
Third-Party Customization of Residential Internet Sharing using SDN

Hassan Habibi Gharakheili, Luke Exton, Vijay Sivaraman
University of New South Wales, Sydney, Australia

Emails: {h.habibi@, l.exton@student., vijay@}unsw.edu.au

John Matthews, Craig Russell
CSIRO, Sydney, Australia

Emails: {john.matthews, craig.russell}@csiro.au

Abstract—Today’s residential Internet service is bundled and
shared by a multiplicity of household devices and members,
causing several performance problems. Customizing broadband
sharing to the needs and usage patterns of each individual
house has hitherto been difficult for ISPs and home router
vendors. In this paper we design, implement, and evaluate a
system that allows a third-party to create new services by
which subscribers can easily customize Internet sharing within
their household. Our specific contributions are three-fold: (1)
We develop an over-the-top architecture that enables residential
Internet customization, and propose new APIs to facilitate service
innovation. (2) We identify several use-cases where subscribers
benefit from the customization, including: prioritizing quality-
of-experience amongst family members; monitoring individual
usage volumes in relation to the household quota; and filtering
age-appropriate content for selected users. (3) We develop a
fully-functional prototype of our system leveraging open-source
SDN platforms, deploy it in selected households, and evaluate its
usability and performance benefits to demonstrate feasibility and
utility in the real world.

I. INTRODUCTION

Residential networks are becoming increasingly complex
[1]. Whereas a typical home a few years ago had but a
few PCs/laptops, today’s home additionally has tablets, smart-
phones, smart-TVs, gaming consoles. Indeed Cisco VNI [2]
predicts that the average number of connected household
devices globally will rise from 4.65 in 2012 to 7.09 in 2017,
representing an annual compound growth rate of 8.8%. The
growing number of connected residential devices, bundled over
a common Internet connection to access a range of services,
poses new challenges for households that were not encountered
before, as illustrated with a realistic scenario next.

Consider a family of four living in a suburban house - the
father often takes work-related teleconferences from home, the
mother likes watching Internet-TV, the son is a keen on-line
gamer, and the daughter spends a lot of time on Facebook.
Typical issues confronting this household might be: (1) Often
in the evenings, the father experiences poor quality on his
teleconferences; unsure if this is caused by others in the house
concurrently consuming bandwidth, he tries to get his kids
to stop their online gaming or social-networking activity at
those times, often to no avail. Having the ability to prioritise
his teleconference over other sessions would allow him to
work much more effectively from home. (2) Every month the
household exceeds the usage quota on its Internet plan, and the
father wonders if this is because of his work teleconferences,
his wife’s video downloads, or the kids doing excessive online
gaming/social-networking. Visibility into the volume of data
consumed by each household device, and indeed being able to
set per-device monthly limits, would allow the subscriber to

better manage the sharing of the Internet plan within the house-
hold. (3) With kids spending more time online, parents are
increasingly concerned about ease-of-access to adult/violent
content, and constant distractions from online social networks.
Having a means to block access at the network-level would
provide additional safeguards to those implemented at the
individual client devices.

The problems mentioned above can (at least partly) be
solved today, but in ways that are cumbersome and demanding
on the user. Several home gateways offer QoS control features,
but are not easy to configure even for the technically literate,
and usually prioritize traffic in the upstream (rather than
downstream) direction of the broadband link. Data download
volumes can be extracted from devices, but require substantial
effort to harvest. Parental shield software can be installed
on clients, but require per-device management, and can be
circumvented by savvy kids. There is a dire need for a solution
that coherently and comprehensively addresses these problems.

The residential market is very price competitive and low-
margin, and ISPs tend to view “managed residential services”
as not being lucrative enough. Further, “managed” services
have typically meant manual provisioning and support, which
is cost intensive and unscalable. Similarly, home router ven-
dors have to-date developed proprietary and piece-meal solu-
tions embedded into their devices, which rarely get upgraded
as technologies evolve, and require high technical sophistica-
tion from the user for effective use. We believe that software
defined networking (SDN) has the potential to address these
challenges – it allows configurations at the network-level to be
automated, while the capabilities can be exposed via carefully-
crafted APIs to allow a third-party to develop more complex
value-add services, that are then exposed to end-users via easy-
to-use GUIs (web-portals or mobile apps).

Our specific contributions are as follows. First, we develop
an “over-the-top” architecture that best enables innovation in
residential Internet customization; it comprises SDN home
routers, APIs built on top of SDN controllers, and portal/app-
based user interfaces. Our second contribution is to identify
three use-cases of residential Internet sharing (related to QoE,
parental filters, and usage control) that are poorly addressed
today, and to show how the underlying APIs can be composed
to build new tools to dynamically control the sharing in a
simple way. Lastly, we prototype our system, including the
front-end portal, the back-end orchestrator, the SDN controller
modules and OVS network elements. We perform a limited
trial at a small number of households to validate its feasibility.

The rest of this paper is organized as follows: §II describes

our architecture and APIs. In §III we discuss use-cases to
which our framework is applied. Our prototype implementa-
tion is described in §IV. In §V we evaluate an “over-the-top”
deployment in a small number of houses. Relevant prior work
is discussed in §VI, and the paper concluded in §VII.

II. SYSTEM ARCHITECTURE

In spite of the growing need for home-users to customize
their household Internet sharing, the two entities best posi-
tioned to address this gap have not risen to the challenge
– ISPs are contending with a highly competitive fixed-line
broadband market that has dissuaded them from innovating
in this segment, while home router vendors have to-date
constrained themselves to software embedded within their
devices, exposed via poor user-interfaces and rarely upgraded
over their lifetime. We believe that it is worth trying a different
approach, one that unbundles the responsibility and creates the
right incentives for each entity to participate in a way best
aligned with their interests and business models.
A. Entities, Roles, Flow of Events

Historically, neither ISPs nor home-router vendors have
been adept at consumer-facing software. We therefore intro-
duce a new over-the-top entity, called the Service Management
Provider (SMP), that undertakes development and operation
of the customization services proposed in this paper. The job
of the SMP is to exercise (limited) configuration control over
home-router on behalf of the consumer, without being directly
on the data path. Fig. 1 shows that the SMP interacts with
home router equipment via standard SDN OpenFlow protocol,
and with home users via easy-to-use GUIs. This architecture
enables the SMP to serve subscribers of multiple ISPs.

SMP role/benefits: The SMP provides customization in-
terfaces (portals/apps) to users (described in §III), translating
these into network-level operations invoked via APIs (de-
scribed in §II-B). We intentionally decouple the SMP from
the infrastructure vendor so that multiple entities can compete
for this role – an ISP or home router vendor may of course
develop the SMP capabilities in-house, bundling it with their
offerings to increase retention and revenue; a content provider
(e.g. Google, Netflix) or cloud service operator (e.g. Amazon,
Apple) may also have an interest in this role so it can improve
delivery of its own services; or a new entrant may take up
this role with a view towards greater visibility and analytics
of home network usage.

Home-router vendor role/benefits: Today’s home-routers
(much like commercial routers) are vertically integrated, with
diverse feature sets and management-interfaces bundled onto
the device at production time. Since this market is fragmented
and competes on price, user-experience becomes a secondary
consideration, and feature sets to support emerging applica-
tions are obsoleted quickly. Our architecture encourages such
vendors to forego user-interface development, and instead fo-
cus on supporting APIs that allow an external entity (the SMP)
to configure network behavior. This reduces the development
burden on vendors, allowing them to focus on their competitive
advantage, while the cloud-based control model can give them
better feedback on feature-usage on their devices.

ISP #1

Content

Providers

Broadband access link

user 1

ISP #2

Home gateway

Peering link

user 2

SMP
Portal / app

Controller

API

Home #1

Home #2

Fig. 1. High level architecture

Consumer role/benefits: The consumer’s need for cus-
tomizing their Internet sharing is more likely to be met by an
SMP specialized in the task, than by a generalist ISP or router
vendor selling a bundled product. User preferences can be
learnt, stored in the cloud, and restored even if the subscriber
changes ISP or the home-router. Features and look-and-feel
can be personalized from the cloud, and configuration options
updated as technologies and use-cases evolve.

Flow of events: The flow of events starts with a consumer
signing up with an SMP, and getting access to the portals/apps
through which they can manage their Internet sharing. The
SMP’s cloud-based controller in turn takes over the control
of home router to manage services using SDN. The SMP
maintains all state information pertinent to the subscriber
(their devices, preferences, statistics, etc.), and translates user-
requests from the portal/app to appropriate API calls into the
home router, as described next.

B. APIs Exposed by the Network
We propose and justify a set of API functions below,

arguing how they can be realized using SDN capability. The
authentication mechanisms needed to prevent illegitimate use
of the API and for logging purposes are beyond the scope of
this work, as is the pricing model associated with use of these
APIs.

Our API design is inspired by the approach in PANE [3]
that defines three categories of interactions: applications issue
requests to affect the state of the network, queries to probe
the network state, and hints to help improve performance. In
this work we restrict ourselves to the first two categories.

[Query] Device discovery: A function get devices (sub-
scriber id) allows the SMP to query the network controller
for a list of devices that belong to the subscriber, obtained
from the home gateway. Note that the subscriber id represents
the identity of home router and is known to the SMP, and
the device id is a unique number assigned to each device
belonging to that subscriber.

[Query] Device presence: The function last seen (sub-
scriber id, device id) enables the SMP to query for the last
time a user device was seen in its home network, allowing it to
(re)construct context relevant to security settings. A subscriber
wishing to keep such information private may elect not to take
up the SMP’s services.

[Query] Usage statistics: A function get byte count (sub-
scriber id, queue id) returns the downstream byte-count per-
taining to a specific queue for the subscriber (a similar function
can be defined for upstream traffic). The accounting capability
is built into most of today’s SDN platforms.

[Request] Bandwidth provisioning: In order to manage
QoE for household devices and applications, we require the
home router to expose bandwidth provisioning primitives
via an API. We assume that a default queue (say queue-0)
at the home router initially carries all traffic destined to a
household. The function create queue (subscriber id) creates
a new queue on the downlink to the subscriber, and returns the
id of the newly created queue (recall that queue-0 is the de-
fault queue). The function set queue params (subscriber id,
queue id, queue rate, queue size) can be used by the SMP to
set parameters, such as minimum service rate, maximum buffer
size, etc. for this queue. The function map device to queue
(subscriber id, queue id, device id) maps a user device to an
existing queue (note that multiple devices can be mapped to
one queue for aggregation purposes, and that a device maps
to default queue-0 unless specified otherwise).

[Request] DNS redirection: We debated whether we should
create an API to request the home router to redirect an arbitrary
subset of user traffic, and decided that it has potential for abuse
by a malicious or careless SMP. We therefore limit the API
to dns redirect (subscriber id, device id, dns service), which
forces all DNS requests (destination UDP port 53) from a
specified device of the subscriber to be redirected to a specified
server. Note that the DNS resolution server is a parameter,
allowing for flexibility and customization by the SMP.

The SMP can build powerful value-add services by compos-
ing these simple network APIs exposed by the controller. The
APIs can be enriched over time if this model gains traction
and as new use-cases emerge.

III. CUSTOMIZING INTERNET SHARING

Our intent in this section is to identify and elaborate on
use-cases wherein subscribers can benefit from customization
of their residential Internet sharing. While the use-cases are
largely based on our own experiences and anecdotal evi-
dence, we have done a limited corroboration via a survey
of 100 anonymized participants (33% from USA, 38% from
Canada, and 29% from Europe/Australia) recruited using the
Amazon Mechanical Turk (AMT) crowdsourcing platform
(ethics approval 08/2014/34 was obtained from UNSW Human
Research Ethic Panel H for conducting this survey). We asked
users about specific problems they faced in each of the areas
described next.

A. Quality of Experience (QoE)
Among the participants surveyed, more than 20% reported

that they experienced degraded online QoE frequently or very
frequently, with another 40% reporting quality problems some-
times. Interestingly, users who reported a higher frequency
of concurrent online usage from the house also reported
more frequent degradations in quality, indicating that sharing
of Internet bandwidth by household members/devices is a
likely determinant of QoE. In many households today, QoE
degradation is prevalent, will likely worsen in years to come,
and is inadequately addressed by home router vendors. We
believe that our architecture can facilitate QoE provisioning
in an effective and standardized way (using SDN), and can

Internet

ISP

SMP

gateway

Home

Network

Frontend

web interface
Controller

static policy

via web interface

dynamic policy

via App interface

RESTful

SMP

PrntBolck

Service Orchestrator

QoE

IoTsecure usgCtrl

Typical gateway

Fig. 2. Overview of prototype design

be exposed to users in a simple-to-use manner, as will be
illustrated via our prototype in the next section.
B. Parental Filters

Studies show that 72% of kids aged 0-8 in the US use smart
mobile devices [4], and kids aged 9-18 average several hours
online daily [5]. Unsupervised online time risks (intended or
unintended) exposure to inappropriate (e.g. sexual or violent)
content – prior surveys [6] have reported 70% of teens hiding
their online activity from parents, and our survey found
52% of households with one or more children to express
moderate to high concern about their kids’ online activities.
In theory, a plethora of client-side tools are available to shield
kids from inappropriate content, including child-safe DNS
resolvers, search engines, browser filters, operating system
modes, and free/paid software suites. In practise, however,
their uptake seems to be poor: 86% of users in our survey did
not use any such tools (only 8% of users said they enforced
safe-search, 4% managed parental control software, 2% used
password/lock-protection). We believe that existing client-level
solutions can be complemented with network-level blocks that
cannot be easily circumvented.
C. Usage Control

Many ISPs impose limits on monthly data downloads as part
of the Internet plan. While subscribers today have the ability
to monitor their aggregate usage (e.g. via the ISP portal), they
have little visibility into data consumption on a per-device
basis. For example, knowing if the bulk of the consumption
is arising from work-related teleconferences or kids’ online
videos might help the subscriber determine how to adapt
usage pattern in the house, or how to apportion broadband
charges between work and personal use. In our survey, 45%
of participants had a moderate to high interest in knowing
per-device data consumption in their household, yet only 17%
had tried some tool that could give them this data. Client-side
tools require effort from the user to install, operate, and harvest
from a multitude of devices with diverse operating systems.
Our architecture exposes these statistics via a clean API that
allows the SMP to harvest, store, and present them to the user
in a multitude of ways.

IV. PROTOTYPE IMPLEMENTATION

We have implemented a fully functional prototype of our
system that uses our proposed architecture and APIs to
provide the above customization capabilities to subscribers.
Our over-the-top system includes the access switch (OVS)
enhancements for home-routers, network controller (Flood-
Light) modules, the service orchestrator (Ruby on Rails) and

web-GUI (Javascript/ HTML) operated by the SMP. Our net-
work controller operates in our University data-center, while
the rest run in the Amazon cloud. Our implementation is
currently deployed in a small number of houses (discussed
in §V). Our implemented design is depicted in Fig. 2, and
http://api.sdnho.me/ shows our user-interface live.

SMP Gateway: We installed OpenWrt firmware (v12.09)
and OVS (v1.9.0) on a TP-Link WR1043ND gateway, and
connected it at layer-2 (via the LAN interface) to the existing
home gateway (so the household can fail-over to its legacy
network if needed). As shown in Fig. 2, it exposes both
standard OpenFlow APIs as well as JSON RPCs for queue
management (explained below). We found that dynamic QoS
management APIs were lacking in OVS, so we wrote our own
module in C++ called qJump that bypasses OVS and exposes
JSON RPC APIs to the SDN controller for queue creation and
modification in the Linux kernel using tc (traffic controller).
We enhanced our qJump module to initiate and maintain an
outbound connection to port 8081 on our controller.

Network controller: We used the Floodlight (v0.9) Open-
Flow controller for operating the home network, and de-
veloped Java modules to implement the APIs presented in
§II-B.Successful API calls result in appropriate actions (e.g.
flow table rules and queue settings) at the respective home-
router (with OVS bridge).

1) RedirectDNS: redirects all DNS queries from a selected
device to the specified DNS service. This module inserts a
default rule in the access switch to hijack all DNS requests
(destined to UDP port 53) from this host, and send them to
the controller. Once the controller learns the IP address of the
DNS server to which the original request was sent, it inserts a
pair of (higher priority) rules in the OVS that can respectively
replace the IP address in both directions (i.e. request and
reply). This ensures that subsequent DNS requests do not need
to be forwarded to the controller, and further that the DNS
hijacking is transparent to the client.

2) statsCollect: returns transmit bytes for the chosen sub-
scriber’s queue. The subscriber id is mapped to the appropriate
OVS bridge, and existing core functionality in FloodLight is
invoked to extract the queue-level statistics for that bridge.

3) discDev: returns the id of all devices connected to the
bridge associated with this subscriber. We use the device MAC
address as the id (we operate at Layer-2), and obtain the MAC
list per household from FloodLight’s database.

4) bandwidthManager: manages QoE by controlling
queues, their rates, and flow-rule-to-queue mappings across
the access switches. This module supports queue creation and
rate setting by invoking the qJump module in the appropriate
switch (corresponding to the subscriber) via JSON RPC. It
then updates flow rules in the flow table of the switch so that
the chosen device maps to the appropriate queue.

Service Orchestrator: We implemented a service orchestra-
tor in Ruby-on-Rails that holds the state and the logic needed
by the SMP to manage services for the subscriber. It interacts
on one side with the controller via the aforementioned APIs,
and on the other side with the front-end portal and user apps

(described next) via RESTful APIs, as shown in Fig. 2. It
uses a MySQL database with tables for subscribers, devices,
queues, policies, user preferences and statistics. It acts upon
REST commands from the user portal/apps by retrieving the
appropriate state information corresponding to the subscriber’s
command, and calling the appropriate sequence of controller’s
APIs, as discussed for each functionality next.

Web-based portal: provides the front-end for users to
customize their services, and is implemented in Javascript and
HTML. Snapshots are shown in Fig. 3, and we encourage the
reader to see it live at http://api.sdnho.me/. Upon signing in,
the user sees their household devices listed in the left panel,
while the right panel shows tabs for each service. Fig. 3(a)
shows 7 devices for this user served by TPG (the subject of
the experiments described in §V), comprising laptops, desktop,
iPad, TV, and IoT devices. Each service tab is described next.

The Quality tab (Fig. 3(b)) gives the user a slider bar to set
a download bandwidth share for each device; in this example
the father’s laptop is set to get at least 40%, the kid’s iPad
to 4%, etc. When the bandwidth share is changed via the
slider, the portal calls the REST API “POST /qos/subsID
{"mac":<mac>, "bw":<bw>}” to the service orchestra-
tor, which checks its internal mappings of user device to queue
id, and calls the controller’s API to set the bandwidth for the
appropriate queue, first creating the queue if needed.

The Parental Filters tab (Fig. 3(c)) allows the user to
select a filtering level for each device in the house. Our
implementation currently uses the standard settings pro-
vided by OpenDNS – the “moderate” setting blocks all
sites that have nudity, alcohol/drug, gambling, etc., while
“high” additionally blocks messaging, social networking,
and photo sharing. The user’s choice of filtering level for
their kid device is conveyed to the service orchestrator via
the REST API call POST /pc/subsID {"mac":<mac>,
"dns":<filter-level>} where the filter levels are the
ones supported by OpenDNS for now, and can be extended to
arbitrary custom lists in the future. The service orchestrator in
turn maps this call to the controller’s API for DNS redirection.
The GET and DEL methods are also implemented so the UI
can list/delete filter settings.

The Usage tab (Fig. 3(d)) shows usage statistics (e.g. down-
load volume) for each device on a daily, weekly, or monthly
basis. The web interface makes a GET /usage/subsID
{"mac":<mac>, "since":<time>} call to the service
orchestrator to obtain the data downloaded by a device since
a given time. The service orchestrator obtains the current byte
count for the corresponding queue via the get byte count()
API; subtracting the byte count value at the value of parameter
time (stored in its state tables) yields the data volume
downloaded by the device since the specified time, which is
then displayed as a pie-chart in the portal.

Additional to the portal (which requires proactive setting by
the user), we have also developed two customized iOS appli-
cations, Skype+ and YouTube+, similar to the ones reported in
[7], that allow the user to react to poor QoE by dynamically
dilating bandwidth. Our apps provide the user with a “boost”

(a) Home network devices (b) QoE Control (c) Parental Filters (d) Usage Statistics
Fig. 3. Web interface showing (a) devices, (b) bandwidth, (c) filters, and (d) usage.

0 100 200 300 400 500
10

0

10
2

10
4

G
oo

dp
ut

 (
K

bp
s)

Time (s)

0 100 200 300 400 500
10

0

10
2

10
4

R
ou

nd
tr

ip
 d

el
ay

 (
m

s)

Goodput

Roundtrip delay

(a) Skype

0 100 200 300 400 500
0

1

2

3

4

Time (s)

G
oo

dp
ut

 (M
bp

s)

(b) IDM

Fig. 4. Skype and IDM performance at home

(a) 180p (b) 720p
Fig. 5. Skype quality (a) without and (b) with “boost”

button that signals the SMP (using the same REST APIs to
the service orchestrator as used by the portal) to increase the
bandwidth share for the device – for Skype+ we reserve 2
Mbps for HD quality, and for YouTube+ we hardcode a static
mapping of video resolution to bitrate.

V. RESIDENTIAL EXPERIMENTAL RESULTS

We have deployed a limited trial of our system in 5
houses (including some of the authors of this paper), covering
the four major ISPs in Australia (Telstra, Optus, iiNet and
TPG). Our SMP controller (FloodLight augmented with our
modules) runs on a VM in the University data center. For
the experiments described in this section, QoE control, was
problematic, since our OVS gateway sits downstream from the
bottleneck link (from the ISP to the home), and hence cannot
directly control sharing of bandwidth at the bottleneck. To
overcome this we came up with a crude solution – we modified
our qJump module to artificially create a bottleneck within the
home network; for example, if the broadband link has 5Mbps
downstream capacity, we throttle it to 4Mbps within the home,
and then do downstream queue management to partition this
capacity amongst the home devices in the desired fraction.
This throttling forces TCP to react by adjusting its rate, which
after several RTTs converges to the desired rates. While this is
not ideal (since it wastes some broadband capacity), it achieves
the desired effect, as demonstrated next.

Research/Education:
10%

Search Engines:
14%

Finance/eCommerce:
6%

Other: 13%

Social Networking:
12%

Entertainment
(TV/Radio/Music/Movie):

26%

Adult Content
(Porn/Sexuality/Nude/Gambling):

3%

Travel/Sport:
4%

P2P/Video &
File Sharing/Messaging:

12%

(a) Skype

2am 5am 8am 11am 2pm 5pm 8pm 11pm
10

2

10
4

10
6

10
8

Time

N
u
m

b
e
r

total flows

blocked flows

(b) IDM

Fig. 6. (a) Domain tagging of our trace, (b) Measure of “Parental Filter”

A. Quality of Experience
Our experimentation of QoE control reported here was done

in the house served by iiNet. The download capacity was
throttled to 4Mbps within the house, and two devices were
connected to our OVS gateway: one running Skype and the
other downloading a large file using IDM. Fig. 4 shows how
Skype and IDM progress with time. Initially, Skype operates
by itself and experiences perfect quality (average goodput
2.3Mbps and roundtrip delay below 100ms). At 100s, IDM
starts, and Skype bit-rate drops steadily to about 4Kbps and
RTT rises above 1.5s, while IDM consumes nearly all the
bandwidth available. The Skype video resolution drops to
180p, with pixelation as shown in Fig. 5(a). At 300s, the user
signals the SMP by pressing the “boost” button on our Skype+
app, requesting a minimum rate of 2Mbps. The SMP triggers
the Skype traffic to be isolated in a separate queue on the
OVS home gateway and given 2Mbps. The resulting throttling
causes IDM to gradually reduce its rate (Fig. 4(b)), allowing
Skype bandwidth to steadily increase, as shown in Fig. 4(a).

The “Parental Filters” tab in the SMP portal (Fig. 3(c))
allows the user to select a filtering level for each household
device. To illustrate its potential value, we collected a 24-
hour trace of flow-level activity from the University cache-
log system, comprising 13.92 million flows accessing 87, 794
unique domains. We wrote a Python script to query OpenDNS
for the tags associated with each of these domains (OpenDNS
categorizes over 2 million domains with 57 tag values).
OpenDNS successfully returned tags for 91.2% of the domains
we queried – in Fig. 6(a) we show a pie-chart of the proportion
of sites corresponding to the various tags (collapsed to a small
number for convenience of depiction) for a one-hour section of
our trace. We observed that 3% (i.e. 15, 776) of all accessed

sites were tagged as having adult content, while 12% were
categorized as social networking.

To validate that a parent can filter such content out, we
nominated one laptop in the home (served by TPG) as a
child device, and wrote a Python script that replays the
entire campus trace data of 13.92 million flows above. Using
the portal, we set this device to have a “Moderate” level
of filtering, which we map to the OpenDNS FamilyShield
DNS server (208.67.222.123). The service blocks adult
content, associated with tags “Pornography”, “Tasteless” and
“Sexuality” (in addition to also blocking phishing and other
malware sites). Fig. 6(b) shows (on log scale) about 4.5% of
flows to be blocked hourly, returning to the user a default
page stating that the service is blocked. If the filtering level
is set to “high”, social networking sites also get blocked. This
demonstrates the ease with which a subscriber can protect their
child from inappropriate web content, and how an SMP can
empower the consumer to arbitrarily customize this service.
B. Usage Control

Fig. 3(d) shows a pie-chart depicting data consumption by
each device on a selected day (the reader can also see this
in the “Usage” tab at http://api.sdnho.me/). In all, the devices
downloaded 4, 571MB of data, with the family PC dominating.
Assuming a monthly quota of 200GB, i.e. 6.67GB per-day,
the house (served by TPG) nominally has about 31.5% spare
for the day. The take-away message is that depicting such
data (be it daily, weekly, or monthly) in various ways is more
easily achieved from the cloud, than from a home-router. The
interface can easily be augmented to allow per-device caps on
download volume consumption, without requiring any upgrade
in the network or at the user premises.

VI. RELATED WORK

HCI research has captured the growing complexity of man-
aging home networks [8], and surveys of existing router/OS-
based tools have revealed usability problems as a major
impediment [9]. We are by no means the first to propose new
tools and architectures for the home network – Kermit [10]
gives visibility into network speeds and usage for household
devices; HomeVisor [11] offers a home network management
tool enabling remote administration and troubleshooting via
high-level network policies; [12] dynamically prioritizes home
network traffic by monitoring application windows in focus;
[7] presents interfaces and apps similar to ours for the user
to interact with the underlying network to control quality
for different applications; and our own earlier work in [13]
develops a client-hosted application for QoE control, which is
a precursor to the cloud-based approach taken in the current
paper. While all the above works are relevant, the present
work distinguishes itself by focusing on broadband sharing and
customization (rather than network set-up or trouble-shooting),
and develops a three-party architecture (and interfaces) with a
specialized entity that develops holistic and easy-to-use cloud-
based utilities.

Several broader frameworks developed for enterprise, WAN
and data-center networks are also relevant to this work: [14]
allows QoS control in the enterprise; [3] inspires some of

our APIs for application-network interaction; Procera [15]
develops a framework for network service creation and coordi-
nation; Jingling [16] out-sources enterprise network features to
external providers; while our own framework in [17] develops
APIs for content provider negotiation with an ISP. Tools
similar to the ones we propose are also starting to emerge in
the market: HP offers SDN apps for improving performance
or security in enterprise networks [18], VeloCloud [19] of-
fers cloud-based WAN management for branch offices, and
LinkSys has recently introduced a cloud-managed smart WiFi
router [20]. These parallel efforts corroborate that SDN and
cloud-based tools are likely to gain traction in years to come,
and our work facilitates adaption of enterprise/WAN models
to the home environment.

VII. CONCLUSIONS

We have argued that residential customers need better ways
to manage Internet sharing in the house. ISPs and home-
router manufacturers have not to-date met this need, due to
a combination of business and technology reasons. We have
proposed an over-the-top architecture that can help overcome
the business obstacles, and developed new APIs that leverage
emerging SDN technology. We identified use-cases directly
relevant to homes today, and evaluated our solution via real
deployment in homes. When shown our user-interface, all
survey participants expressed interest in trialling it, and 37%
stated that they were willing to pay for such a solution.

REFERENCES

[1] A. Sabia and F. Elizalde, “ Market Trends: Home Networks Will Drive
Success of the Connected Home,” Gartner, Report, Mar. 2013.

[2] Cisco VNI. (2012) Service Adoption Forecast for 2012-2017.
[3] A. Ferguson et al, “Participatory Networking: An API for Application

Control of SDNs,” in Proc. ACM SIGCOMM, Hong Kong, Aug 2013.
[4] Common-Sense-Media. (2013) Zero to Eight: Children’s Media Use in

America.
[5] iKeepSafe. (2010) Too Much Time Online. http://www.ikeepsafe.org/.
[6] CNN. (2012) Survey: 70% of teens hide online behavior from parents.

http://goo.gl/vf2w0m.
[7] Y. Yiakoumis et al., “Putting home users in charge of their network,” in

Proc. ACM UbiComp, New York, NY, Sep. 2012.
[8] R.E. Grinter et al., “The Ins and Outs of Home Networking: The Case

for Useful and Usable Domestic Networking,” ACM Transactions on
Computer-Human Interaction, vol. 16, no. 2, pp. 8:1–26, Jun 2009.

[9] J. Yang et al., “A Study on Network Management Tools of Household-
ers,” in Proc. ACM HomeNets, New Delhi, India, Sep 2010.

[10] M. Chetty et al., “Why is my Internet Slow?: Making Network Speeds
Visible,” in Proc. CHI, Vancouver, BC, Canada, May 2011.

[11] T. Fratczak et al., “Homevisor: Adapting home network environments,”
in PRoc. EWSDN, Oct 2013.

[12] J. Martin et al., “User-driven dynamic traffic prioritization for home
networks,” in Proc. ACM SIGCOMM W-MUST, aug 2012.

[13] H. Kumar et al., “User control of quality of experience in home networks
using SDN,” in Proc. IEEE ANTS, Dec. 2013.

[14] W. Kim et al., “Automated and scalable QoS control for network
convergence,” in Proc. USENIX INM/WREN, College Park, MD, USA,
Apr 2010.

[15] H. Kim et al., “Improving network management with software defined
networking,” Comm. Magazine, IEEE, vol. 51, no. 2, pp. 114–119, 2013.

[16] G. Gibb et al., “Outsourcing network functionality,” in Proc. ACM
SIGCOMM HotSDN workshop, Aug. 2012.

[17] V. Sivaraman et al., “Virtualizing the Access Network via Open APIs,”
in Proc. ACM CoNEXT, Dec 2013.

[18] HP. App Store. http://www.hp.com/go/sdnapps.
[19] VeloCloud. Cloud-Delivered WAN. http://www.velocloud.com.
[20] LinkSys. Smart WiFi Router. http://www.linksys.com/en-us/smartwifi.

