

Securing Data Provenance using Link Fingerprints in Body Area Networks

Syed Taha Ali (UNSW)
Vijay Sivaraman (UNSW)
Diethelm Ostry (CSIRO)
Sanjay Jha (UNSW)

Introduction

The market for wearable wireless sensors is projected to grow to more than 420 million devices by 2014.

Fundamental applications in patient monitoring, personalized healthcare, telemedicine, and athlete training.

1. Apple iPhone SensorStrip 2. Nike + iPod Sports Kit

3. Nokia Sports Tracker

4. Toumaz Life Pebble

Security is critical because these devices generate medical data, and challenging given that they have low power and computation capabilities.

Provenance may be defined as a record of the origin and evolution of data within the network. It allows for an objective evaluation of the **trustworthiness** of the data.

Application: Alice who is informed by her insurance provider that they will cut her rates if she gives up smoking – to ensure compliance, they provide her with a bodyworn sensor device

The **identity transference attack** - Alice can affix the sensor on to a non-smoker friend for the duration of the trial

It would help to have information about the sensor data – e.g. what are the most common sensor data offload points, Alice's smartphone, Alice's home WiFi network, Alice's gym, etc.

Our Contributions

Our goal is to fingerprint the wireless link between sensor device and data offload point (i.e. basestation) in a **secure**, **lightweight**, and **non-repudiable** way.

We describe a way to fingerprint the wireless link between two parties by exploiting the intrinsic symmetry in wireless channel characteristics

- We present experimental results confirming that this solution generates usable link fingerprints for typical bodyworn sensor applications
- We optimize the fingerprinting process to reduce memory and transmission overheads for resource constrained devices

Data Provenance Protocol

Encryption keeps fingerprint secret (from all except Victor)
Signature ensures authenticity and non-repudiation
Session record also provides accountability – i.e. Alice can ensure that Bob or Victor don't tamper with the data

¤ <u>Alice</u>

- **#** Keys: $K_{AV'}$ (K_{A^+} , K_{A^-})
- **^{II}** Sign ([H(data), DeviceID, counter, Enc(LinkFingerprint-A, K_{AV})], K_A-)

¤ <u>Bob</u>

- **#** Keys: K_{BV} , $(K_{B^{+}}, K_{B^{-}})$
- **#** Sign ([H(data), DeviceID, counter, Enc(LinkFingerprint-B, K_{BV})], K_B-)

¤ <u>Victor</u>

- $\texttt{\texttt{#} Keys: K_{AV'}, K_{BV'}, K_{A^+}, K_{B^+}}$
- Prify ([H(data), DeviceID, counter, Dec(LinkFingerprint-A, K_{AV})], K_A⁺)
- # Verify ([H(data), DeviceID, counter, Dec(LinkFingerprint-B, K_{BV})], K_{B⁺})
- m Compare (LinkFingerprint-A, LinkFingerprint-B)

- **#** Considerable interest recently in 'physical layer security'
- **#**The wireless channel between Alice and Bob is
 - **x** symmetric
 - highly sensitive to spatio-temporal changes
 - annot be deciphered in detail by eavesdropper (6~13 cm zone)
- **#** Alice and Bob can use these shared channel characteristics to generate a shared secret known only to them
- **#**Technique has been applied very successfully in secret key agreement, authentication, and location distinction

Experimental Setup

Bodyworn Device -Alice (MicaZ mote)

Indoor Office Environment

Basestation – Bob, Eve(s)

Variation in RSSI vs. time

	-74 -76 -	т <i>г</i> .	A	i i	BaseStation						
]	able 1: Correlation coefficient (r) of RSSI mea-										
Alice s	urements observed by various parties										
and	Experiment	Alice-	Alice-	Alice-	Alice-						
Bod		Bob (r)	Eve1	$\mathbf{Eve2}$	Eve3						
	High Activity	0.974	0.197	0.088	0.038						
	Low Activity	0.950	0.129	0.102	0.158						
	High Activity	0.986	0.281	0.118	0.065						
	(filtered)										
	Low Activity	0.976	0.205	0.152	0.224						
Bob	(filtered)										
and Eves	$\begin{bmatrix} 2 & -86 & & & \\ -88 & & & \\ -90 & & & \\ -92 & & & \\ -94 & & & $										
	time (s)										

Optimization

Storing and signing RSSI information for entire data transaction is not practical

Solution: quantize RSSI information to reduced length bitstring Reveling Osciagt Dation

Performance

Activity	Fingerprint	Bit	Min. Session	Eve1	Eve2	Eve3	Entropy
(Quantization)	Agreement	(bit/s)	Length (mins)	Agreement	Agreement	Agreement	
High Activity	98.40%	0.205	10.41	47.11%	46.48%	47.34%	0.997
(Level Crossing)							
Low Activity	95.53%	0.139	15.35	46.26%	46.80%	47.60%	0.997
(Level Crossing)							
High Activity	93.60%	2	2.13	44.39%	46.92%	48.74%	1
(Ranking)							
Low Activity	96.08%	2	2.13	50.54%	50.41%	52.92%	1
(Ranking)							

Table 2: Link fingerprint performance for experimental scenarios

Results highlight the advantages/disadvantages of quantizers:

Ranking can be used for lossless multi-bit quantization with high key generation rate which is good for small session times

Level crossing is better for larger session times and shows higher fingerprint agreement

Customized quantizers can be developed too as per application

Conclusion

Our solution takes 2-10 minutes to fingerprint a wireless link

Positive first step in using wireless channel characteristics for provenance (lightweight alternative to crypto-based solutions)

Future Work

extending this idea to multihop networks to fingerprint the entire wireless path
fingerprinting links in delay-tolerant networks
amortizing digital signature costs over multiple session records

(using Merkle trees, coding?)

THANK YOU for LISTENING

