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Abstract—Emerging platforms such as Amazon Mechanical
Turk and Google Consumer Surveys are increasingly being used
by researchers and market analysts to crowdsource large-scale
survey data from on-line populations at extremely low-cost.
However, by participating in successive surveys, users risk being
profiled and targeted, both by surveyors and by the platform
itself. In this paper we propose, develop, and evaluate the
design of a crowdsourcing platform, called Loki, that is privacy
conscious. Our contributions are three-fold: (a) We propose
Loki, a system that allows users to obfuscate their (ratings-
based or multiple-choice) responses at-source based on their
chosen privacy level, and gives surveyors aggregated population
averages with known statistical confidence. (b) We develop a
novel selection mechanism, which the platform can use to give
surveyors accurate population estimates within a cost budget,
while ensuring fairness in privacy loss amongst users. (c) We
evaluate our scheme both off-line using a large dataset of movie
ratings, and on-line via experimentation with 131 real users
using a prototype implementation on mobile devices. Our work
represents a first step towards incorporating privacy protection
in emerging platforms for crowdsourced survey data.

I. INTRODUCTION

In recent years, both academic and market researchers have
been increasingly relying on online crowdsourcing platforms
for conducting surveys, to gain new insights about customers
and populations. The Amazon Mechanical Turk (AMT) [1]
platform is being used by researchers in experimental psy-
chology to conduct low-cost large-scale behavioral studies
by obtaining opinion survey data from paid volunteer pop-
ulations, well beyond the walls of university campuses [2].
The recently launched Google Consumer Surveys platform
[3] enables large-scale market surveys by gating access to
premium content using a “surveywall” that requires users to
answer “one question at a time”. Though users of such systems
receive compensation (in-cash or in-kind) for contributing data,
they lose privacy with each personal fact or opinion revealed
in the course of the surveys they participate in.

The release of personal facts and opinions, albeit in small
increments, can over time be accumulated (by the surveyors
or by the platform) to profile individuals. This gradual loss in
privacy may be undesirable for many users, and even harmful
(in social, financial, or legal ways) for some. Furthermore,
the threat comes not only from surveyors, but also from the
platform itself, which can exploit the profiling for its own
ends, or cede it to another entity for gain. Prior solutions that
have advocated the use of a trusted third party (or proxy) [4],
[5], [6], [7] fall short on this account, since they lead to a
gradual transfer of personal information to the external entity
(e.g., the ISP, Amazon, Google, or a government body), which
may even collude with surveyors. Solutions like anonymization
also fall short as they can be circumvented via the use of
auxiliary information [8], [9], [10], and also make it difficult to

compensate users for contributing their data. What is therefore
needed is a method that does not need to rely on users being
anonymous, but rather empowers them to obfuscate their data
at source without having to trust external parties, thereby
allowing them to control the rate at which they leak their
private information to the rest of the world.

In this paper we propose a system, called “Loki”, in
which users do not need to trust anyone other than them-
selves, and can obfuscate their responses at source prior to
submission to the platform. At the outset, local obfuscation
may seem trivially achievable; for example, continuous-valued
(e.g., ratings-based) responses can be obfuscated by adding
random noise (e.g., [11]), and discrete-valued (e.g., multiple-
choice) responses can be obfuscated by randomly flipping
the true response (e.g., “randomized response” [12]). How-
ever, obfuscation by users creates two new challenges for
the platform: (a) the measured survey outcomes will differ
from the true responses, and the platform therefore needs
to quantify and manage the inaccuracy so that surveyors get
acceptable confidence in the results, and (b) the platform needs
to ensure fairness in privacy depletion across its users (i.e.,
some users should not lose much more privacy than others),
so as to continue enjoying the long-term support of its entire
user base. Managing this trade-off between service quality
(to surveyors) and privacy fairness (to users) requires a non-
trivial mathematical framework, and motivates the research
undertaken in this paper.

We acknowledge that obfuscation does not prevent privacy
leakage, it merely slows it down. If a user is asked the
same question in several ways, the independent noise (of
known distribution) added to each response can be filtered
out with more certainty due to the larger number of samples
available. It may be possible to counter this filtering by adding
dependent noise to responses, but this is infeasible in practice,
as the underlying correlations between questions are extremely
difficult to quantify and are often unknown. In this work we
therefore take the simpler approach of adding independent
noise to user responses, and treat the quantified cumulative
privacy loss as an upper bound rather than an exact value.
Further, we restrict our focus to ratings-based questions and
multiple-choice questions, noting that the underlying method
of adding noise is general and applicable to other question
types in which the response set is numeric or countable (i.e.,
almost anything other than free-text responses).

Our specific contributions in this paper are: (a) We propose
the architecture of Loki, a privacy-preserving crowdsourcing
platform, and describe our design choices surrounding obfusca-
tion techniques, user privacy levels, privacy loss quantification,
user privacy depletion, cost settings, and user utility estimation.



(b) We develop a novel algorithm by which the platform can
select the best subset of users for a given survey to achieve
the desired balance between cost, accuracy, and privacy. This
algorithm ensures that the best accuracy is obtained within a
stipulated cost budget, while maintaining fairness in privacy
depletion across users. (c) We evaluate our user selection
algorithm off-line on a large dataset of movie ratings, and
show that it achieves higher accuracy for a given cost budget,
and ensures consistency in accuracy over successive surveys.
Additionally, we develop a prototype of our Loki system,
including the surveyor web-interface, broker platform, and
client apps for iOS and Android based mobile devices. We
validate our solution by conducting an experiment with 131
volunteers, to demonstrate the validity of our approach in
protecting user privacy, while obtaining reasonably accurate
aggregated responses even in small-scale settings.

We believe our work is among the first to explicitly incor-
porate privacy into data crowdsourcing platforms such as AMT
or Google Consumer Surveys, allowing utility, privacy and cost
to be balanced in a controllable way. The rest of the paper is
organized as follows: existing privacy preserving solutions are
reviewed in §II. We present our system architecture in §III, and
develop an algorithm for user selection in §IV. We evaluate our
algorithm offline using the NetFlix dataset in §V, and describe
our prototype implementation and associated insights in §VI.
The paper is concluded in §VII.

II. RELATED WORK

Early research works on data anonymization proposed sani-
tizing user data by masking or removing personally identifiable
information (PII). However, mechanisms like k-anonymity [13]
and variants like ℓ-diversity [14] were shown to be vulnerable
to composition attacks [15], and do not provide adequate
privacy protection in the presence of auxiliary information.
It was shown that intuitive anonymization techniques are not
effective in protecting user identity, as individual users can be
re-identified [16], [9], [10].

For the distributed settings, a number of research works
studied input perturbation, where privacy is obtained by adding
noise to user data at the source. A generic approach pro-
posed in [17], [11] is to add random distortion values drawn
independently from a known distribution, e.g., the uniform
distribution. A number of improvements in this technique were
subsequently proposed [18], [19]. However, it was shown [20]
that an adversary may analyze the data and filter out some of
the noise, effectively reducing the bounds of uncertainty intro-
duced by the noise and compromising the privacy guarantees.

More recently, differential privacy [21], [22] has emerged
as a promising way of providing provable privacy guarantees
under arbitrary adversary conditions, i.e., an adversary who
may have any level of computational power and background
knowledge. Differential privacy is typically achieved by adding
a calibrated level of noise to the response on a query over
a centralized database [21]. These mechanisms have been
extended to the distributed setting [23], [24], where they
leverage cryptographic techniques to generate differentially
private noise in a distributed manner; however, they do not
seem to scale well.

Several works have proposed architectures that rely on a
trusted third party, or an honest-but-curious party, to assist in
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scalable data processing tasks while preserving user privacy.
Guha et al. [5] presented an online advertising system that
uses a proxy to hide user activities to the desired level, while
enabling a number of standard online advertising features, in-
cluding defense against click-fraud. Riederer et al. [7] focused
on monetization of personal information and Toubiana et al.
[25] proposed a combination of localized (browser-based) user
profiling and a cryptographic billing system, also for online
advertising. The system presented by Chen et al. [4] is the
closest to our proposal, targeting personal query collection
and aggregation from a subset of the overall user population;
however their system relies on the broker being honest, which
is not required in our approach.

III. SYSTEM DESIGN

A. Architecture and Entities
The proposed system (Fig. 1) is closely modeled along

the lines of AMT, and comprises three entities: surveyors,
users, and the broker platform. Surveyors acquire data from
users using a set of questions in a survey form (our work in
this paper is restricted to ratings-based and multiple-choice
questions). The surveyor pays the broker to run the survey,
specifying an upper bound on total cost. The surveyor expects
sufficient accuracy (utility) of the aggregated response, in
that it should represent the averaged opinion over the entire
user population. Users respond to questions in the surveys
they choose to participate in, using a supplied application
(app) installed on their personal device (smart phone/tablet).
The app allows users to obfuscate their responses at source.
The users’ monetary compensation may in general depend on
their choice of privacy level – higher privacy levels entail
higher obfuscation and hence lower payment. We do not deal
with intentional lying (or cheating) by users to get higher
compensation. The broker provides a platform for launching
surveys to users. It receives payment from surveyors, and
passes it on to participants (less a commission). The broker
has a dual objective: to provide accurate population estimates
to surveyors (this requires it to keep track of how good a
predictor of population behavior each user has been in the
past), and to deplete privacy fairly across users so as to extend
their lifetime in the system (this requires it to keep track of
cumulative privacy depletion for a user across earlier surveys).



B. Design Choices
1) Obfuscation Technique: We use simple and natural tech-

niques by which the user client locally obfuscates the answer
before reporting it to the broker. For ratings-based questions,
Gaussian noise N (0, γ2) is locally added to the user response.
We chose Gaussian over uniform as it has unbounded range,
and hence does not compromise user privacy in boundary
cases. We preferred it over Laplace since it is additive, i.e. the
sum of Gaussian noise terms is still Gaussian. Further, note that
the mean of the noise is chosen to be zero for convenience,
so as not to introduce any bias one way or the other. The
standard deviation γ will be adjusted based on the user’s
privacy chosen privacy level. For multiple-choice questions,
we use the randomized response technique [12], whereby the
user’s true selection is preserved with probability 1 − p, and
with probability p (p < 0.5) the response is changed uniformly
randomly to one of the other choices. Again, the value of p is
dictated by the user’s chosen privacy level, described next.

2) User Privacy Levels: In theory, any number of privacy
options can be available to the user. However, to keep it simple,
we advocate a set of four privacy levels: none, low, medium,
and high. The chosen privacy level determines the amplitude
of the noise that is added to obfuscate the true user response.
Needless to say, the higher the privacy level, the larger the
obfuscation parameter (γ or p above). These are illustrated
with examples below:

Example 1. Consider a 5-point Likert scale commonly used in
psychology studies, with the possible response values includ-
ing: 1 (strongly disagree), 2 (disagree), 3 (neutral), 4 (agree),
and 5 (strongly agree). A reasonable selection of obfuscation
parameter might be: γ = 0 for no privacy, γ = 3 for low
privacy, γ = 6 for medium privacy, and γ = 12 for high
privacy (note that the reported responses will consequently be
real-valued rather than integers).

Example 2. Consider a multiple choice question with five
options. A reasonable selection of obfuscation parameter might
be: p = 0 for no privacy, p = 0.1 for low privacy, p = 0.3 for
medium privacy, and p = 0.4 for high privacy.

3) Privacy Loss Quantification: Given the obfuscation
techniques above, we need a way to quantify the privacy
loss for a user who answers a particular survey at a partic-
ular privacy level, and to accumulate the user’s privacy loss
across multiple surveys. For this purpose, we utilize the rich
mathematical framework provided by differential privacy [21].
Differential privacy provides strict bounds on the sensitivity
of the outcome of the computation to any particular record in
the input. Consequently, the output of a differentially private
computation does not allow inference of any specific input
record, irrespective of the adversary’s computational power or
the available background knowledge. Formally, a function K
provides (ϵ, δ)-differential privacy [23] if for any two datasets
A and B differing in a single record, and for all outcomes S:

Pr[K(A) ∈ S] ≤ exp(ϵ)× Pr[K(B) ∈ S] + δ . (1)

The degree of privacy is controlled by the parameter ϵ, while
δ allows the condition in Equation 1 to be relaxed for unlikely
events. Differential privacy maintains composability, meaning
that if two computations maintain (ϵ1, δ1) and (ϵ2, δ2) differ-
ential privacy respectively, then executing both would amount
to (ϵ1 + ϵ2, δ1 + δ2) differential privacy.

In our case, the differential privacy constraint is applied to
each survey answer, i.e., the difference between two datasets
A and B amounts to a difference in a single answer. For
rating based questions, the privacy guarantees of Gaussian
noise N (0, γ2) can be mapped to (ϵ, δ)-differential privacy
measures through the relation [23]:

ϵγ2

2R2
+ ln(ϵγ2) ≥ ln

1

δ
, (2)

where R is the range of the user’s possible answers. To
illustrate by an example:

Example 3. Following from Example 1, the 5-point Likert
scale based ratings with privacy levels {no, low, medium,
high} respectively used γ = {0, 3, 6, 12}. Since R = 4, and
fixing δ = 0.01, the privacy settings correspond to differential
privacy guarantees of ϵ = {∞, 3.42, 0.85, 0.21} respectively.

For multiple choice questions obfuscated using the ran-
domized response technique, the mapping from the probability
measure p to (ϵ, δ) can be derived from (1) as:

ϵ ≥ ln(1− p− δ)− ln(p) + ln(n− 1) . (3)

Example 4. Following from Example 2 of a multiple choice
question with five options, privacy settings {no, low, medium,
high} respectively used p = {0, 0.1, 0.3, 0.4}. Fixing δ = 0.01,
the privacy settings correspond to differential privacy guaran-
tees of ϵ = {∞, 3.57, 2.22, 1.77} respectively.

4) User Privacy Depletion: We have shown above how a
user’s privacy loss in a survey can be translated to differential
privacy metrics (ϵ, δ). Fortunately, these metrics are compos-
able (i.e., additive), and the user’s privacy loss over successive
surveys can therefore easily be estimated by accumulating
these metrics over the user’s lifetime. We emphasize here that
our objective in quantifying a user’s privacy loss is so that
the broker can try to be fair in privacy loss across users (as
per the algorithm developed in the next section); we treat the
differential privacy metrics as an upper bound that captures
the relative privacy loss for each of the users. In the rest of
this work, we will fix the value of δ at 0.01, and use ϵ for
comparing privacy loss across users. Further, for cases where
users choose privacy level “none”, we set ϵ = 0 (rather than the
theoretically correct value of∞), since the users are explicitly
indicating that they do not value privacy for that survey, and
the effect of this survey on their cumulative privacy loss should
not be accounted for.

5) Cost Settings: A user i, who contributes data in response
to a survey questionnaire, receives a compensation ci. Users
who choose a higher privacy level (and consequently add more
noise to their responses) may receive lower compensation than
those who choose a lower level of privacy.

Example 5. Following from Example 1 that uses a 5-point
Likert scale, the privacy levels none, low, medium, and high
could correspond to user payments ci of $0.8, $0.4, $0.2 and
$0.1 respectively. The unit of cost is arbitrary and can be
scaled appropriate to the complexity or value of the survey.

6) User History and Utility: Despite noise addition by
users to obfuscate individual answers, some characteristics of
user behavior can be discerned by the broker over time. As
an example, noise added by a user to n successive ratings-
based questions, each with iid noise N (0, γ2), can be averaged



by the broker to estimate the user’s mean noise N (0, γ2/n)
that has lower variance. This fact can be leveraged by the
broker to estimate metrics such as the “error” of the user’s
ratings, i.e., to determine on average how close the user’s
ratings in the past have been to the population averages. This
in turn indicates how representative this user is of the general
population, and helps the broker estimate the “value” of the
user towards obtaining an accurate population estimate. In the
following section, we will use this notion of user “value” to
select users in a way that balances the accuracy, cost, and
privacy needs for each survey.

IV. PRIVACY PRESERVING SELECTION MECHANISM

We develop a practical method for the broker to select
users to participate in each survey so as to balance cost,
accuracy, and privacy. We outline the approach for ratings-
based questions (continuous-valued); the analysis for multiple-
choice questions (discrete-valued) is presented in the full
version [26].

A. Quantifying Estimation Error

The broker is tasked with estimating the population average
of a statistic (e.g., movie rating, product popularity, disease
prevalence). Due to the cost constraint set by the surveyor, the
broker can query only a subset of users S from the universal
set of users U , and this selection is based on accuracy, cost,
and privacy depletion. We begin by estimating the accuracy of
the statistic due to sampling and user noise addition.

1) The Estimated Measure: Denote by xi ∈ R the input
of user i ∈ U . The desired population average θ is given
by θ =

∑
U

xi/|U |. The broker estimates this statistic by

sampling a subset of users S. Further, each user i sends
obfuscated input x̂i = xi + ni to the broker, whereby the
true input xi is combined with noise ni taken from N (0, γ2

i ),
where γi depends on the user’s chosen privacy level. The
broker’s estimate θ̂ of the population average is then given
by θ̂ =

∑
S

x̂i/|S| =
∑
S

(xi + ni)/|S|. The mean squared error

in the estimator is given by:

RMSE2 = (θ̂ − θ)2 =


∑
S

ni

|S|
+


∑
S

xi

|S|
− θ

2

. (4)

When selecting S, the broker therefore accounts for two
influencing factors: the level of privacy required by each user,
which determines the error due to privacy-related noise (first
term above), and the expected sampling error (second term
above). As the broker has the prior history of each of the
users, it can evaluate how well each user’s answers reflect the
real aggregate θ, as discussed next.

2) User and Group Error History: The “value” of a user
depends on how accurately the user’s responses reflect those of
the population at large. To quantify this, we consider the user
error, i.e., the difference ∆i between the user’s response and
the true population average, given by ∆i = xi−θ. Treating the
user error ∆i as a random variable, we can estimate its mean
µi and variance σ2

i from the history of prior responses Hi =
{x̂ij} of the user using µi = E[∆i] =

∑
j:xij∈Hi

(xij − θj)/|Hi|

and σ2
i = Var[∆i] =

∑
j:xij∈Hi

(xij − θj − µi)
2/|Hi|, where θj

denotes the true population average in a past survey question
qj . New users can be assigned a default value of user error.

Similarly, we can define the value of a group of users S to
reflect how closely the average rating by this group matches
the true population rating. The average rating by the group is
defined as xS =

∑
S xi/|S| (when not all users in the group

answer a question, for convenience we take the average only
over users who do answer). Denoting by ∆S the group error,
which quantifies the difference between this group’s average
rating and the population average, we have ∆S = xS − θ.
The mean and variance of the group error can be deduced
from the prior history HS = {x̂Sj} of this group using µS =
E[∆S ] =

∑
j:xSj∈HS

(xSj − θj)/|HS | and σ2
S = Var[∆S ] =∑

j:xSj∈HS

(xSj − θj − µS)
2/|HS |.

The estimation of the user and group errors above assumes
perfect knowledge of the true user responses xi and the
population averages θj . In reality the broker only has the noisy
user/group responses (x̂i or x̂S), as well as noisy population
estimate θ̂j for prior survey questions. The mean (µS) and
variance (σ2

S) of the true group error can be approximated
with the mean (µ̂S) and variance (σ̂2

S) of the computed errors,
using the fact that the noise is independent of user responses

and has zero mean: µ̂S ≈ µS and σ̂2
S ≈ σ2

S +

∑
S

γ2
i

|S|2 +

∑
U

γ2
i

|U |2 .
The expectation of the error in Eq. (4) is then derived as:

E(RMSE2) = E

[(∑
S

ni

|S|

)2
]
+ E

[
(xS − θ)

2
]
=

=

∑
S

γ2
i

|S|2 + σ2
S + µ2

S ≈ µ̂2
S + σ̂2

S −
∑
U

γ2
i

|U |2 . (5)

In general, as the size of the set S increases, i.e., more users are
surveyed, the error above decreases; in fact, it can be verified
that when S = U , then µS = σ2

S = 0 (since xU = θ by
definition), and the sampling bias is eliminated, with estimation
error arising only from the noise added by users. We will now
see how the estimation error balances with cost and fairness.

B. Balancing Cost, Accuracy, and Privacy Fairness
1) Optimizing a Single Survey: As described in §III-B5,

each user chooses a privacy setting, which incurs a privacy
cost (ϵi, δi). The privacy protection is obtained by adding noise
with variance γ2

i . The privacy setting is also associated with
monetary compensation ci. Given the user choices, the broker
proceeds to select a group of users to be included in the survey,
based on two constraints:

Monetary cost constraint: A surveyor sets an overall cost
C for a survey. The broker selects nj users who picked the
j-th privacy setting associated with cost cj . To stay within the
overall cost bound, the broker ensures

∑
j

njcj ≤ C.

Privacy constraint: For each user, the cumulative privacy
loss throughout the system lifetime is capped at (ϵmax, δmax).
Each user i in survey j incurs a known privacy cost (ϵij , δij)
depending on the selected privacy level. The accumulated
privacy loss for user i is therefore (

∑
j ϵij ,

∑
j δij) where

the summation is over all the past surveys taken by this
user. The residual privacy budget for the user is consequently
(R

(ϵ)
i , R

(δ)
i ), where R

(ϵ)
i = ϵmax −

∑
j ϵij and R

(δ)
i =

δmax−
∑

j δij . To guarantee that the user’s cumulative privacy



loss stays within the lifetime privacy budget, the broker must
ensure that for the new survey, ϵi ≤ R

(ϵ)
i and δi ≤ R

(δ)
i .

For a new survey, we can therefore pose the selection of a
set S of users to survey as an optimization problem:

arg min
S⊆U

RMSE (6)

s.t.
∑
j

njcj ≤ C and ∀i ∈ S : ϵi ≤ R
(ϵ)
i ∧ δi ≤ R

(δ)
i ,

where the RMS error is obtained from Equation (5). For
the special case when a user chooses a “no privacy” setting,
which in theory translates to an unconstrained loss in privacy
(ϵ→∞), we make the practical choice of using ϵ = 0, δ = 0,
reflecting that the user is not concerned about the privacy
implications in this case.

2) Optimizing Across Multiple Surveys: When consider-
ing a series of surveys, additional factors may influence the
broker’s choices, beyond the cost and privacy constraints. In
particular, Quality of Service (QoS) across surveys aims to keep
an (ideally) constant RMS error over successive surveys that
can be maintained and guaranteed to the surveyors, while fair-
ness aims to balance the residual level of privacy across users,
since privacy can be seen as a non-renewable resource, which
should be equally depleted across users. QoS considerations
may motivate the broker to select for a survey users with low
error, but this may deplete such users’ privacy budget rapidly.
Consequently, those users may be excluded from participation
in subsequent surveys, resulting in deterioration of QoS over
time.

To express the importance of QoS and fairness, we intro-
duce a “fairness parameter” α ∈ [0, 1] that is set by the broker.
We then combine the monetary and privacy cost of user i into
an overall cost Fi, given by:

Fi = (1− α)
ci
C

+ α ·max

[
ϵi

R
(ϵ)
i

,
δi

R
(δ)
i

]
. (7)

The first term considers the monetary cost of the user for this
survey, as a fraction of the budget available for the survey.
The second term considers the privacy depleted by this user’s
participation in the survey, as a fraction of their residual
privacy budget. The overall cost is therefore a dimensionless
score that takes a linear combination of the two costs, weighted
by the fairness parameter α. When α → 0, monetary cost
is of primary concern and fairness in privacy depletion is
ignored. Conversely, when α → 1, monetary cost is ignored
and users with a low residual privacy budget are assigned high
cost, disfavoring them for selection so as to maintain fairness
in privacy depletion. The next section presents the selection
algorithm that uses this combined cost metric.

C. Algorithm for User Selection

For a new survey, the proposed algorithm is executed to
select the set of users who yield the best accuracy within
the given cost constraint, while also maintaining fairness in
privacy depletion amongst users. Our initial construction of
this set assumes that (a) all selected users will actually take the
survey, and (b) we can correctly predict the privacy level choice
of each user according to their past history. In reality, these

assumptions may not hold, but the algorithm can be easily
modified to refine the set based on actual user feedback.

Evaluating all possible subsets S ⊆ U of users to determine
the optimum would be intractable. Instead, we propose a
greedy heuristic approach, by which the broker constructs the
set S incrementally, each time adding the user who would
be most cost effective, while taking into account the QoS
and fairness considerations. Given a set of users S ⊆ U ,
Equation (5) evaluates the expected error RMSE(S) of the
set, based on past performance. Adding the user i to the
set would result in the set S ∪ {i}, for which the expected
error RMSE(S∪{i}) can be evaluated as well. The difference
∆RMSE(S, i) = RMSE(S) − RMSE(S∪{i}) encapsulates
the reduction in error by inclusion of the user i in the set. We
can then compute βi, the improvement in RMS error per unit
of cost, for the user i:

βi(S) =
∆RMSE(S, i)

Fi
, (8)

where the user cost Fi is given by Equation (7) and includes
both monetary and privacy costs. In the greedy selection pro-
cess, the broker picks the user with the highest βi at each step
(i.e., the user with the highest expected accuracy gain per unit
of cost). By starting with an empty set of users, and iteratively
adding users one by one, the broker can construct the target
set S, until the monetary cost limit C is reached. Note that
users who have depleted their lifetime privacy budget are not
eligible for selection. Algorithm 1 describes this process.

Algorithm 1 Greedy User Selection Mechanism
1: Input: set of users U , each with cost cu; overall cost

bound C.
2: Output: set S ⊆ U of survey participants.
3: S = ∅.
4: P = {i ∈ U : ci ≤ C ∧ ϵi ≤ R

(ϵ)
i ∧ δi ≤ R

(δ)
i }. ▷

candidate users within budget
5: while P ̸= ∅ do
6: u← arg max

i∈P
βi(S).

7: S ← S ∪ {u}, P ← P \ {u}.
8: C ← C − cu. ▷ remaining budget
9: P ← {i ∈ P : ci ≤ C}.

10: end while
11: return S.

Algorithm 1 has complexity O(KN2), where K is the
number of items that constitute prior history and N is the
number of users. An alternative algorithm may simply sort
users by value per unit cost, e.g., prior error for each user
divided by (monetary and privacy) cost, and select the top
few that can be afforded by the budget C. However, such an
algorithm does not account for the correlations amongst user
responses. For example, user A may always rate items below
the population average, while user B is always above this value.
Individually, each would have a high error, and a naive strategy
would end up selecting neither. In contrast, Algorithm 1 works
in a more subtle way, accounting for the performance of the
group S as a whole rather than as the sum of the individuals
in it. For the above example, if Algorithm 1 picks user A in
one step, it would then favor picking user B in the next step
since the two users together in S cancel out each other’s error
and have low joint error.
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Fig. 2. Impact of selection policy on (a) accuracy versus cost, and (b) fairness in privacy depletion.

V. OFFLINE EVALUATION
We evaluate our algorithm on a large dataset of movie rat-

ings to study the trade-offs between cost, utility, and fairness,
and the long-term system performance.

A. Dataset and Methodology

We use as a survey answer set the Netflix dataset (http:
//www.netflixprize.com/), which contains over 100 million
movie ratings (on a 5-point scale) from 480, 000 anonymized
Netflix customers over 17, 000 movie titles, collected between
Oct’98 and Dec’05. The movies released in 2004 (1436 in
number) are used as historical information, and our objective
is to estimate the population-wide average rating of movies
released in 2005 within a specified cost budget C.

We consider a simplification of the privacy choice, with
each user being permanently assigned into one of four privacy
bins {none, low, medium, high} at random, with probabilities
13.8%, 24.4%, 38.9%, and 22.9% respectively (the proba-
bilities were derived from our experimental study with real
users, as described in §6). The bins are associated with zero-
mean Gaussian noise with standard deviations γ = 0, 3, 6, 12
respectively (corresponding to ϵ = 0, ϵ = 3.42, ϵ = 0.85 and
ϵ = 0.21), and respective payments of $0.8, $0.4, $0.2, and
$0.1 for each user. Noise sampled from N (0, γ2) is added to
each of the users’ movie ratings. To allow evaluation of the
trade-offs over long periods of time, we only consider the users
who have rated at least 50 movies.

We derive the following measures, as described in §IV: (a)
for user i, the “error” in rating is defined as the difference
between the user’s rating of a movie and the average rating of
this movie by the population; we compute the mean µ̂i and
variance σ̂2

i of this error over all the movies rated by user i;
(b) similarly, we define “error” for an arbitrary group S (a
subset of the user population U ) as the difference between the
group’s average rating of a movie and the average rating of
the movie by the population; we compute the mean µ̂S and
variance σ̂2

S of this error over all the movies rated by (any
non-empty subset of) the group S – note that this computation
is done on demand as the set S evolves; and (c) lastly, for each
user, we track the privacy loss over all past surveys taken by
this user; the cumulative privacy loss

∑
ϵi of user i is the sum

of the ϵ’s corresponding to the user’s privacy choice in past
surveys (recall that we assign ϵ = 0 and δ = 0 for users who
choose the privacy setting “none”).

B. Cost, Accuracy, and Fairness Trade-Offs

To evaluate the trade-offs for a single survey, we considered
several movies from 2005. The results shown here correspond
to the movie “Sleepover Nightmare” that was rated by 176
users (similar results were observed for other movies). Fig. 2(a)
shows the estimation error E(RMSE) for varying values of
the available budget C, for various selection policies. Our
proposed selection mechanism is evaluated for different values
of the fairness control parameter α. We also introduce two
baseline selection strategies: random selection, in which a
random set of users is selected subject to the cost constraint,
and the “best predictors” selection, in which we choose the
subset of the population which has the highest historical
accuracy (i.e., is most representative of the population) subject
to the cost constraint. For different α values, both the true
error (i.e., difference between the estimate and the ground
truth available to us in the dataset), depicted with solid lines,
as well as the corresponding estimated error (computed using
Equation 5), depicted with dashed lines, are shown in Fig. 2(a).

The estimated error (dashed lines) closely reflects the true
error (solid lines), and is hence of sufficient accuracy to be
useful in the selection decision. As can be expected, random
selection of users results in the lowest accuracy, and the
selection of “best predictors” consistently yields near-perfect
estimates, even by surveying as low as 37% of the population.
Setting α = 0 yields accuracy identical to the “best predictors”
selection algorithm, but as α progressively increases (in steps
of 0.2 in the figure), the error increases.

However, the loss in accuracy is compensated for in privacy
fairness. Random selection results in best privacy as the whole
population is equally utilized. However, the large estimation
error makes this approach unusable. Fig. 2(b) shows in sorted
order (on the right hand side y-axis) the cumulative privacy
loss of 176 users who rated the movie, resulting from prior
surveys they have participated in. About 20% of the users have
no recorded privacy loss (their privacy setting is “none”), while
about 5% of users have a cumulative privacy loss in excess of
400. For the current survey, our selection algorithm uses a
value of ϵmax = 400, so that 95% of users are eligible for
selection, and a cost budget of $40. Fig. 2(b) then shows, for
selected values of α (on the left hand side y-axis), the users
who are selected by the algorithm, marked on the correspond-
ing horizontal lines. When α = 1, selection is strongly biased
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Fig. 3. Time evolution of (a) estimation error and (b) fraction of users reaching privacy threshold.

towards users who currently have low privacy loss, thereby
making the selection fair in balancing privacy depletion. As
α decreases, selection progressively gives less regard to prior
privacy depletion. Selection is more concentrated in the center,
since users on the left have high cost whereas users on the right
have lower residual privacy budget.

C. Long-Term Performance

To evaluate the performance in a series of surveys, we
apply our selection algorithm, sequentially, to a set of 500
movies released in 2005, again using the movies from 2004
as prior history. The privacy threshold at which a user is
deemed to have depleted too much privacy and is ineligible to
participate in further surveys is set to ϵmax = 400. We show
the evolution of accuracy in estimating the true movie rating in
Fig. 3(a), and the privacy depletion in Fig. 3(b), for various α
settings. It can be observed in Fig. 3(a) that when α is low, the
error is initially low, but rises rapidly with successive movies.
This happens because the best performing users are selected for
the initial movies (yielding low error), but deplete their privacy
rapidly. This is reflected in Fig. 3(b), which shows that for low
α the fraction of users who exhaust their privacy budget grows
rapidly with the number of rated movies. Conversely, a choice
of high α results in fairer depletion of privacy, prolonging
the lifetime of users in the system and giving more consistent
quality of estimates over time. In the long run, the broker
therefore has an incentive to choose a larger α setting to ensure
fairness and consistency in the quality of the results. We note
that our algorithm allows this parameter to be chosen by the
surveyor on a per-survey basis.

VI. PROTOTYPE IMPLEMENTATION

A. System Components

Our prototype consists of two parts – a front-end applica-
tion (for both iPad/iPhone and Android platforms) for users
to participate in surveys, and a back-end database/server that
stores user data. The workflow of the app closely follows the
description in §III-A, and screenshots for the iPhone app are
shown in the full version [26]. The opening screen allows the
user to login (and register to create an account if needed).
A list of the available surveys are shown on the next screen,
along with available privacy levels. The survey screen lists
the questions – in our trial, users (students) are asked to rate
lecturers on a Likert scale, ranging from 1 (very poor) to 5
(excellent). The user can select the lecturers he/she wants to

rate and use the slide bar to enter the rating. Pressing “save”
in the navigation bar transitions to the final screen, which
shows the (obfuscated) responses. Noise is generated locally by
the app (Gaussian noise of zero mean and standard deviation
based on the chosen privacy-level), and cannot be changed
by the user once it has been generated, to prevent the user
from biasing the noise generation via repeated selection. Only
obfuscated responses are uploaded by the app to the server.

The server was built using the Django web Framework
(written in Python) and uses a MySQL database to store
registered user details and surveys. Surveys (and associated
filters) are entered into the database via a web-interface. The
web-interface can be found on http://loki.eng.unsw.edu.au/.
New surveys are pulled into the app each time it is launched
by the user. The app interacts with the server via HTTP GET
messages (securing the messages via encryption is left for
future work). Due to the complexity of setting up a payment
scheme, the implementation of a rewards system is left for
future prototype versions.

B. Trial and Results
131 student volunteers from our university used our app

to rate lecturers in the department. Our choice of survey was
motivated by several reasons: (a) all users would know many
of the lecturers, so we could get enough data points to enable
statistical analysis; (b) we did not want to ask students overly
private (e.g., personal health or relationships) or insufficiently
private (e.g., movie ratings) questions, as that could bias their
privacy choice towards too high or too low, whereas lecturer
ratings gave students the right balance between incentive (to
give useful feedback on lecturer quality) and risk (revealing
their personal likes or dislikes could influence their future
grades); and (c) we could corroborate the survey results with
some form of ground truth (official ratings of lecturers) and
correlate them with known facts (e.g., student grades).

User Perception of Privacy: We evaluated user percep-
tions of privacy by talking to each participant after the survey,
and by analyzing their choices. Most participants said that they
liked the way we presented privacy (4 levels), could understand
easily how it operated (by addition of Gaussian noise with
parameters as described earlier), and felt comfortable that their
privacy was protected when they saw their noisy responses
on the final screen of the app. Of the 131 students who
took the survey, 18 (13.7%) chose no privacy, 32 (24.4%)
chose low privacy, 51 (38.9%) chose medium privacy, and 30
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Fig. 4. Variation in mean across the bins for various lecturers

(22.9%) chose high privacy. We believe “medium” was the
most popular choice because users perceive it as a “safer”
option than any of the extreme values.

Accuracy of the Responses: To validate the accuracy of
the responses, we obtained the university ratings (conducted
by a trusted third party) for a small handful of lecturers, and
found these to corroborate well with those obtained from our
system. For example, one author of this paper obtained an
average score of 4.72 based on the noisy responses from the
131 users of this system, which is only slightly higher than
the average rating of 4.61 (out of 5) he has received from the
university system over the past 3 years.

To illustrate how choice of privacy level affects the accu-
racy of the results, we sorted lecturers in decreasing order of
the number of ratings they received, and considered the top
13 lecturers who were rated by at least 50 students. For each
such lecturer, we plot in the top of Figure 4 the difference
between the mean rating obtained from a given privacy bin
and the overall mean rating (considering all bins). The figure
also shows a histogram of the number of students rating each
lecturer per privacy bin. We found that in general, when the
number of students rating a lecturer is high, the mean score
from each bin is fairly close to the overall mean. However, as
the number of users in each bin falls, the ratings across the bins
become more disparate, particularly for higher privacy bins. As
pointed out earlier, the standard deviation of the mean inversely
correlated with the square root of the number of samples
constituting the mean. This trade-off between accuracy and
privacy is inevitable, but our study shows that even with a
relatively small sample size of 131 participants, the error in
estimates is still reasonably small.

VII. CONCLUSION

In this paper we have proposed, evaluated, and prototyped
a platform for crowdsourcing data in a privacy conscious
way. We developed an architecture that does not require a
trusted broker, allowing users to obfuscate their input based
on comfort level, while giving surveyors accurate population
estimates within their cost budget. We devised an algorithm
that allows the broker to leverage prior user history to select
the most suitable set of users for each survey, such that accurate
population estimates are obtained within the specified cost
budget, while being able to control the fairness in privacy
depletion across users. We evaluated our selection mechanism
off-line using a large dataset, and showed how the broker
can use the fairness parameter in our algorithm to achieve
consistent accuracy across successive surveys. We prototyped

our system on mobile devices and conducted trials with 130
volunteers, demonstrating that our approach aligns well with
user perception of privacy. We hope that our work will motivate
crowdsourcing platform providers to integrate privacy protec-
tion mechanisms for the benefit of the users who contribute
their data to support such platforms.
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