HazeWatch: A Participatory Sensor System for Monitoring Air Pollution in Sydney

> Vijay Sivaraman, James Carrapetta, Ke Hu (School of Electrical Eng. & Telecommunications)
> & Blanca Gallego Luxan (Centre for Health Informatics)
> University of New South Wales (UNSW) IEEE SenseApp, 21 Oct 2013

Air Pollution: Effects

- 1.4 billion urban residents live in areas with air pollution above guidelines [WHO]
 - 2 million deaths worldwide
 - 2.3% of deaths in Australia
 - NSW: \$4.7billion in health costs
- Chronic exposure
 - cardiovascular and respiratory mortality and morbidity
- Acute short-term inhalation
 - exacerbates existing conditions asthma, COPD, heart disease

	MAJOR	HEALTH	ENVIRONMENTAL								
	SOURCES	EFFECTS	EFFECTS								
SO ₂	Industry	Respiratory and cardiovascular illness	Precursor to acid rain, which damages lakes, rivers, and trees; damage to cultural relics								
NO _x	Vehicles; industry	Respiratory and cardiovascular illness	Nitrogen deposition leading to over- fertilization and eutrophication								
PM	Vehicles; industry	Particles penetrate deep into lungs and can enter bloodstream	Visibility								
CO	Vehicles	Headaches and fatigue, especially in people with weak cardiovascular health									
Lead	Vehicles (burning leaded gasoline)	Accumulates in bloodstream over time; damages nervous system	Fish/animal kills								
Ozone	Formed from reaction of NO _x and VOCs	Respiratory illness	Reduced crop production and forest growth; smog precursor								
VOCs	Vehicles; industrial processes	Eye and skin irritation; nausea; headaches; carcinogenic	Smog precursor								

Air Pollution: Causes

- Regional Air Quality Index (RAQI) system recommends monitoring 5 main air pollutants:
 - Ozone O₃
 - Carbon monoxide CO
 - Sulfur Dioxide SO₂
 - Nitrogen Dioxide NO₂
 - Particulate Matter PM
- Major sources of air pollution:
 - Industrial processes
 - Motor vehicles: cars, trucks, buses

Air Pollution Monitoring in Sydney

- NSW Office of Environment and Heritage runs 15 stations across greater Sydney
- Data published and updated on hourly basis
- AQI reported; Health warnings posted

Pollutants Averaging Periods		Ozone 03 1-hour average	Ozone 03 rolling 4-hour	<u>Nitrogen</u> dioxide NO2 1-hour average	Visibility NEPH 1-hour average	<u>Carbon</u> <u>monoxide</u> CO rolling 8-hour	Sulfur dioxide SO2 1-hour average	Particles PM10 rolling 24-hour	Richmond Vineya Sydney	ırd
			average			average		average	nortn-west	
ydney east R	ANDWICK	2.6	2.5	0.9	0.09		0.2	9.7	St Marys	ospect ·
R	OZELLE	2.8	2.6	0.9	0.06	0.3		11.1	۵	~
L	INDFIELD	2.6	2.3	0.7	0.06		0.2	9.9	-	marks.
C	HULLORA	2.0	2.3	1.5	0.10	0.3	0.2	12.9		Chullor
E	ARLWOOD	1.9	2.1	1.5	0.07			11.2		chullor
dney north-west R	ICHMOND	3.2	2.7	0.3	0.05		0.1	9.6	Bringelly 150	warmood [®]
S	T MARYS	2.4	2.4	0.6	0.08			9.2	e er	erpoor
V	INEYARD	2.9	2.4	0.2	0.02		0.1	11.2		, B
P	ROSPECT	2.2	2.2	0.8	0.07	0.2	0.3	12.6		34.
ney south-west B	ARGO	2.4	2.4	0.1	0.04		0.0	6.2		14
B	RINGELLY	2.3	2.4	0.1	0.03		0.0	8.0		
L	IVERPOOL								Oakdale	57
ħ	ACARTHUR	2.4	2.6	0.3	0.03	0.2	0.0	10.1	Macarthur	
c	AKDALE	2.5	2.5	0.1	0.03			5.8	nacarentar m	- I ·
iwarra V	OLLONGONG	2.6	2.8	0.7	0.06	0.3	0.0	9.5	Crudenaux	
×	EMBLA GRANGE	2.4	2.5	0.5	0.17			25.4	Syaney	
A	LBION PARK STH								and the second	
wer Hunter	ALLSEND	1.5	2.2	1.8	0.08		0.7	14.9	south-west	
8	ERESFIELD	2.8	2.6	-0.1	0.08		0.1	28.8		
N	EWCASTLE	1.5	1.9	1.6	0.03	0.1	1.2	21.6		
entral tablelands B	ATHURST									1
th-west slopes T	AMWORTH							16.4	Bargo	
outh-west slopes A	LBURY							11.1		6
ທ	IAGGA WAGGA							16.4		£
VERY	GOOD	GOL	DD		FAIR			POOR	VERY POOR HAZ	ARDOUS
VEIN1	0000				1,200				102	

IN ICAA / Images From: www.health.nsw.gov.au

Limitations of Current System

- Poor spatial resolution
 - Sites separated by tens of kilometers
 - Need interpolation models:
 - Complex: land topography, chemical compositions
 - Inaccurate: meteorological conditions
- Do not reflect actual exposures of individuals
 - Spatial heterogeneity
 - Concentrations can change over short distances
 - Mobility patterns of users
 - Time spent and activity level at home, work, travel

Idea Behind "HazeWatch" System

- "Crowd source" data from users (drivers)
 - Users upload pollution measurement as they drive
 - Measurements stored in "cloud"
 - Displayed as pollution map in real-time
 - Can build cloud-based tools and services around it
- Advantages:
 - Cost-effective: mobile sensors cover more ground
 - E.g. sensor on one bus can cover tens of kilometers
 - Better spatial resolution for same sensors
 - 30-50 mobile sensors can cover a city well?
 - Personalized tools
 - Personal exposure meter, route-planning, …

Existing Designs

- Commercial pollution monitors:
 - Gases: Honeywell GasAlertmicro5
 - Particulate Matter: Met One Aerocet 531
- Research prototypes:
 - MESSAGE project (UK)
 - iSniff (Columbia Uni)
 - MAQUMON (Vanderbilt Uni)
 - City Senspod (Sensaris)-
 - Common sense (UC Berkeley)
 - OpenSense (Switzerland)

System Architecture

Pollution Measuring Hardware

- Portability: fixed vs personal vs vehicle
- Complexity: on-board GPS, 3G?
 - Sensors, micro, bluetooth, battery
- Gas sensors: CO, NO₂, O₃
 - Metal oxide vs electrochemical

Calibration and Mounting

- Calibration: challenging!
 - Custom-built air-tight container
 - CO from car exhaust, NO₂ from nitric acid + Copper
 - Comparison to commercial monitor
- Casing and mounting:
 - Custom casing vs off-the-shelf
 - Mounting: front/rear, low/high, into/across wind, ...

Data Upload

- No GPS/3G in device
- Bluetooth to mobile phone
- Platform: Android
- User visualization:
 - Unit id, location/address
 - Pollution readings
 - Battery level
- 3G upload to server:
 - Time and location stamped
 - Update intervals configurable

- Located in UNSW data center
 - Database: MySQL
 - User contributed data and dept. environment data
 - Model: interpolation methods
 - Web-server: XML based import and export

Modelling and Mapping

- Choices: interpolation, regression, dispersion
- Two interpolation models implemented:
 - Inverse distance weighting vs ordinary kriging
- Map: Google maps, gridded colour contour

Live at: http://www.pollution.ee.unsw.edu.au

Personal Exposure App

- Records location periodically
- Fetches pollution estimate from model on server
 User need <u>not</u> carry hardware
- Displays:
 - Route
 - Plot of concentration
 - Mean exposure
- Can aid medical studies correlating exposure to health outcomes

Field Trial 1: Single Driver

- High spatial variation: tunnels and intersections
- Our unit corroborates well with commercial unit
- Data from nearest govt. site is very low

Field Trial 2: Multiple Drivers

- Subject has no hardware, uses estimation app
- Estimate reasonable but not great:
 - Still better than govt. estimate
 - Need higher deployment density

Challenges

- Highly inter-disciplinary, need expertise in:
 - Sensors, calibration (Chemistry)
 - Circuits, comms (Electrical Eng.)
 - Packaging, mounting (???)
 - Cloud software & db, mobile apps (Computer Sc.)
 - Pollution modeling (Atmospheric Sc.)
 - Health outcomes (Medical)
- Mass production and deployment strategy ?
- How to ensure data is of good quality ?
- Uptake of personal tools ?
- Validity for clinical studies ?

Conclusions

- Current systems for air pollution monitoring
 - Are spatially coarse
 - Do not provide personalized services
- Participatory sensing (cheap hardware + mobile apps) can:
 - Yield fine-grained spatial measurements e.g. within tunnels
 - Enable personalized tools for reactive exposure estimation and proactive route mapping
 - Inform clinical studies of impact of air pollution on health
 - Offer viable alternative to waiting for govt. action
- Future work:
 - Emerging off-the-shelf pollution measuring hardware (e.g. NODE)
 - Combine pollution exposure with human activity levels (e.g. Fitbit)
- Project web-page: <u>http://www.pollution.ee.unsw.edu.au</u>

