User Control of Quality of Experience in Home Networks using Software-defined Networking

Himal Kumar¹, Hassan Habibi Gharakheili², Vijay Sivaraman²

¹ Indian Institute of Technology, Patna, India ² University of New South Wales, Sydney, Australia

This paper is about service quality

- Investigating whether SDN can add some value
- Focus less on Technology
- and more on architecture and interface

Motivation: Home Network

- Complexity of Home networks
- Growing number of household devices
 - Computers, tablets, smart-phones, TVs, IoT, ...
 - Increased peak-load and congestion on access link
- Yes indeed users want better quality!
 - Providing end-users some means to control service quality
 - Employing SDN to ISP expose programmatic interface for the users

Our proposal: SDN-driven virtualization

- Service quality control exposed via "APIs"
- Create dynamic on-demand "slices" in the network
 - Bandwidth Slicing
 - Separate queue per device / application
- Selective (per flow) control over quality
- APIs open for (any) end-user

Use-cases

- QoE for streaming video (e.g. YouTube, NetFlix):
- Elastic bulk transfer (e.g. Software upgrades, P2P)
- Low-volume web-browsing

Interface: GUI

- Weighted mean to calculate bandwidth
- John's bandwidth=9/(6+9+7+3)

Home Network Mana	ager	x
Home	e Network Manager	
Devices	Priority Score	
Desktop	Configure]
Laptop (John)	Configure]
Macbook (Mary)	Configure]
iPad (Tim)	Configure]
Add New Device	Show Bandwidth Allocation / Stats.	
Done		
Connected., 149,171,37.2	42	

Configure Device	ptop	o (Joł	nn)		
Youtube 30 % Facebook 10 %	•				
Add / Edit Apps.		00	7.	Remove Ap	
Netflix Facebook Youtube	•	20	%	Facebook	•
Netflix					
BBC iPlayer Gmail					

The APIs

- Caller ID : Id of the entity requesting the service
- Call Type : Service being requested
- Flow tuple : IP src , dst addresses and ports
- Bandwidth :Bandwidth requested by flows (in Kbps)
- JSON API : {hello: juke- box, type: minbw, numQueue: 2, qid:1, nwsrc: 203.5.76.0/24, nwdst: 149.171.37.162/32, bw:5500, qid:2, nwsrc:0.0.0.0/24, nwdst:149.171.37.115 /32 ,bw:4000}
- For Parental control: {..... Actions:drop }

Test-bed @ UNSW

- OpenvSwitch over Dell server
 - Flow queue per API call, HTB slicing
- Floodlight (Java) controller
 - Restful API
- AP: TP-LINK
- Clients: PowerShell scripted
 - C1: HD video or browsing; C3: large download
- Video : YouTube / Web-page: facebook

Experimental Results

Best effort performance

C1: Browsing , Video C2:Download

Device level slicing

- C1:Browsing, Video C2:Download
- Perfect video MOS of 3.25
- Page load times unaffected

Application level slicing

- C1: IDM + Browsing ; IDM + Video
- Individual applications on C1 using independent minimum BW queues

Iperf measurement

Effect of TCP,UDP cross traffic

Conclusions

- Access network remains a bottleneck
- Ultimate-goal:
 - make network dynamic so it can be exposed programmatically to outside entities
- Future work:
 - Richer and more programmable home network
 - Security feature
 - More application aware

