Personalising Air Pollution Exposure Estimates Using Wearable Activity Sensors

Ke Hu, Yan Wang, Vijay Sivaraman (School of Electrical Eng. & Telecommunications, UNSW) & Ashfaqur Rahman

(Intelligent Sensing and Systems Laboratory, CSIRO)

IEEE ISSNIP, 22 Apr 2014

Air Pollution: Effects

- Air pollution killed seven million people in 2012
 - More than Aids, diabetes and road accidents combined
- Air pollution causes 1 in 8 deaths worldwide
- Air pollution becomes the world's largest environmental health risk

Motivation:

- Control the air pollution
- Monitoring air pollution
 - Pollutants? Concentrations?
 - Increase spatial resolution of air pollution data
- Include other information to personalize the air pollution influence
 - People concern about
 - What's "My" real-time inhalation dosage?
 - How does "My" different activity levels effect air pollution dosage?
 - how does air pollution impact "My" health

Our proposal :

- A "Crowd source" sensing system to estimate real-time personal air pollution inhalation dosage
 - Data from users (Obtained from participatory sensing system)
 - Both air pollution data and activity data is collected
 - Display inhalation dose in real-time
- Advantages:
 - Personalized tools, not in city or suburb level
 - Indicate real air pollution exposure, not air pollution concentrations around people

System Architecture

1.Wireless sensor network 2.Data Centre 3.User interface

Sensor selection

- Air pollution sensors
 - Node: Plug-in modules mode; Measures various pollutants; Only CO is measured in this study;
 - Sensordrone: Measures CO, Ozone;
- Activity sensors
 - Wahoo heart rate monitor: Heart rate readings;
 - Fitbit activity wristband: Calories burned;

Air pollution sensor (Carbon Monoxide)

Activity sensors

Application: Data upload interface

- No GPS/3G in sensors
- Bluetooth to mobile phone
- Platform: iOS
- User visualization:
 - Location
 - Pollution readings (optional)
 - Heart rate readings (optional)
- Mobile network upload data to server

Latitude	00.024
Longitude	151.225
CO Concentration Data	1.314933
Heart Rate	126

00:14:25

Application: Personalized tool interface

- Fetches pollution estimate from model on server
 - User need <u>not</u> carry air pollution sensors
- Displays:
 - Plot of inhaled dose
 - Plot of concentration
 - Average heart rate
 - Total inhaled dosage

CO Concentration

Total Inhaled Dosage	Heart Rate
15.10 mg	146
	Average Heart Rate
	128

Inhalation dose measurements

- Respiratory minute volume (RMV) :
 - The inhaled volume of air into a person's lung per minute.
- Calculate RMV:
 - Ratio heart-rate (beats per minute) : RMV (L/min) in [jogging, bicycling, driving] = [3.3 : 1, 4 : 1, 6 : 1].
 - When activity levels are not available, we use a typical RMV of 12 (L/min).
- The inhaled dose of pollutant is then calculated as follows:

 $Inhaled_dose = Respiratory_minute_volume \\ \times CO_concentration \times time \\ \times conversion_factor,$

The CO concentration unit is ppm and conversion factor for carbon monoxide is 1.145g/L.

- Database: MySQL
- Will not share heart rate information with other users
- Model: interpolation methods
 - Inverse distance weighting (IDW)
 - Ordinary kriging

Trail Setup

- Time: Aug 2013
- Location: Sydney
- Participants: 3
 - Carry heat rate monitor and air pollution monitor
 - Take 3 different activity modes (Jogging, Bicycling and Driving)

Route

- Distance: 7.6Km
- Contains bike lane
- Encounters varying traffic conditions
- Air pollution data: Two sources
 - Fixed site data from government
 - Data from participatory sensing system

Result: Experiment attributes

- CO concentrations
 - Data from fixed-sites is very low
 - Data from participatory system shows significant variation
- RMV
 - Jogger gain highest RMV compared with bicyclist and driver

	Heart rate(bpm)	Real - time RMV (Lmin ⁻¹)	Constant RMV (Lmin ⁻¹)	CO concentration(ppm)		Duration(min)
				Government fixed-site (FS)	Participatory system (PS)	
Jogging	153.2(75-172)	46.4(22.7-52.1)	12	0.19	4.0(1.1-8.4)	64
Bicycling	123(76-146)	30.7(19-36.5)	12	0.19	6.1(1.3-18)	41
Driving	84.9(77-93)	14.1(12.8-15.5)	12	0.19	6.9(1.7-34.7)	28

- With fixed-site (FS) CO concentrations and constant RMV
 - Inhaled dose is very low (2.6µg min⁻¹)
- With fixed-site (FS) CO concentrations and real-time RMV
 - Inhaled dose increases a little bit
- With participatory system (PS) CO concentrations and constant RMV
 - Inhaled dose per minute significantly increases, and driving incurs highest inhaled dose (94.3µg min⁻¹)
- With participatory system (PS) CO concentrations and real-time RMV
 - The situation reverses, the jogger's inhaled dose per minute increases to (215.5µg min-1), while driving is lower at (114 µg min-1).

	Inhaled dose($\mu g \min^{-1}$)					
	FS CO data + constant RMV	FS CO data + real-time RMV	PS CO data + constant RMV	PS CO data + real-time RMV		
Jogging	2.6(2.5-2.6)	10.0(4.9-11.4)	55.3(25.3- 115.1)	215.5(77.3- 479.5)		
Bicycling	2.6(2.5-2.6)	6.6(4.1-8.0)	84.4(17.3- 247.2)	220.3(36.8- 690.1)		
Driving	2.6(2.5-2.6)	3.1(2.7-3.4)	94.3 (22.9- 477.2)	114(25.1- 563.3)		

Inhaled Cabon Monoxide (Bicycling)

Inhaled Cabon Monoxide (Driving)

Result: Total inhaled dose

- Jogging entails the highest inhaled dose (15037.8µg), followed by bicycling (9031.5µg), and driving the least (3767.1µg).
- Bicyclists and joggers get exposed for longer duration while traversing the same distance, compared to drivers.

Conclusion

- We presented a novel system for estimating personal air pollution inhalation dosage.
 - First research group that integrate air pollution and human activity data collected by sensor network
 - Can aid medical studies correlating inhaled dosage to health outcomes
- Our initial field trial in Sydney indicate that our system can more accurately estimate individual air pollution inhalation dosage.
- Future work
 - Individuals wearing activity sensors who will benefit from the finegained air pollution data collected by other participants.

