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Abstract—In recent years several research groups, including
ours, have demonstrated participatory systems that use wearable
or vehicle-mounted portable units coupled with smartphones to
crowdsource urban air pollution data from lay users. These sys-
tems have shown remarkable improvement in spatial granularity
over government-operated monitoring systems, leading to better
mapping and understanding of urban air pollution, at relatively
low cost. In this paper we extend the paradigm to personalize
the consumption of data by individuals. Specifically, we combine
the pollution concentrations obtained from participatory systems
with the individual’s on-body activity monitors to estimate the
personal inhalation dosage of air pollution. We show that the
individual’s activity, such as jogging, cycling, or driving, impacts
their dosage, and develop an app that gives them this personalised
information. Our system is a step towards enabling medical
inferencing of the impact of air pollution on individual health.
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I. INTRODUCTION

Air pollution imposes a heavy burden on human health.
The World Health Organisation (WHO) estimates [1] that every
year several million people world-wide die prematurely from
air pollution induced diseases such as chronic obstructive respi-
ratory disease (COPD). Therefore, monitoring and controlling
ambient air pollution is high on the public consciousness in
both developing and developed countries.

Several medical studies [2]–[7] have shown that air pol-
lution has adverse impact on human health. However, these
studies consider aggregates of populations, and use coarse data
on pollution levels, often at the city or suburb level, taken from
traditional fixed monitoring sites operated by governments.
The poor spatial resolution of such data often ignores the
variations in air pollution levels across a neighbourhood (e.g.
due to different land use and roads), and does not therefore
lend itself to inferences at the individual level. In recent years,
with the rapid growth of portable sensors, several studies have
tried to use participatory sensing and crowdsourcing systems
to get fine-gained urban air pollution data [8]–[12], including
the system we have developed and operate as described in [13]
(we note that data quality assessment mechanisms such as the
one we developed in [14] are improving the reliability of the
data collected from such systems).

In this paper, we leverage the increased spatial granularity
of air pollution data obtained from participatory systems, and
try to personalise the information for an individual so that
better medical inferences can be made at the individual level.

As an example, consider two individuals who are both in the
same place at the same time, but one is driving while the other
is jogging. They will experience the impact of air pollution
in different ways since they will inhale different amounts
due to their different breathing rates, and may additionally
have different medical predispositions to the exposure. When
these differences are accumulated over a long period, they
can become significant, leading to different health outcomes.
In this study therefore we combine ambient pollution levels
(taken from our participatory system) with an individual’s
activity levels to estimate the personal inhalation dosage, which
can then be used to make further medical inferences for that
individual. Our specific contributions are:

1) We develop a system for estimating personal air
pollution inhalation dosage. Our system comprises
a mobile app that interfaces with wearable personal
activity sensors to determine breathing rate, and com-
bines it with ambient pollution concentration deter-
mined from our participatory pollution monitoring
system.

2) We conduct field trails with our system in Syd-
ney, and obtain real-time pollution inhalation dosage
estimates showing that different levels of activity
(driving, cycling, and jogging) entail very different
levels of exposure. The improved estimates from
our system compared to earlier systems that do not
include personal activity information allow for more
accurate medical inferencing.

The rest of this paper is organized as follows: Section II
discusses prior work relevant to this paper. In Section III we
describe our system and methods used in our study. In Section
IV we present results from trials in Sydney, and the paper
concludes in Section V.

II. RELATED WORK

Several projects have emerged over the past few years that
attempt to crowdsource data from low-cost portable mobile
sensors to obtain air pollution estimates of high spatial gran-
ularity. Notable ones include the MESSAGE (Mobile Envi-
ronmental Sensing System Across Grid Environments) project
[15] in the UK, the MAQUMON project [16] from Vanderbilt
University, the CommonSense project [17] supported by Intel,
and the OpenSense project [18] ongoing at EPFL Switzerland.
Our group also operates a system that we call “HazeWatch”
[13] that monitors and maps Sydney air pollution in real time



Wrist Sensor 

Chest Sensor 

Arm Sensor Smart phone 

Pad 

Internet 

1.Wireless sensor network 2.Data Centre 3.User interface 

Fig. 1. System Architecture

via vehicle-mounted pollution sensors using both custom-built
and off-the-shelf hardware. To the best of our knowledge, these
systems focus on gathering the pollution data, and not so much
on consumption of data by individuals in a personalised way.

There also exist studies in the literature that try to associate
human activity levels with pollution exposure concentrations.
For example, the studies in [19], [20] use physical activity
times to estimate personal exposure, and its effect on Ischemic
Heart Disease Mortality. However, these studies only use the
user’s home location to estimate their exposure, without regard
to the mobility pattern of the individual. In [21] the authors
develop a tool called CalFit that records the individual’s
location and activity information. However, their study did
not use participatory sensor networks, and instead relied on
historical data from fixed monitor sites and derived exposure
estimates based on an Atmospheric Dispersion Modelling
System (ADMS). As we will show in the paper, using data
with such low spatial density can lead to incorrect exposure
estimates and hence biased medical inferences.

Several studies have involved volunteers carrying portable
pollution monitors. For example, the authors of [22] designed
a study to find out the impact of time-activity patterns on
personal exposure. They followed sixteen participants, obtain-
ing their temporal-spatial information with a PDA, and black
carbon concentrations with a potable monitor. Their results
showed that transportation contributed the highest black carbon
concentrations. Nevertheless, their study ignored the human
activity levels and only estimated the pollution concentration
around the participants rather than their personal inhaled
dosage.

A research group in Barcelona, Spain designed a survey
that tried to compare the exposures with different travel modes
in [23] which is very much aligned with our objectives. They
asked commuters to use different transport modes going along
the same route to find out their relative inhalation dose. The
inhalation rate algorithm they used was developed by other
researchers, which assumed that inhalation rate ratio between
different travel modes were constants. We believe that their
referenced inhaled dose were hence neither real-time nor
sufficiently accurate.

Parallel to our work, authors in [24] discussed how to
combine individual time-activity patterns and air pollution
concentrations, and gave a model to integrate the data. In
[25], the author designed a system called ExposureSense which
can combine smart phone accelerometer, external air quality
data and pluggable sensors for personal pollution exposure
estimation. In these two papers, only personal location and
acceleration information were considered as activity data,
which can estimate the ambient air pollution concentrations,
instead of personal real-time inhaled dose.

III. SYSTEM COMPONENTS AND METHODS

A. System architecture

We demonstrate a novel system consisting of various
wearable sensors, mobile applications and data center, which
can allow real-time feedback of user’s exposure dose. Such
a system can be used in personal exposure estimation, and
estimation of impact of air pollution on human health. As
shown in Fig. 1, the system is based on a horizontal structure
with 3 levels.

1) Level 1:Wireless sensor network: integrates sensors and
applications to collect and upload data. It can be divided into
two parts: sensors and applications.

Sensors: Various wearable sensors integrate different kinds
of potable air pollution, activity and medical sensors to sample
physiological and environment data. For air pollution sensing,
we use the NODE wireless sensor platform which supports
connection to iOS and Android smart phones. As shown
in Fig. 2(a), the NODE sensor platform is designed with
plug-in modules mode. It comprises body platform part and
interchangeable OXA gas sensor header part. With changing
the OXA headers, Carbon Monoxide (CO), Nitric Oxide (NO),
Nitrogen Dioxide (NO2) and other three pollutants can be
monitored. We only monitor Carbon Monoxide (CO) in this
study, as CO is one of the most important pollutants all over
the world, and it may cause many diseases, like arteriosclerosis
and lung disease. Smart phones can connect to the body
platform with bluetooth 4.0 up to 250 feet away. The cost
of NODE device is about $150 for body platform and $150
for one OAX header each.
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As inhaled dose refers to respiratory rate, which is related
to heart rate, we use Wahoo heart rate monitor to get heart rate
readings. Wahoo heart rate monitor can track user’s heart rate
data in real-time with wearing it around chest which is shown
in Fig.2(b). It supports bluetooth 4.0 to connect to iOS smart
phones and Pad.The cost of one Wahoo heart rate monitor is
$80.

Applications: We developed an iPhone app to connect
with both NODE sensors and Wahoo heart rate sensors using
published APIs. It allows user to pair their iPhone with sensors
over bluetooth and get real-time data. For NODE sensors, we
can get raw air pollution data from the API. PPM values can
be calculated by the following equation:

PPM =
Raw Reading − CO Base Line

0.37736× (CO Gain× CO Ratio)
× 109, (1)

where CO Base Line denotes calibration base line and
can be calculated by NODE official iPhone app. After being
calibrated, the CO Base Line value can be written in the
server, and the app can update calibration value for a regular
time. CO Gain and CO Ratio are constants and the values
are 35000 and 39 respectively.

Also, the app will track the location data of users. All
GPS data collection rely on mobile phones. For example, Fig.
3(a) shows a screen-shot of our application interface. Upon
connecting with the selected sensors, it will constantly sample,
upload and display the information as current location on a
map, the GPS information, CO concentration and heart rate
after starting recording. Recording time will also be displayed
on the screen.

2) Level 2:Data center: is the server of whole system. It
stores and processes the data.

This is the central repository, to which our data contributor
users automatically upload air pollution and heart rate data
into a MySQL database. For protection of privacy, the system
will not share heart rate information with other users. Since no
system can measure pollution in all time and spatial levels, we
use two interpolation model to estimate the CO concentrations
all over Sydney, one being inverse distance weighting (IDW)
and the other being ordinary kriging.

3) Level 3:User interface: this empowers the user with the
tools to obtain their personal exposure and health data.

We developed an iPhone application for users to can track
their heart rate and ambient environment exposure, and thereby



TABLE I. EXPERIMENT ATTRIBUTES

Heart rate(bpm) Real - time RMV (Lmin−1) Constant RMV (Lmin−1) CO concentration(ppm) Duration(min)

Government
fixed-site (FS)

Participatory
system (PS)

Jogging 153.2(75-172) 46.4(22.7-52.1) 12 0.19 4.0(1.1-8.4) 64

Bicycling 123(76-146) 30.7(19-36.5) 12 0.19 6.1(1.3-18) 41

Driving 84.9(77-93) 14.1(12.8-15.5) 12 0.19 6.9(1.7-34.7) 28

determine their inhaled dose. This personalization is for users
who wear an activity (heart rate) monitor; carrying an air
pollution sensor is optional, as the latter can be obtained
from data contributed by others in our participatory monitoring
system. For example, in Fig. 3(b) we show a screen-shot
of the dosage graph, showing that how the CO inhalation
dose varied over time while the user was jogging between
approximately 2pm to 3pm. The graph also shows the user with
CO concentrations around him/her and how his/her exposure
comparing with a long-term healthy guide line which is guided
by WHO via a orange line.

B. Experiments

An initial personal exposure measurements took place in
Sydney in August 2013. Three participants were asked to
carry heart rate sensors and air pollution sensors and take
three different activity modes (jagging, bicycling and driving)
along a certain route as shown in Fig.3(c). The route starts at
Jessie Street Gardens, travels through Hyde Park going along
Macquarie Street, and ends at the main gate of the University
of New South Wales, comprising a total distance of 7.6 km.
This route has a bike lane parallel to the roads, and encounters
varying traffic conditions along the road including frequent
traffic jams.

C. Carbon monoxide measurements

CO concentrations data are from two different sources.
One is from our Hazewatch participatory sensing system (for
brevity, referred to henceforth as PS) [13]. Fig. 2(c) and
Fig. 2(d) show how we attach the NODE sensors in a car and
on a bike. All NODE sensors were calibrated by its official
software 3 days before the study. To compare with the fixed-
site (for brevity, referred to henceforth as FS) air pollution
data, we also include six fixed monitoring sites data published
by the Office of Environment and Heritage in NSW, Australia.
Inverse Distance weighting(IDW) interpolation model is used
to calculate CO concentrations along the survey route.

D. Inhalation dose measurements

Respiratory minute volume (RMV) refers to the inhaled
volume of air into a person’s lung per minute. In this experi-
ment, real-time RMV is calculated from heart rate with a ran-
dom population based algorithm developed in [28], whereby
the ratio heart-rate (beats per minute) : RMV (L/min) in
[jogging, bicycling, driving] = [3.3 : 1, 4 : 1, 6 : 1]. For baseline
comparisons in which activity levels are not available, we use
a typical RMV of 12 (L/min) based on prior research [29].

The inhaled dose of pollutant is then calculated as follows:

Inhaled dose = Respiratory minute volume (2)
×CO concentration× time

×conversion factor,

where the CO concentration unit is ppm and conversion factor
for carbon monoxide is 1.145µg/L.

IV. RESULTS AND DISCUSSION

Table I shows the attributes of the experimental study,
including the measures heart rates of the participants, the
respiratory minute volume (RMV), CO pollution concentra-
tions, and the experiment duration. In Table II we summarize
the inhaled dose estimation results of our experiments, while
Fig. 4 shows the details for the three different activity modes
considered in this study.

A. CO concentrations

CO concentration data from the fixed monitoring site (FS),
as shown in Table I, is constant and very low. The poor spatial
resolution of such data implies that the distance from moni-
toring sites to our route in this experiment is very far; indeed
the two closest monitoring sites are Chullora and Rozelle,
respectively 15km and 20km from our route. Furthermore,
the other four sites range 30 - 50km far from our route. The
mean CO concentrations obtained from fixed-sites is 0.19ppm
irrespective of the activity mode.

On the other hand, ambient CO concentration data from our
participatory system show significant variation, with pollution
peaking along the traffic jam section, and reaching a high
level (jogging = 8.4; bicycling = 18; driving = 34.7ppm). The
mean CO concentrations for three different activity modes is
(jogging = 4.0; bicycling = 6.1; driving = 6.9), from which
we observe that CO concentrations are significantly higher
for driving compared to jogging and bicycling, since CO
concentrations drop as one moves away from the centre of the
road. For example, in the same location, the CO concentrations
is 8.2(ppm) in the center of the road, and with 6.1(ppm) and
3.4(ppm) along the cycleways and sidewalk. This is consistent
with our expectation that on-road drivers will experience
higher pollution concentrations that off-road bicyclists and
joggers.

B. Respiratory Minute Volume (RMV)

From Table I, we see that joggers have higher mean heart-
rate (153.2 bpm) than bicyclists (123 bpm), who in turn have
higher heart-rate than drivers (84.9 bpm). Consequently, the
RMV is higher for joggers (46.4) compared with bicyclists
(30.7) and drivers (14.1).



TABLE II. INHALATION DOSAGE FOR DIFFERENT ACTIVITY MODES

Inhaled dose(µg min−1) Total inhaled dose(µg)

FS CO data +
constant RMV

FS CO data
+ real-time
RMV

PS CO data +
constant RMV

PS CO data
+ real-time
RMV

FS CO data +
constant RMV

FS CO data
+ real-time
RMV

PS CO data +
constant RMV

PS CO data
+ real-time
RMV

Jogging 2.6(2.5-2.6) 10.0(4.9-11.4) 55.3(25.3-
115.1)

215.5(77.3-
479.5)

165.7 642.2 3540.2 15037.8

Bicycling 2.6(2.5-2.6) 6.6(4.1-8.0) 84.4(17.3-
247.2)

220.3(36.8-
690.1)

106.2 272.2 3459.2 9031.5

Driving 2.6(2.5-2.6) 3.1(2.7-3.4) 94.3 (22.9-
477.2)

114(25.1-
563.3)

72.5 85.5 2640.7 3767.1
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Fig. 4. Carbon monoxide inhalation dosage

C. Inhaled dose

The aggregate inhaled dose quantities are shown in Table II,
while the detailed time-series are shown in Figs. 4(a), 4(b) and
4(a). The table compares how using real-time RMV improves
the estimate compared to assuming a constant RMV. We see
that with fixed-site (FS) CO concentrations and constant RMV,
inhaled dose is very low (2.6µg min−1) and flat for different
activity modes. When we use real-time RMV along with
fixed-site CO concentrations, jogging inhaled dose increases
to 10 (µg min−1). Moving further in the table, when CO
concentrations from our participatory system (PS) are used
assuming a constant RMV, the inhaled dose per minute signifi-
cantly increases, and shows that driving incurs highest inhaled
dose (94.3µg min−1), more than bicycling (84.4µg min−1)
or jogging (55.3µg min−1). However, while taking the real-

time RMV into consideration along with pollution from our PS
system, the situation reverses – the jogger’s inhaled dose per
minute increases to 215.5 (µg min−1), while driving is lower
at 114 (µg min−1). This illustrates that while jogging off-road
reduces the pollution concentration, the pollution intake dosage
is actually higher due to increased breathing rate, compared to
driving. Interestingly, bicycling turns out to be even worse than
jogging, probably because it happens closer to the road than
jogging, while having a high heart-rate. In Fig. 4(d), we show
total dosage for making the trip using the three activity modes,
from which we can conclude that jogging entails the highest
inhaled dose (15037.8µg), followed by bicycling (9031.5µg),
and driving the least (3767.1µg). This is not surprising, since
bicyclists and joggers get exposed for longer duration while
traversing teh same distance, compared to drivers.



V. CONCLUSION AND FUTURE WORK

In this paper we have presented a novel system for esti-
mating personal air pollution inhalation dosage. The system
incorporates portable air pollution sensors, wearable human
activity sensors, data center storage, and mobile applications.
Our initial field trials in Sydney indicate that our system can
more accurately estimate individual air pollution inhalation
dosage. Earlier studies had either ignored activity levels, or
concluded that jogging or bicycling entail lower exposure, but
our study shows that this need not always be the case.

In this article, air pollution data is only collected by our
participants who also wear the activity sensors. Future work
will consider individuals wearing activity sensors who will
benefit from the fine-gained air pollution data collected by
other participants. For example, a relatively small of users
may carry air pollution sensors and contribute air pollution
data, while other participants who only wear activity sensors
can benefit from the data, and be empowered by our apps
to manage their real inhaled dose. We hope to conduct more
extensive experiments with our system in the coming months
to quantify the personalised impact of air pollution exposure
and aid in making better medical inferences.
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