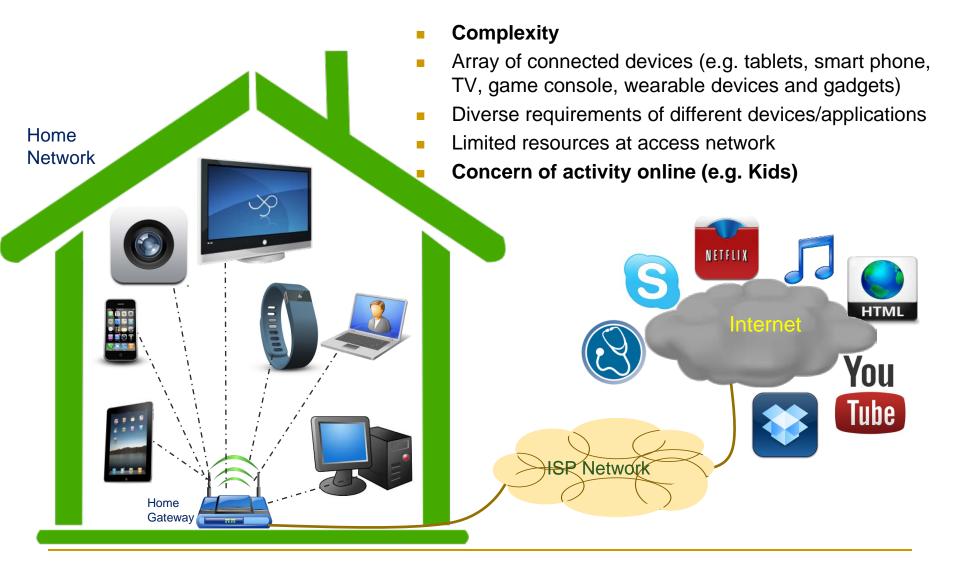
Personalizing the Home Network Experience using Cloud-Based SDN

Hassan Habibi Gharakheili (UNSW)

Jacob Bass (Newtworks) Luke Exton (UNSW) Vijay Sivaraman (UNSW)


Overview

This paper is about service management

- Empowering home network user to;
 - Self-customize the network experience
 - Service personalization
 - e.g. father's laptop prioritized over kid's iPad
- Using SDN-enabled architecture
 - Abstract the network, Simplify and
 - Exposed via automated interface

Motivation: Home Network

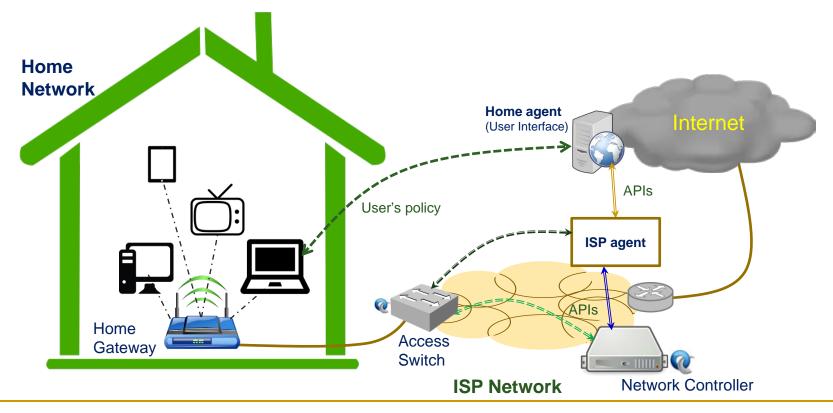
Challenges

- Indeed users want control!
 - But typically are unskilled
 - "Automated self-provisioning" is a key point
- Some featured home gateways allow customization
 - Requires user sophistication
 - Static and non-uniform solutions
 - Not address the bottleneck link coming into home
- ISP is best positioned, but:
 - Managed services require manual configuration
 - Traffic discrimination may raise "net neutrality" issue
 - Invisible into home network (NAT)

Use-cases

Enhanced QoE for:

- Streaming video (e.g. YouTube)
 - large share of downstream Internet traffic
 - Suffering of variable bandwidth available
 - Start-up delay and rebuffering
- Video conferencing (e.g. Skype)
 - Becomes popular means of communication
 - Interactive communication; more sensitive
 - □ Loss, latency, and bitrate


Parental control for:

- Web content (e.g. social networking)
- Need of dynamic and customized
 - Based on age of kids, values, priorities
 - E.g. restriction of web access while studying or social networking for elementary years

System Architecture

- Front-end user agent
 - Hosted on the cloud
- Back-end SDN (switch, controller, ISP agent and APIs)

Operational Scenario

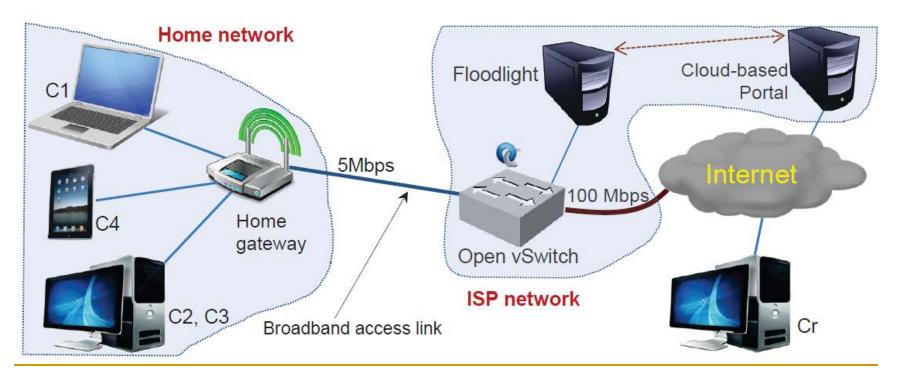
- Device specific, high-level demand (policy) is taken via UI
- Translated into low-level network semantics
- Communicated to network controller
- Applied into the switch

				V L	HOME.net		
id	owner	type	Slicing	BW %	Block Facebook	Sniff	Update
1	Dad	Laptop		0			update1
2	Family	GoogleTV		0			update2
3	Son	Laptop		0			update3
4	Daughter	iPad		0			update4
5	Mum	Desktop		0			update5
	add new device						

APIs

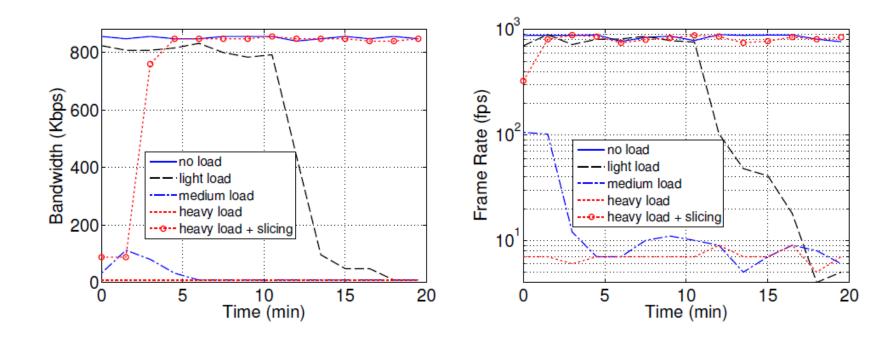
Bandwidth assurance

- "Policy": "minBW"
- "Device_ID": "MAC"
- "rate": X (minimum rate of queue)
- Creates/updates a queue on the switch and pushes the flow into the respective queue


Parental Control

- "Policy": "PC"
- "Device_ID": "MAC"
- "black-list": {IPadd1, IPPadd2,.. }
- creates static flow that drop all traffic originating from the predefined range of IP block destined to the related device

- Home Agent: the web portal runs as a standard HTML web-site, and is served by an off-site web-server run by ISP
- ISP Agent: runs as a java program on an internal ISP server, communicating over HTTP with the Home agent



Experimental Evaluation

- Test suite:
 - Skype video call
 - Pytomo tool
 - open-source YouTube crawler and analyzer
 - MOS measurement for an HD video
- Network condition:
 - No b/g load
 - Light b/g load
 - Medium b/g load
 - Heavy b/g load (aggressive IDM)
 - Heavy b/g load with service assurance

Skype: technical metrics

No load	Light load	Medium load	Heavy load	Heavy load + Slicing
3 ms	86 ms	686 ms	1331 ms	2 ms

Skype: visual perception

No b/g load

Heavy b/g load

Heavy b/g load with service assurance

Pytomo

Metric	No load	Heavy load	Heavy load + Slicing
Average playback duration (s)	203.7	128.9	172.1
Average startup delay (ms)	4.6	511	0.646
Average buffering duration (s)	0	0.994	0
Average initial bitrate (kbps)	4955	1149	3924
Number of interruptions	0	11	0

YouTube MOS

Load	Mean	Standard deviation
No load	3.310	0.000
Light load	2.660	0.393
Medium load	2.750	0.450
Heavy load	2.500	0.043
Heavy load + Slicing	3.310	0.000

- The MOS value gradually drops while more loads are introduced to the network
- The last row shows how the user can benefit from managed service quality realizing similar performance as no load
- Indeed, this QoE improvement comes at the cost of slowing down the other unimportant downloads

Parental Control:

FaceBlock!

- Used the publicly available block of IP addresses provided by Facebook to populate a blacklist
- Enable/disable static flows instructing the switch to drop the associated flows
- Once enabled, the blocking takes place immediately

Conclusions and Future Directions

- Access network remains a bottleneck
- User benefits from self-customisation and enhanced QoE
- ISP benefits from user satisfaction and monetization opportunity
- End-goal: make network dynamic so it can be exposed programmatically to outside entities
- Future Work:
 - Offering more features
 - Dynamic negotiation via Apps interface
 - Over legacy networks

