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ABSTRACT
Wireless bodyworn sensing devices are becoming popular
for fitness, sports training and personalized healthcare ap-
plications. Securing the data generated by these devices is
essential if they are to be integrated into the current health
infrastructure and employed in medical applications. In this
paper, we propose a mechanism to secure data provenance
for these devices by exploiting symmetric spatio-temporal
characteristics of the wireless link between two communicat-
ing parties. Our solution enables both parties to generate
closely matching ‘link’ fingerprints which uniquely associate
a data session with a wireless link such that a third party, at
a later date, can verify the links the data was communicated
on. These fingerprints are very hard for an eavesdropper to
forge, lightweight compared to traditional provenance mech-
anisms, and allow for interesting security properties such as
accountability and non-repudiation. We validate our solu-
tion with experiments using bodyworn devices in scenarios
approximating actual device deployment, and we present
optimization mechanisms. We believe this is a promising
first step towards using wireless-link characteristics for data
provenance in body area networks.

Categories and Subject Descriptors
E.0 [Data]: General

Keywords
Body Area Networks; Data Provenance

1. INTRODUCTION
Body area networks is an emerging technology paradigm

that is anticipated to revolutionize the healthcare domain
and significantly reduce soaring national health expendi-
tures. Miniaturized, unobtrusive sensors worn on the body
allow for mobility, remote monitoring, and reduce the bur-
den on hospital and professional staff. This technology has
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already found popular application in sports and fitness train-
ing, and in lifestyle monitoring. Examples include the Nike+
FuelBand [1], Fitbit Flex [2], the Toumaz Sensium Digital
Plaster [3], and the Natalia Project [4]. Several companies,
including Apple [5], are reportedly innovating in this field,
and ABI Research [6] predicts that shipments of disposable
wireless sensors are expected to reach 5 million by 2018.

A typical body area networks topology consists of body-
worn sensors communicating wirelessly with a handheld de-
vice or an off-body basestation which forwards the data to
an online database to be accessed and analyzed by profes-
sionals. Miniaturized sensor devices are severely resource-
constrained, unable to deploy traditional cryptographic so-
lutions because of the high overheads, and are the weak-
est link in this architecture. However, ironclad security is
needed because these devices deal in personal medical data,
wrongful disclosure of which can result in serious ethical and
legal implications. Developing lightweight security solutions
for these devices is therefore a popular research area.

Thus far there has been significant research in maintaining
confidentiality and authenticating sensor data. However, for
these devices to integrate successfully into the healthcare
infrastructure and for patients and medical professionals to
trust this data, there are other guarantees that must be
provided, such as information about the data, sensor-patient
association, sensor-device association, which parties handled
the data, etc. This metadata relating to how the sensor
data is generated, manipulated and communicated falls in
the purview of data provenance.

Consider the case of a user, Alice, who has had a heart
attack and is informed by her insurance provider that they
will cut her insurance rates if she gives up smoking. To
ensure she complies, they hand her a wearable sensor device
to monitor her for a trial period. This device periodically
sends readings to her smartphone which forwards them to
an online database. Thwarting this mechanism to secure
benefits is easy: Alice could easily hack into the phone and
forge her readings. Or she could record some readings and
replay those into the network to cover up smoking episodes.
Or, in the identity transference attack, she could even affix
the sensor to a non-smoker friend for the duration of the
trial without anyone finding out.

In this paper we develop a novel provenance solution for
bodyworn devices. Provenance allows for an assessment of
the trustworthiness of the data, which can prove critical es-
pecially in data forensics. In Alice’s case, it would be useful
to reliably know certain information about the data such



as, for example, the common sensor data off-load points: it
would enhance trustworthiness of the medical readings to
discover that Alice’s sensor’s first point of contact is usually
her personal mobile phone, her home WiFi access point, a
basestation device in her office, or even her regular gym.
In the event of an incident, investigators should be able to
return to the archives, check data associations, reconstruct
scenarios, identify faults and assign liability.

Existing work in provenance for sensor devices, reviewed
in the next section, generally relies upon frequent use of
cryptographic mechanisms which is impractical for resource-
constrained sensor devices [7]. In contrast, we suggest an
information-theoretic approach: we propose that wireless
channel characteristics between sensor device and basesta-
tion be used to generate ‘link fingerprints’. Characteristics
of the wireless link, such as radio signal strength or signal
phase, are unique to the two communicating parties, very
hard for an eavesdropper to forge, and can be leveraged to
provide a shared and provable record of data sessions be-
tween two devices.

If both parties were to digitally sign the data they ex-
change and their corresponding link fingerprints, this would
authenticate the session, such that forensics, at a later date,
could verify the sensor-basestation association for the trans-
action, effectively confirming that said data was transmitted
over that particular link. This process is secure in that the
fingerprints cannot be forged, and it is lightweight com-
pared to cryptographic alternatives. Unlike existing prove-
nance solutions, our scheme also provides accountability,
i.e. the user of the sensor device can verify that provenance
information has not been tampered with or hacked en route
in the network. This is especially applicable where data
flow is from basestation to sensor device, i.e. in certain
scenarios or for bodyworn actuator devices (such as insulin
pumps), Alice (or her doctor) may choose to reprogram her
bodyworn device, and, the signed link fingerprint would be
non-repudiable evidence of that operation.

In this paper, we take initial steps towards developing such
a protocol solution and demonstrate a proof of concept. Our
specific contributions are:

1. We present a data provenance protocol using wireless
channel characteristics to generate link fingerprints.

2. We present experimental results confirming that this
solution can generate unique and near-perfect match-
ing link fingerprints for typical data exchanges between
bodyworn sensor device and off-body basestation.

3. We present optimization mechanisms that significantly
reduce the memory and transmission overheads in han-
dling link fingerprints, making this scheme feasible for
resource-constrained devices.

Our results indicate that, in a typical usage environment,
two parties can generate a usable 128-bit link fingerprint
approximately every 10 ∼ 15 minutes which eavesdroppers
are unable to replicate. We believe this is a promising first
step in using wireless link characteristics to enable secure
data provenance.

This paper is organized as follows: Section 2 covers prior
work in this domain. Our link fingerprint protocol is de-
scribed in Section 3. The fingerprint generation technique is
experimentally validated in Section 4, and we suggest opti-
mization mechanisms in Section 5. We conclude in Section 6.

2. PRIOR WORK
Provenance may be defined as a record of the origin and

evolution of data within a system, and has application in
terms of contextualizing the data, and evaluating its trust-
worthiness in an objective manner. It is key for digital foren-
sics: with the surge in computer crime, provenance is critical
in reconstructing incidents and assigning liability. This also
motivates the need for securing provenance (distinct from
generating it), as discussed in [8].

The granularity of provenance varies as per application
requirements and device capability: [9] makes the case for
‘high-fidelity’ provenance, compiled at the kernel level, en-
abling very detailed forensics analysis. On enterprise net-
works, administrators can log file and system operations in
detail. However, on resource-constrained mobile devices, all
that might be possible is a digital signature or a timestamp
association. Additionally, provenance need not be binary:
especially in distributed environments, such as large multi-
hop sensor networks, it may be more practical to express
confidence in sensor data using a probability value [10] or a
trust score [11] [12].

In body area networks, provenance has mostly been lim-
ited to verifying data-sensor and data-patient associations.
Chowdhury et al. [13] survey existing research on associating
sensor data with the human subject, and they consider dif-
ferent authentication solutions, typically relying on frequent
use of costly mechanisms such as expensive cryptographic
protocols, trusted third parties, and additional sensor node
capability (e.g. biometrics readers). The authors in [14]
amortize digital signatures for bodyworn devices, enabling
a secure and irrevocable binding between patient data and
the device from which it originated. [15] proposes binding
patient data to the subject’s own unique vital signs readings
(real-time ECG and accelerometer data), enabling user au-
thentication in a continuous manner. However, none of these
schemes explicitly address the data path or link association
between two parties.

Radio fingerprinting techniques [16] may be used to iden-
tify a transmitting party (with up to 70% probability) by
examining its radio signal, but require a strictly stationary
deployment, specialised sampling hardware and a database
to train the system. This approach is not scalable to multi-
hop networks, and a sophisticated attacker may even forge
legitimate radio fingerprints.

Identifying the links the data traverses in a wireless net-
work is examined in [17], a provenance mechanism in which
intermediate nodes in a multi-hop sensor network use Bloom
filters to imprint path information on transit packets such
that the basestation is able to verify the path each packet
takes in the network. This concept is similar to that of se-
cure routing protocols: for instance, in the Secure Ad-hoc
On-demand Distance Vector (SAODV) [18], routers in an
ad hoc network append digital signatures to all routing in-
formation packets so that other routers in the network are
able to verify the route the packet has taken.

Our mechanism differs primarily in that we generate prove-
nance concerning the wireless link association between two
parties, on a per session basis. This makes minimal use of
cryptographic operations and is ideal for resource-constrained
devices. In much of the earlier work, digital signatures
and/or encryption is used on a per packet basis, whereas
in our case, these operations are performed only after a us-
able link fingerprint is derived, approximately every fifteen



Alice KAV 

 
(shared 

with 
Victor) 

Hash 
(DATA) 

LINK FINGERPRINT 
(…1011010101…) 

BaseStation ID 
+ Data Counter 

Alice’s 

 
private key 

sign 

encrypt 

transmit 
to archive 

store as 
receipt 

Keys Parties Session Records Actions 

Bob KBV 

 
(shared 

with 
Victor) 

Hash 
(DATA) 

Sensor ID 
+ Data Counter 

Bob’s 

 
private key 

sign 

encrypt 

transmit 
to archive 

store as 
receipt 

LINK FINGERPRINT 
(…1011010101…) 

Figure 1: Protocol for Alice and Bob

minutes (every 900 data packets). The fingerprint is gener-
ated as a function of every packet reliably exchanged over
the link, by exploiting wireless channel characteristics.

3. PROTOCOL FOR LINK FINGERPRINTS
We used the example of Alice earlier to motivate the need

for associating a sensor device with the basestation for the
duration of a data transaction. Theoretically, provenance
protocols can be built using cryptographic primitives, but,
as we noted earlier, these techniques are not practical for
resource-constrained devices and can only be used sparingly.
These devices are also lightweight with very small form fac-
tor to easily fit on the body (the Sensium device weighs less
than 10 grams) and it is not possible to attach locationing
technology, such as GPS receivers, onto them. A lightweight
solution is needed that does not require extra hardware and
can still provide strong security guarantees.

Recently there has been considerable interest in using the
wireless physical layer between two devices to construct se-
curity primitives. The essential idea here is that wireless
channel characteristics are symmetric for two parties, say
Alice and Bob (and preclude an eavesdropper, Eve), and
highly sensitive to spatial-temporal changes. If Alice and
Bob sample the variation in channel characteristics over a
period of time, they can use the measurements as a shared
‘channel signature’ for a range of functions including secret-
key agreement [19], weak authentication, detecting certain
attacks, masking channel state [20], intrusion detection [21],
and location distinction [22]. These wireless channel-based
techniques have also been successfully applied to body area
networks, specifically to generate low-cost shared secret keys
[23] and on-body validation of device-patient association
[24]. An early work in this domain [20] has argued that these
lower layer techniques complement cryptographic mecha-
nisms, and can be employed to augment system security.

We use the ‘channel signature’ to uniquely fingerprint the
Alice-Bob link and associate it with the data they exchange,
such that a verifying party, Victor, is able to confirm wire-
less data-to-link associations in the network, potentially at
a later date. The fingerprint is a unique bitstring of pre-
configured length, generated individually by Alice and Bob
sampling their common wireless link, and is therefore highly
correlated between the two. Details of how both parties
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Figure 2: Protocol for Victor

generate the fingerprints are provided in the following sec-
tions. Here we discuss how the fingerprints can be used as
a building block in a protocol for data provenance.

The protocol for the bodyworn sensor device and bases-
tation, denoted as Alice and Bob respectively, is depicted
in Fig. 1. It is essential that Alice and Bob encrypt their
fingerprints to keep them private from unauthorized parties.
If the signature were transmitted in plain sight, an attacker
could possibly copy it and claim the link association with it-
self, raising confusion as to which was the actual data offload
point. Alice and Bob should also not be able to view each
other’s fingerprint: if any of them were maliciously inclined,
they might share the fingerprint with an attacker or use the
fingerprint and its signature binding to try and mount a re-
play attack. An easy way to protect the fingerprint is for
each party to encrypt their own with a key they share only
with Victor, in this case, KAV for Alice and KBV for Bob.

Once the fingerprint is encrypted, it is bundled with a
hash digest of the data and session identifiers (timestamp
or counter value, identity of the devices, etc.), into a ses-
sion record which is digitally signed, and transmitted to the
database. The signature ensures both parties commit to the
data and the link association in a non-repudiable way.

Furthermore, each party can retain a copy of this signed
session record as a receipt for the transaction, enabling system-
wide accountability. In existing provenance solutions, sen-
sor devices usually offload trust on to the network or third
parties (as in [11] and [10]), and if trusted elements collude
for malicious purpose, the sensor device has no way to prove
it. However, the symmetric property of the link fingerprint
and the digital signature binding enables the sensor to verify
at a later date if a record has been tampered with.

Fig. 2 depicts the verification process for Victor: as part
of a forensics investigation, Victor could revisit archived
session records, confirm the digital signatures and session
identifiers for the data items of interest, decrypt Alice and
Bob’s link fingerprints using the individual symmetric keys
he shares with them to check their agreement. If there is
a very high correlation for the two fingerprints, he can be
certain that Alice and Bob used the wireless link between
them to communicate that particular data item.

Furthermore this scheme also identifies man-in-the-middle
attacks. If Eve were to insert herself as a relay point between
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Figure 3: Mobile node, base-station and experimen-
tal layout for indoor environment

Alice and Bob without their knowledge, the legitimate Alice-
Bob communication would span two different wireless links
(Alice-Eve and Eve-Bob) and the resulting Alice-Bob finger-
prints would therefore disagree with very high probability.

We note here that this is not a comprehensive data prove-
nance solution but a first step in that direction. Our aim
is to demonstrate how this technique may be used as an
important building block in actual solutions, and highlight
its security properties. In the next section, we perform ex-
periments to validate that usable link fingerprints can be
generated using wireless channel characteristics.

4. EXPERIMENTAL VALIDATION
We used MicaZ motes, running TinyOS, and operating

in the 2.4 GHz band. These radios provide received signal
strength indicator (RSSI) values, which is a measure of the
signal power in logarithmic units, and suffices for generat-
ing link fingerprints. To recreate an actual bodyworn sensor
deployment, we mounted the device on a human subject Al-
ice (on the upper right arm as shown in Fig. 3(a)), that
communicates with an off-body basestation Bob (pictured
in Fig. 3(b)). Our indoor environment is an office space
with multiple cubicles, furniture and people. The layout is
depicted in Fig. 3(c), marking out the locations of the bases-
tation (Bob) and three eavesdroppers (Eve1, Eve2, Eve3) at
a distance of greater than one wavelength away from the le-
gitimate parties. The bodyworn device transmits packets at

the rate of 1 packet/second, typical for healthcare devices
transmitting physiological information such as heart-rate,
ECG, etc. The basestation responds within 10 ∼ 20 mil-
liseconds with an acknowledgement to every message. This
routine device communication enables both parties to sam-
ple the wireless link in succession and record the RSSI values.

Our experiments consist of two activity modes: High Ac-
tivity where the subject, Alice, walks around the office space
to different cubicles, and interacts with other people in the
room, and Low Activity where she is mostly seated at her
cubicle, occasionally getting up to fetch items from other cu-
bicles. For each activity, we collect RSSI trace readings for
the bodyworn sensor device (Alice), basestation (Bob), and
eavesdroppers (Eve1-3), spanning approximately 40 minute
periods, which we analyze offline with Matlab.

We provide in Fig. 4 a one-minute sample of the RSSI
trace for the High Activity experiment. It is observed in
Fig. 4(a) that the bodyworn sensor device, Alice, and the
basestation, Bob, channel measurements are highly corre-
lated. Eavesdroppers, however, experience a different chan-
nel and are unable to replicate the RSSI profile, as shown
in Fig. 4(b). This follows from Jakes uniform scattering
model [25], which states that there is rapid signal decorrela-
tion at distances of over half a wavelength, and independent
signals can be assumed for a separation of one or two wave-
lengths and more. In the case of the 2.4 GHz band, this
indicates that if Eve is at a distance greater than 13 cm of
Alice or Bob, she will experience different fading character-
istics than the legitimate Alice-Bob channel and not be able
to deduce the channel profile. For this reason, research so-
lutions based on wireless link characterization stipulate as
part of the threat model that eavesdroppers be situated at
least two wavelengths away from the legitimate parties.
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Table 1: Correlation coefficient (r) of RSSI mea-
surements observed by various parties

Experiment Alice- Alice- Alice- Alice-
Bob (r) Eve1 Eve2 Eve3

High Activity 0.974 0.197 0.088 0.038
Low Activity 0.950 0.129 0.102 0.158
High Activity 0.986 0.281 0.118 0.065

(filtered)
Low Activity 0.976 0.205 0.152 0.224

(filtered)

To quantify the correlation for channel measurements for
the different parties, we compute the Pearson correlation
coefficient r :

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2.
√∑n

i=1(Yi − Ȳ )2

where Xi and Yi are the RSSI values of the ith packet of each
party and X̄ and Ȳ are the respective mean RSSI values of a
sequence of n packets. The correlation coefficient r returns
a value in [−1, 1] where 1 indicates perfect correlation, 0
indicates no correlation, and −1 indicates anti-correlation.
This metric is ideal for channel profile characterization in
that it measures variations and not absolute values, and is
therefore unaffected by offsets in RSSI measurements arising
from differences in receiver sensitivities or transmit powers.

The results are presented in Table 1. Again, it is observed
that there is strong correlation (well in excess of 0.9) between
the legitimate parties (Alice and Bob), whereas it is poor
for the eavesdroppers (typically below 0.2). We also present
results for filtered versions of the channel profile. Filter-
ing is useful because it reduces nonsymmetric discrepancies
between the two parties (due to elements such as random
noise, thermal effects, etc.) and has been recommended in
the literature [26] [27]. For our purposes we use the Savitzky-
Golay filter (other filters such as moving average techniques
can also be used) and correlation is seen to improve slightly,
giving higher confidence (> 0.95 correlation) in the shared
fingerprint between Alice and Bob, while still keeping cor-
relation low (< 0.3) for eavesdroppers.

These results are as expected and in good agreement with
prior work. We do not provide a thorough characterization
of the wireless channel in this paper as it has been exten-
sively documented in the literature: the interested reader is
referred to a detailed study in [19] and specifically [23] for
the off-body channel.

Considering the strong correlation between the bodyworn
sensor device and the basestation, technically the RSSI mea-
surements themselves could be the link fingerprint. Both
parties, Alice and Bob, could simply encrypt and sign their
RSSI measurements, and a third party, Victor could com-
pare the RSSI trace results, measure the correlation coeffi-
cient (much as we have done), and if he calculates a value
r > 0.9, he can be certain that the fingerprint is valid.

However, there are issues with using raw RSSI values as
link fingerprints: for one, both parties will have to store ev-
ery RSSI value for every transaction in memory which may
not be feasible for memory-constrained sensor devices. For
example, the MicaZ motes record RSSI in single byte-sized
values and, at a sampling rate of 1 packet/second, would ex-
haust their 4 KB of RAM in little over an hour. Second, ra-
dio usage is a very expensive operation for these devices [28],

and these RSSI measurements have to be offloaded from the
sensor device as part of the session record, resulting in extra
transmission overheads. In the next section we show how
the storage and communication overheads can be dramati-
cally reduced by leveraging known quantisation techniques
for compressing the RSSI-based link fingerprint.

5. OPTIMIZATION AND DISCUSSION
Quantization is a signal processing technique that can ef-

ficiently distil the raw RSSI data to a much smaller and
manageable size. Another advantage is that it has been
well-studied in the literature (especially in the context of
wireless channel-based secret-key generation [19]) and can
be designed to further reduce nonsymmetric noise compo-
nents in the signals observed by Alice and Bob.

In generating link fingerprints, legitimate communicating
parties Alice and Bob sample the wireless channel over a
period of time to gather sufficient channel variation (or en-
tropy) which is then quantized to yield a common bitstring.
Quantization mechanisms typically consist of level crossing
or ranking techniques and the operator of the scheme can
choose one depending on application requirements. We de-
scribe an example of each approach here, validate them with
our experimental RSSI traces, and compare their properties.

5.1 Level Crossing Quantization
Fig. 5 depicts a basic level-crossing quantizer (defined in

prior work [19]). The bodyworn sensor device and the bases-
tation define an adaptive moving window of size WQ, within
which consecutive (filtered) RSSI readings are processed.
For each window, two threshold values are calculated:

q+ = µ+ α.σ

q− = µ− α.σ
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where µ is the mean, σ is the standard deviation, and α ≥ 0
is an adjustable parameter. If an RSSI reading within a
window exceeds q+, it is encoded as 1, and if less than q−,
as 0. The thresholds define an exclusion zone and values
lying in between them are discarded. This helps to further
remove small scale discrepancies between the two endpoints,
whereas there is usually very good agreement for excursions
larger than the standard deviation. The α parameter allows
the operator to adjust quantizer performance to balance be-
tween bit generation rate and bit agreement. For our pur-
poses, we use a window size of WQ = 5 and α = 1, consistent
with prior work.

5.2 Ranking Quantization
A multi-bit ranking quantizer is depicted in Fig. 6. The

algorithm sorts the RSSI values in order to divide them into
n equal-sized ‘buckets’ (n = 4 in this case). Each RSSI
value in the original channel profile can then be encoded
with log2 n bits . Gray coding is used to number the buckets
instead of binary coding, because successive values in Gray
coding differ in only one bit, and will therefore limit small
RSSI disagreements between Alice and Bob to a single bit
per discrepancy.

5.3 Results
We perform the quantization process to generate finger-

prints for the two activity modes for all parties using level
crossing and ranking technique, and present results in Ta-
ble 1. We briefly discuss here our findings and the metrics
we use to evaluate our solution:

1. Bit Agreement: is the percentage of bits in the fin-
gerprint that are matching between the bodyworn de-
vice and the basestation. As can be seen, this is 90%
or greater for the legitimate parties and can be used
to conclusively validate the link between them. Bit
agreement is better in general for the level crossing
quantizer because, unlike for the case of ranking where
every RSSI value is quantized, the level crossing algo-
rithm discards those values within the exclusion zone
that are likely to cause disagreement.

2. Bit Rate: is the average number of bits that can be
extracted from the channel per unit time. The rank-
ing quantizer performs at a constant rate of 2 bits/s
since all of the raw RSSI values are encoded. The level
crossing technique exhibits a much lower rate because
a single RSSI value can only be encoded to a single
bit and several RSSI values are discarded. There is a
tradeoff between bit agreement and rate.

3. Minimum Session Length: is the fingerprint length
divided by the bit rate. The operator of the scheme
can choose the length of the desired fingerprint. For
level crossing, depending on the activity mode, it takes
approximately 11 to 16 minutes to generate a 128 bit
link fingerprint. For the ranking quantizer, which has
a much faster rate, a fingerprint can be generated in
approximately 2 minutes.

4. Eavesdropper Agreement: Fingerprints generated
by the eavesdroppers should ideally match with the
legitimate parties for 50% of the bits, which we see
in our results. This translates to their knowledge of

the legitimate fingerprint gained by eavesdropping as
being no more useful than a tossing a coin.

5. Entropy: is a measure of the inherent randomness or
uncertainty in the key. For a random variable X, over
the set of n symbols x1, x2, ..., xn, entropy is typically
measured as follows:

H(X) = −
n∑

i=1

p(xi) log2 p(xi)

where p(xi) is the probability of occurrence of symbol
xi. For binary symbols, a value close to 1 indicates
high entropy, which we achieve in our results. Further-
more, the fingerprints we generate clear the entropy
tests in NIST test suite [29], a battery of tests with
a pass/fail result, typically used in the literature to
confirm randomness of wireless channel-based secrets.
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Activity Fingerprint Bit Min. Session Eve1 Eve2 Eve3 Entropy
(Quantization) Agreement (bit/s) Length (mins) Agreement Agreement Agreement
High Activity 98.40% 0.205 10.41 47.11% 46.48% 47.34% 0.997

(Level Crossing)
Low Activity 95.53% 0.139 15.35 46.26% 46.80% 47.60% 0.997

(Level Crossing)
High Activity 93.60% 2 2.13 44.39% 46.92% 48.74% 1

(Ranking)
Low Activity 96.08% 2 2.13 50.54% 50.41% 52.92% 1

(Ranking)

Table 2: Link fingerprint performance for experimental scenarios

We believe these are encouraging results which validate
our proposed approach, and lay the grounds for future work.
The tradeoffs between the different quantizers are also high-
lighted: ranking can be used to build lossless multi-bit quan-
tizers with high bit generation rate, more suited to applica-
tions where the average session time between sensor device
and basestation is low. A level crossing technique could be
used for longer session times, and yields a fingerprint with
higher agreement between the two ends. Quantizers could
even be further customised to prioritize a desired metric as
per application requirements.

In some settings, such as hospitals or gyms, where there
are multiple basestations and possibilities for roaming, a
bodyworn sensor device may form link associations with dif-
ferent basestations over a period of time. The sensor device
worn by a hospital patient may communicate for the most
part with the basestation in the ward, except when the pa-
tient visits the hospital cafeteria where it associates with
another basestation. Associations may be very brief and
frequently disrupted. In this case, the sensor device and in-
dividual basestations could maintain running counter values
and incremental fingerprints for communications, such that
a complete fingerprint may be generated and signed over
multiple sessions between the sensor and basestation pair,
only when sufficient data has been communicated between
the two.

Furthermore, our protocol solution should be considered
a starting step, and several variations are possible on this
basic design: for instance, if session times are very short, and
frequent use of a digital signature is too resource-intensive, it
is possible to incorporate signature amortization techniques
[14] to distribute a digital signature over several sessions.

We also note that it is possible to extend this concept
to networks with multiple hops (such as mobile sensor net-
works, delay tolerant networks, etc.) and document the
entire wireless path for a data item. If the sensor device
transmits data to the basestation which in turn forwards it
to another device using the wireless channel, each party in
the path could generate the associated signature records and
maintain receipts. The verifying party, Victor, could map
out the entire wireless path by performing the fingerprint
verification process for every link, and, in a loose sense, may
even be able to track the mobile parties. Mechanisms could
be developed to ensure that malicious parties in the path do
not collude with each other.

We intend to explore all of these ideas in future work. We
are also working on prototyping our solution to quantify the
energy requirements, and study performance across a wider
range of environments and activities.

6. CONCLUSION
In this paper we have proposed a data provenance pro-

tocol for bodyworn devices that exploits symmetric spatio-
temporal characteristics of the wireless channel. Our solu-
tion generates unique link fingerprints that we use to form
data to wireless link associations. In contrast to existing
provenance mechanisms which operate on a per packet ba-
sis, this solution generates provenance on a per session ba-
sis, which minimizes the use of cryptographic techniques and
associated overheads. The link fingerprints can be built us-
ing routine data transmissions, they are unique to the two
communicating parties and cannot be deduced in detail by
an eavesdropper situated at a distance. Our provenance
solution also provides system-wide accountability and non-
repudiation.

We performed experiments using bodyworn devices in an
indoor office space to demonstrate the high correlation in
channel measurements between the two endpoints. We sug-
gest two optimization techniques, level crossing and ranking,
to quantize the raw RSSI values to a manageable size, and
we discuss possibilities for adapting the fingerprinting pro-
cess for different application requirements. We believe this is
a promising first step in using wireless link-based techniques
to secure data provenance.
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