the user’s wishes to maintain
QoE. We prototyped our system by building a Java-based
GUI, implementing the API on a FloodLight SDN controller,
and writing client scripts that generate real user traffic. Our
experiments show that use of our tool lets users improve their
web-browsing and video-streaming performance by stretching
the non-time-critical traffic. We believe our tool is the first step
towards more sophisticated and comprehensive home network
management tools that include features for QoE, security, and
much more.

REFERENCES

[1] S. Krishnan and R. Sitaraman, “Video Stream Quality Impacts Viewer
Behavior: Inferring Causality Using Quasi-Experimental Designs,” in
Proc. ACM IMC, Boston, MA, Nov. 2012.

[2] S. Barros and J. Beguiristain, “Capitalizing on Customer Experience,”
ERICSSON, White Paper, Sep. 2012.

[3] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,
and H. Zhang, “Understanding the Impact of Video Quality on User
Engagement,” in Proc. ACM SIGCOMM, Aug. 2011.

[4] Internet Society. (2012) Bandwidth Management: Internet Society Tech-
nology Roundtable Series. http://goo.gl/V3qYl.

[5] Cisco Systems, “Service Control EasyApp: Measuring Quality of Ex-
perience,” Cisco Systems, White Paper, 2010.

[6] Nicira Networks. Open vSwitch. http://openvswitch.org/.
[7] Big Switch Networks. Project Floodlight.

http://www.projectfloodlight.org/.
[8] R. Mok, E. Chan, and R. Chang, “Measuring the quality of experience

of http video streaming,” in Proc. IFIP/IEEE Int’l Symp. on Integrated
Network Management, May 2011.

[9] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee, and
P. Yalagandula, “Automated and Scalable QoS Control for Network
Convergence,” in Proc. of USENIX INM/WREN, San Jose, CA, Apr.
2010.

[10] J. Matias, E. Jacob, N. Katti, and J. Astorga, “Towards neutrality in
access networks: A NANDO deployment with openflow,” in Proc. of
IARIA International Conference on Access Networks, Luxembourg, Jun.
2011.

[11] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and N. McKeown,
“Slicing home networks,” in Proc. of ACM SIGCOMM workshop on
HomeNets, Toronto, Ontario, Canada, Aug. 2011.

[12] Y. Yiakoumis, S. Katti, T.-Y. Huang, N. McKeown, K.-K. Yap, and
R. Johari, “Putting home users in charge of their network,” in Proceed-
ings of ACM UbiComp, New York, NY, Sep. 2012.

[13] A. Ferguson, A. Guha, J. Place, R. Fonseca, and S. Krishnamurthi,
“Participatory Networking: An API for Application Control of SDNs,”
in Proc. SIGCOMM, Hong Kong, Aug 2013.

[14] N. Feamster, “Outsourcing Home Network Security,” in Proc. ACM
SIGCOMM HomeNets, New Delhi, India, Sep. 2010.

[15] K. L. Calvert, W. K. Edwards, N. Feamster, R. E. Grinter, Y. Deng, and
X. Zhou, “Instrumenting Home Networks,” SIGCOMM CCR, vol. 41,
no. 1, pp. 84–89, Jan. 2011.

