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ABSTRACT
Air quality and pollution monitoring services are provided
by many countries and cities. However, individuals are more
concerned about personal exposure and dosage, which can
rarely be estimated due to the low spatial resolution of air
pollution data and lack of personal data. In recent years, an
increasing number of research groups, including ours, have
focused on increasing the spatial resolution of air pollution
data using ubiquitous sensor networks. These works did
raise the spatial granularity compared with data from fixed
air pollution monitoring sites. In this paper, we combine air
pollution and human energy expenditure data to give indi-
viduals real-time personal air pollution exposure estimates.
In particular, this paper describes our experiences with de-
veloping a personal air pollution exposure estimation sys-
tem utilising participatory air pollution monitoring system
and energy expenditure data collected from wearable activ-
ity sensors. Our system and applications will benefit the
understanding of the relationship between air pollution ex-
posure and personal health. We also conducted a trial to get
a full day’s air pollution inhalation dosage for one partici-
pant, and applied multiple data mining techniques to find
out associations between activity mode, location, and the
inhaled pollution. Results show that sleep, having meals,
working in a campus, and general home activities like read-
ing books will lead to a low air pollution dosage, while work-
ing out, walking and driving will cause higher inhaled dose.
Furthermore, classification results in our study based on ac-
tivity modes, locations and dosage data which is collected
in the trial show that up to 94% classification accuracy can
be achieved.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems - Distributed applications; H.2.8 [Database Ap-
plications]: Data mining
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1. INTRODUCTION
Air pollution is a world-wide concern both in developing

and developed countries. Consensus is that atmospheric pol-
lutants can cause cardiovascular diseases and effect cerebral
function. The World Health Organization (WHO) reports
that air pollution kills about 7 million people a year and
is linked to 1 in 8 deaths worldwide. It also says that air
pollution is the world’s largest single environmental health
risk [27]. Furthermore, air pollution is believed to contribute
to serious environmental issues, such as global warming.
Hence, air pollution monitoring and control is of great in-
terest to the population.

To date, air pollution is monitored by fixed-site stations
operated by government agencies. These sites generate peri-
odic readings that report on a range of pollutants. However,
the high cost and space required for such sites limits their
installation. As a result, the density of air pollution data is
sparse, which leads to low accuracy in spatial air pollution
maps and inaccurate health inferences. For instance, au-
thors in [18] evaluated the association between new-onset
asthma and traffic-related air pollution near schools and
homes. But the air pollution data they used was just from
13 central sites in 13 communities, which may not be repre-
sentative of the real air pollution exposure of each child,
and can lead to biased conclusions. The idea of crowd-
sourcing wireless sensor networks to collect air pollution
data has been applied by many research groups, including
ours [9, 10, 12, 13, 24, 29]. The use of mobile sensor nodes
can increase spatial resolution of air pollution maps without
installing a large number of fixed monitoring sites.

Individuals are more concerned about their personal air
pollution dosage rather than general pollution concentra-
tions. Lack of personal data such as age, weight, physical
activity, etc. turns personal inhalation dose estimation into
an arduous task. In recent years, wearable technologies have
become commercially viable and commonplace, which makes
personal dose estimation achievable. In this paper, we utilize
air pollution data from a ubiquitous sensor network, along
with human energy expenditure information from wearable
sensors, to make better medical inferences. For example,
two individuals may be exposed to the exact same air pol-
lution concentration, but one individual may be sedentary
while the other is active (e.g. jogging). The dosage of in-
haled pollutants may vary greatly between these individuals



because of their different respiratory rates. In this context
our specific contributions are:

1. We build a novel mobile application that estimates per-
sonal air pollution dosage using human energy expen-
diture and other personal data from wearable activity
sensor devices. Further, we show that users with wear-
able activity sensors, and those without, can all benefit
from our application.

2. We conduct trials to collect a full day’s pollution and
activity data for one participant, and then use clus-
ter and classification data mining techniques to find
the relationships between activity type, location and
air pollution inhalation dosage. We compare the per-
formance of seven different classification techniques on
our data; the results show that the achievable classifi-
cation accuracy is as high as 94%, when using the J48
classifier [21].

The rest of this paper is organized as follows: §2 discusses
prior work relevant to this paper. In §3 we describe the
dosage estimation method and the mobile application that
we developed in our study. §4 presents the full day’s trial
that we conducted and the collected data. In §5 we introduce
several data mining methods to cluster and classify the data,
and compare the performance between different techniques.
The paper is concluded in §6.

2. RELATED AND PRIOR WORK
Several prior studies have included activity information

in estimating air pollution exposure [9, 25]. Most of them
are using respiratory rate measurements (or estimated val-
ues) as the activity parameters. For instance, researchers
in [20] compared vehicle exhaust air pollution exposure be-
tween car passengers and bikers. PM10 and PM2.5 were
the pollutants considered, and the data was collected using
portable optical dust monitors. Minute ventilation (VE),
which was obtained by a portable cardiopulmonary indirect
breath-by-breath calorimetry system, was used to calculate
inhaled dose, and they concluded that inhaled particular
matter (PM) was significantly higher while riding a bicycle
compared to driving a car.

Other researchers use energy expenditure as the parame-
ter to estimate exposure levels. In [4], the authors designed
a trial to determine the level of energy expenditure and ex-
posure to air pollution for cyclists. This study consisted
of laboratory measurements and field measurements. In the
laboratory part, the relationship between heart rate and pul-
monary ventilation were established. In the field measure-
ments part, heart rate was measured by heart rate monitors,
while PM10 and NO2 were recorded by dust monitors. In
contrast to this study, the authors of [19] assessed personal
exposure to PM2.5 and physical activity energy expenditure
rate for transportation by car, subway, or walking. Twenty
participants who each carried an air quality monitor and a
GPS receiver travelled on intended appropriate routes by
car, subway and walking on 3 different days. Energy expen-
diture rates were calculated by activity metabolic equivalent
(MET), speed and body weight. These two studies, however,
lacked personal inhalation dose despite acquiring the energy
expenditure data.

A research group in Spain [8] has built a model for the
analysis of competing risks associated with the built environ-
ment and its transformation to be more pedestrian friendly.
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Figure 1: System architecture

The model used activity pattern, location, and travel mode
to derive energy expenditure data, and then modeled air
pollution data was used to estimate inhalation dose. The
results indicated a pedestrian-friendly environment would
cause lower average exposure while increasing energy ex-
penditure overall, hence increasing inhalation dosage.

Our prior work [14] had demonstrated a novel personal in-
halation dose estimation system as shown in Fig. 1. The sys-
tem consists of sensors, applications and data server. Sen-
sors include various wearable sensors, which can record ac-
tivity and air pollution data. Applications are made of
two parts: The data upload part and the user part. Data
upload part applications can communicate with sensors via
Bluetooth and upload air pollution or activity data to the
server with a mobile network. With the user part applica-
tions, users can request air pollution maps though a web
service, or obtain personal inhalation dosage data from mo-
bile applications. A Data Server stores the air pollution
data and/or activity data (the latter is not made visible
publicly to protect personal privacy). Interpolation mod-
els and web-based maps are also be supplied by the server.
Wahoo heart rate monitor and air pollution sensor Node de-
vice [26] are used as activity sensor and air pollution monitor
respectively. We used heart rate values to evaluate respira-
tory rate, and combined with air pollution concentrations
to calculate personal dosage. We also conducted a trial to
compare the dosage between driving, cycling and jogging.

In terms of studies using cluster and classification data
mining methods to estimate air pollution exposure levels,
most of them only took air pollution concentrations into
consideration other than personal exposure [3, 17, 28]. To
the best of our knowledge, we are the first research group
which uses cluster and classification techniques to find rela-
tionship between activity, location and personal air pollution
inhalation dosage.

3. DOSAGE ESTIMATION APPLICATION
This section illustrates our dosage estimation application.



The principal system architecture is discussed in [14]. Other
than the last paper, all the users can get personal dosage es-
timates values with or without activity sensors in this study.

3.1 Activity Sensors
The chosen activity wearable sensor for acquiring energy

expenditure rate is the Fitbit Flex. We selected two activity
sensors which can record energy expenditure data in the first
place. One was Jawbone UP and the other was Fitbit Flex.
Both sensors were desirable because they were built around a
social platform, which encourages the user to continuously
wear the sensor. While the battery life of UP was longer
than that of Flex, the battery life of Flex was also over a
week and thus considered acceptable. Both sensors did not
provide a way to access accelerometer data directly, and they
could offer information stored on their server via an open
API. The single aspect that made UP unattractive to this
study was that to sync the device, it needed to be connected
to the audio jack of the iPhone. However, with Fitbit Flex,
the users can sync the device with Bluetooth. The Jawbone
UP released a new product named UP24 recently which can
also support Bluetooth.

Fitbit Flex trackers use a 3-axis accelerometer which can
convert movements of a person into digital data to record
personal motions. A tuned algorithm is also added to the
device to distinguish the motion patterns.

3.2 Dosage Calculation algorithms
The algorithm that we used to convert energy expenditure

rate to inhalation dose is discussed in [16] and its appendices
and shown in Table 1 for convenience. The whole algorithm
comprises of two parts, which enables both activity sensor
users and non-activity-sensor users to benefit from our sys-
tem. Energy expenditure estimation part is not necessary
for activity sensor user as energy expenditure data can be
acquired from activity sensor server.

3.3 Mobile Application

3.3.1 Development Platform
Our exposure estimates mobile application was developed

in the iOS platform. Development on Android platform re-
quires that the application should be designed for multiple
screen sizes, and to reach the full market, it must support a
spectrum of operating system versions. The android version
of our mobile application is possible in future work.

3.3.2 Application Demonstration
On first time application launch, the first step is setup,

in which Fitbit users would be asked to log-in their Fitbit
account to synchronize the age, body mass and gender from
Fitbit server. Alternatively if the user does not use Fitbit
these details can be obtained in the set up process. It must
be pointed out that an accurate value for personal informa-
tion like body mass is not guaranteed as it is dependent on
the user diligently updating this details in the application or
through Fitbit. In the case of a negligent user, if the error
between the recorded body mass and actual body mass is 5
kg, it will result in an error of up to 10% in the final calcu-
lated dose. Such a large error is undesirable and cannot be
corrected for within our application.

When the setup has been done, users can just tap Start-
Measurement icon to start recording. The RecordingMea-

Table 1: Estimate inhalation dosage algorithm

1.Estimate Energy Expenditure
1.1. Calculate Resting Metabolic Rate (RMR):

RMR = (0.166) ∗ [a+ b ∗ (BM) + e], (1)

where a and b are constant appropriate regression param-
eters and determined by age and gender, and BM is body
mass (kg) while e is a randomly selected value from a nor-
mal distribution with mean equal to zero. 0.166 converts
the unit of RMR from MJ day−1 to Kcal min−1.
1.2. Calculate Energy Expenditure (EE):

EE = MET ∗RMR, (2)

in which MET is Metabolic Equivalent. The MET would
be different based on various physical activities and listed
in [1]. EE is also expressed in Kcal min−1.
2.Calculate Inhalation Dosage (ID):
2.1. Calculate Oxygen Uptake Rate (VO2):

V O2 = ECF ∗ EE, (3)

in which ECF represents Energy Conversion Factor de-
fined as the volume of oxygen required to produce one
kilocalorie of energy and has unit of liters oxygen Kcal−1.
ECF is unique to diverse people and a random variable
of uniform distribution between 0.20 and 0.21. 0.205 is
applied in our application. VO2 has the unit of liters
oxygen min−1.
2.2. Calculate Ventilation Rate (VR):

V R = BM ∗ ec+d∗ln V O2
BM , (4)

where VR is measured in liter min−1 and constants c and
d are also determined by age and gender.
2.3. Calculate Inhalation Dosage (ID):

ID = V R ∗ PC, (5)

in which PC represents air pollution concentrations in µg
liter−1.

surement visualization is shown in Fig. 2(a). Here statistics
about the user based on data collected from the beginning
of recording are displayed. Meanwhile, users without Fit-
bit can select activity mode to get energy expenditure data
in recording page. Activity mode selection visualization is
shown in Fig. 2(b). Also, user must open the GPS function
of mobile phone to record location information, as the appli-
cation will acquire the air pollution data from our air pollu-
tion server with time stamp and location. Users with Fitbit
cannot get real-time dosage estimation in the measurement
page as the Fitbit Flex must sync through its app before
energy expenditure rate data can be retrieved from the Fit-
bit servers. After a measurement recording is finished, users
can view all the recorded data in log menu. Each log file



(a) (b) (c) (d)

Figure 2: Mobile application interface of (a)measurement, (b)activity mode selection, (c)log, and (d)log map

can present information like recorded duration, route track-
ing, calories burned, total dosage, etc. as shown in Fig.
2(c). A non-Fitbit-user can just get personal dosage data
from the log interface, while a Fitbit user has to synchro-
nize with Fitbit server using his/her mobile application to
get past energy expenditure data by Kcal per minute. The
map in the Log view can be tapped to transition to Measure-
mentMap view as shown in Fig. 2(d). In MeasurementMap
view, user is provided a large map, which, at first, shows
the user’s location at the beginning of each minute of the
recording. Pins represent these locations. If a pin is tapped,
it becomes selected, turning purple and causing a box to ap-
pear that displays air pollution concentration level, activity
level in Metabolic Equivalent (METS), calories burned and
dosage of that minute. All the measurements data includes
personal information, activity modes, calories burned, loca-
tions, dosages can be sent as attachments by e-mail.

A detailed description of the application design and im-
plementation can be found in our report [7].

4. EXPERIMENT AND RESULT

4.1 Air pollution sensors and data source
Carbon Monoxide (CO) is selected as the pollutant in this

study because of its most well characterised effect on the hu-
man body, reducing blood’s oxygen holding capacity which
in turn causes the heart to work harder to deliver needed
oxygen to tissue and organs.

CO data was contributed by two sources: Our air pollu-
tion sensors and government fixed monitoring sites. First,
Node devices [26] was used as air pollution sensors. Node de-
vice is a commercial air pollution sensing device which is de-
signed with plug-in modules mode. With changing headers,
Carbon Monoxide (CO), Nitric Oxide (NO), Sulfur Diox-
ide (SO2) and other pollutants can be measured. With our
data upload application which is described in Section 2, CO
data can be received from sensors via Bluetooth and up-
loaded every 5 seconds to the server over cellular networks.
Second, there are four fixed monitoring sites which also con-

tributed the CO data. All the data from government sites
is updated hourly. We used inverse distance weight (IDW)
interpolation model to estimate the spatial distribution of
CO concentrations.

Table 2: Participant general information
Gender Body mass (kg) Age Stature(cm)
Male 67.8 30 180

Figure 3: Trial route



4.2 Trial design and route
One participant is involved in this trial. Table 2 gives the

general information of this participant, who lives in North
Ryde and works in UNSW Australia. Trail route is shown in
Fig. 3, where number on the plot indicates time by hours.
The route which covers a urban area of 100km2 contains
motorway, foot way, campus and residential areas.

The participant was asked to wear the Fitbit sensor and
carry air pollution sensor during a 24 hours period and keep
recording the personal dosage data with our application. In
the mean time, CO concentrations data from the Node sen-
sor was also uploaded to the server. During the recording
period, participant had to change activity modes manually
to get MET data for different activity types.

4.3 Result
Table 3 gives a sample of what we have collected during

the 24 hours period. There are two data sets which are
distinguished by energy expenditure data source.

The whole day CO concentrations around the participant
is shown in Fig. 4(a). In general, the concentrations kept low
(below 0.2 ppm) during the whole day except 8am and 8pm,
when the participant was driving along the motor way. CO
concentration peaks at 1.4252 ppm at 7:44 in the morning
and 6.835 ppm at 19:44 in the afternoon.

A summary of calories burned information is shown in
Fig. 4(b). Two immediate observations can be made - first,
data from MET model does change from time to time, how-
ever, it is flat while engaging in one particular activity mode.
Unlike this, calorie data from the Fitbit sensor shows signifi-
cant variation even in the same activity mode. For instance,
calories data from jogging between 17:32 to 19:02 stays at
8.03 Kcal per minute from MET mode when it can range
from 3.48 to 14.18 Kcal per minute from the Fitbit sensor.
Another observation emerged from this plot is that calories
burned data is assembled in few time slot in a day, mostly
at 8am, 12pm and 7pm.

Inhaled dosage shown in Fig. 4(c) indicates the different
CO dose levels. As inhaled dosage is computed by combining
calories and CO concentrations data, the trend of this plot
is similar to the two figures above. We can observe that
dosage data with or without Fitbit correlate with each other
well, although they are distinct during jogging as a result of
activity MET estimation deviation. This observation proves
that all users, including Fitbit users and non-Fitbit users,
can benefit from our personal dosage estimation method and
application.

Dosage percentage of different activities during the whole
day is concluded in Fig. 4(d). We found that, dosage can
be various on account of different activities, and jogging can
occupy up to 42.9% of the whole day dosage, while driv-
ing, which exposes the largest amount of Carbon Monoxide,
only seize 14.2%, the same as working. It indicates that do-
ing sports or fitness may not be as healthy as people think,
because increasing respiratory rate can lead people to fur-
ther inhaled dose, even if people are under low air pollution
exposure. However, this conclusion cannot be confirmed as
it is unclear what level of exposure leads to health risk.

5. DATA EVALUATION AND DISCUSSION
We used two steps to evaluate the trial data set which is

based on Fitbit energy expenditure data and try to find out
the association between activity, location and dosage: (1)

Applied K-means method to cluster the whole data points
into three groups based on the dosage levels. (2) Applied
several classification techniques to classify the data in terms
of activity modes, locations and dosage levels which was
clustered above. We assumed activity mode feature and
location feature are equally important [23]. We also com-
pared the performance between these classification meth-
ods. These techniques were running in an open source data
mining software WEKA [11] on a HP computer with Intel
dual-core processors 3.2GHz and 8GB RAM.

5.1 K-means cluster method
K-means cluster [2] method is often used to partition one

data set into k groups. It firstly selects an initial set of k
cluster centres, then assigns every instance to these clusters
in which each instance belongs to the cluster with the nearest
mean, and each cluster center will be updated to be the mean
value of all the instances in this cluster.

In this study, we distinguish 1440 dosage data points into
three categories. In fact, we tried a number of categories
as well. However, there was some missing information using
two categories, while classification algorithms can be eas-
ily over-trained when used numbers of categories that larger
than three. When maxIterations is selected as 500, the ini-
tial cluster centres are 0.995703, 1.13702 and 20.642867, and
partition result is shown in Table 4.

Table 4: Clustered dosage range
range (µg per min) No. of instances

Low 4.23 - 0.57 1261
Medium 13.69 - 4.31 101
High 63.85 - 14.58 78

5.2 Classification method
We split the data set which contains activity modes, lo-

cations and dosages as attributes into a training (66%) and
a test set (34%). There are 950 data points in the training
set and 490 data points in the test set separately. Seven
classification approaches are then used to classify the data
set.

5.2.1 ZeroR
ZeroR is a simple classification method which can pre-

dict majority class in training set without constraints on
attributes. It is often used as a base-line for comparing clas-
sification performance.

5.2.2 Naive Bayes
Naive Bayes classifiers [15] is one of the most practical

learning methods. It assumes that there is no hidden rela-
tionship between different attributes, and all the attributes
are independent.

5.2.3 BayesNet
Bayesian network allows prior knowledge to be involved

in data distribution. It can distribute a set of associated
conditional attributes into a directed acyclic graph. In this
study, we used simple estimator as classification estimator
and K2 algorithm as the search algorithm which uses a hill
climbing algorithm restricted by an order on the variables.
ADTree is not included here.



Table 3: Samples of recorded data

Time
Activity

modes
Latitude Longitude

Calories

(Kcal per min)

CO Concentrations

(ppm)

Dosage

(µg)

Non-Fitbit 19:22 Drive -33.8880822904876 151.219555087863 2.866571 1.6621 23.74718802

With Fitbit 19:22 Drive -33.8880822904876 151.219555087863 3.227280 1.6621 27.36695547

00:01am 4:01am 8:01am 12:01pm 4:01pm 8:01pm 12:00am
0

1

2

3

4

5

6

7

Time

C
on

ce
nt

ra
tio

ns
 (

pp
m

)

CO concentrations 

 

 

(a)

00:01am 4:01am 8:01am 12:01pm 4:01pm 8:01pm 12:00am
0

5

10

15
Calories burned

Time

C
al

or
ie

s 
(K

ca
l p

er
 m

in
)

 

 

With fitbit
With activity modes

(b)

00:01am 4:01am 8:01am 12:01pm 4:01pm 8:01pm 12:00am
0

10

20

30

40

50

60

70

80

90

100

Time

D
os

ag
e 

(µ
g)

Inhaled dosage

 

 

With fitbit
With activity modes

(c) (d)

Figure 4: Whole day (a)CO concentrations, (b)calories burned, and (c)personal dosages

5.2.4 LibSVM
LibSVM [5] is a library for support vector machine binary

classification algorithms which learns linear classifiers avoid-
ing over-fitting with learning a form of decision boundary
called the maximum margin hyperplane. Data points closest
to maximum margin hyperplane are called support vectors.
In this study we evaluate LibSVM classifier in WEKA with
C-SVC SVM type and the parameters are: Degree = 3 and
KernelType = radial basis function.

5.2.5 MLP
Multilayer perceptron (MLP) classifier is feed-forward ar-

tificial neural network model. It comprises of perceptrons
which are organized into layers. Each perceptron in one
layer connects to every perceptron in the next layer with a
certain weight. MLP also uses a back-propagation super-
vised learning technique to train the network. We used 2
hidden units, 1 thread and 1 pool in this study.

5.2.6 JRip
JRip which is also known as repeated incremental prun-

ing to produce error reduction (RIPPER) is proposed in [6].
Classes are examined in ascending size and an initial set of
rules is generated with incremental Reduced error pruning
(REP), then this set of rules is repeatedly simplified by ap-
plying one of a set of pruning operators. The amount of
data used for pruning is 3, and the minimum total weight of
the instances in a rule is 2.

5.2.7 J48
J48 is a Java reimplementation of the C4.5 classifier [22]

which is the most used algorithm to generate decision trees.
The minimum instances number of each leaf is selected as
2, and the mount of data which is used for reduced-error
pruning is 3. We also consider the raising operation when
pruning.

5.3 Results discussion
The summary of training results is concluded Table 5 and

Table 6. The important observations are:

1. The best accuracy achieved in this work is 94.898%
with JRip and J48 algorithms. Nevertheless, J48 has



Table 5: Different performance attributes running
Classifier TP rate FP rate Precision Recall F-measure ROC area
ZeroR 0.861 0.861 0.742 0.861 0.797 0.500
Naive Bayes 0.912 0.444 0.919 0.912 0.882 0.969
BayesNet 0.916 0.119 0.925 0.916 0.920 0.970
LibSVM 0.941 0.254 0.941 0.941 0.933 0.843
MLP 0.941 0.254 0.941 0.941 0.933 0.969
JRip 0.949 0.129 0.946 0.949 0.946 0.916
J48 0.949 0.129 0.946 0.949 0.946 0.965

Table 6: Measurements for different classifiers

Classifier Accuracy
Mean absolute

error
Root mean

squared error
Relative absolute

error
Root relative
absolute error

Kappa
statistic

Time
(Seconds)

ZeroR 86.1224% 0.1550 0.2881 100.0000% 100.0000% 0.0000 0.00
Naive Bayes 91.2245% 0.0643 0.2279 41.5029% 79.0845% 0.5448 0.02

BayesNet 91.6327% 0.0545 0.2194 35.1307% 76.1476% 0.6835 0.03
LibSVM 94.0816% 0.0395 0.1986 25.4527% 68.9389% 0.7288 0.27

MLP 94.0816% 0.0540 0.1801 34.8591% 62.4953% 0.7288 1.59
JRip 94.8980% 0.0500 0.1760 32.2426% 61.0965% 0.7851 0.08
J48 94.8980% 0.0471 0.1748 30.3831% 60.6660% 0.7851 0.03

a lower mean absolute error and running time which
makes J48 performs the best among these classification
algorithms with trial dosage data set.

2. Algorithm LibSVM has the lowest mean absolute er-
ror rate and relative absolute error, which is 0.0395 and
25.4527% respectively. The rest mean absolute errors
range from 0.0471 to 0.155, whilst the remaining rela-
tive absolute errors range from 30.3831% to 100%.

3. The longest training time is taken by MLP algorithm,
and the time is 1.59 seconds, which is much longer than
the other algorithms.

4. Despite the classification accuracy is same for LibSVM
and MLP, the performance of LibSVM is better be-
cause its mean absolute error is low and it takes less
running time.

Confusion Matrix and pruned tree of J48 is shown in Ta-
ble 7 and Table 8. We can observe that location will not
effect dosage levels in the same activity mode except driv-
ing. Dosage levels can be various from low to high during
driving from place to place. Other than this, dosage level
of sleep, self-clean, eating, working, and home general ac-
tivity is low, while walking and jogging is medium and high
respectively.

6. CONCLUSION
This paper has presented a method and application that

we developed to estimate personal air pollution dose based
on human energy expenditure rate data and air pollution
concentration data acquired from wearable sensors. We be-
lieve that users with or without activity sensors, can all ben-
efit from our application. A trial has been conducted to get
a full day’s data for one participant, from which we ob-
served that inhalation dosage might be significantly higher
while doing fitness activities, even under lower air pollu-
tion levels, though driving and walking do also contribute
to the whole day’s dosage. We also applied k-means clus-
tering and several classification machine learning algorithms
to find the association between location, activity mode and

Table 7: J48 pruned tree
Activity = Inactivity/Sleep: Low (409.0)
Activity = Self-clean: Low (37.0/4.0)
Activity = Eat: Low (91.0/3.0)
Activity = Drive
| Latitude <= -33.877125
| | Longitude <= 151.220242
| | | Longitude <= 151.217461: Medium (14.0/1.0)
| | | Longitude > 151.217461
| | | | Latitude <= -33.886577
| | | | | Longitude <= 151.219215: Low (2.0)
| | | | | Longitude > 151.219215: High (2.0)
| | | | Latitude > -33.886577
| | | | | Longitude <= 151.218538: High (2.0)
| | | | | Longitude > 151.218538: Medium (5.0/2.0)
| | Longitude > 151.220242: Low (20.0/2.0)
| Latitude > -33.877125: Low (54.0/7.0)
Activity = Walk: Medium (39.0/1.0)
Activity = Work: Low (489.0)
Activity = Jog: High (91.0/21.0)
Activity = Home General activity: Low (185.0/12.0)

Table 8: Dosage confusion matrix generated from
J48

Low Medium High Total
Low 419 3 0 422
Medium 9 23 8 40
High 1 4 23 28
Total 429 30 31 490

inhalation dosage. From the analysis of the results, we can
summarize that (i) Dosage during sleeping, eating, working
in a campus and doing general home activity is low; peo-
ple will inhale more while working out, walking or driving
outdoors. (ii) The performance of J48 classifier is the best,
achieving nearly 94% accuracy within 0.03 seconds, while
the mean absolute error is only 0.0471. In the future, we
aim to release our application and gain more data to anal-
yse the human daily dosage, making the classification result
more convincing. Also, we will estimate the dosage based
on the predictors instead of just classifying.
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