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Abstract—Rapid advancement in wearable technology has un-
locked a tremendous potential of its applications in the medical
domain. Among the challenges in making the technology more
useful for medical purposes is the lack of confidence in the
data thus generated and communicated. Incentives have led
to attacks on such systems. We propose a novel lightweight
scheme to securely log the data from bodyworn sensing de-
vices by utilizing neighboring devices as witnesses who store
the fingerprints of data in Bloom filters to be later used
for forensics. Medical data from each sensor is stored at
various locations of the system in chronological epoch-level
blocks chained together, similar to the blockchain. Besides
secure logging, the scheme offers to secure other contextual
information such as localization and timestamping. We prove
the effectiveness of the scheme through experimental results.
We define performance parameters of our scheme and quantify
their cost benefit trade-offs through simulation.

1. Introduction

Wearable sensing devices are fast becoming mainstream
thanks to the success of smartwatches and fitness bracelets.
Healthcare providers and major technology companies are
also developing wearable health monitoring platforms. Ex-
amples include Google’s partnership with Novartis to proto-
type a “smart contact lens” for wireless glucose monitoring
and its healthcare platform Google Fit, Apple’s partnership
with Mayo Clinic and its HealthKit platform for the Apple
Watch, and Samsung’s healthcare platform called SAMI for
its Galaxy series of smartphones. A recent PWC report finds
that 20% of Americans already own a wearable device [1],
the adoption rate for wearables, paralleling that of tablets,
is expected to rise sharply over the next few years. IDC
research company forecasts that worldwide sales of wearable
devices will reach 213.6 million units by 2020 up from 79
million in 2015 and estimated 102 million in 2016 [2].

These devices have the potential to be more than just
isolated sensors. With advances in data analytics and cloud
computing, readings from individual sensors can be tracked
over long periods, shared, and combined with other data to
identify important trends and make informed diagnosis. This
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contextualization of data is expected to open new vistas for
medical research and healthcare.

Health insurers are actively developing strategies to in-
tegrate bodyworn sensing devices into their policies. Firms
such as John Hancock Insurance [3], United HealthCare
Group [4] and MLC [5] now offer their customers free
wearable sensing devices together with discounts on pre-
miums and other financial incentives to keep active and
meet wellness goals. However, for these devices to fully
integrate into the existing medical infrastructure, patients,
doctors, insurers, and other stakeholders must have strong
confidence in data recorded by these platforms. A number
of things can go wrong. The data might be corrupted. The
wearable device may develop a fault. Hackers might attack
the system and alter the data. The user herself may tamper
with her data to claim benefits.

These concerns are not far-fetched: Researchers have
also demonstrated various attacks on these devices including
the ability to backfill medical data [6]. J&J recently issued a
warning informing customers that one of their insulin pumps
had a security vulnerability allowing a hacker to potentially
administer a fatal insulin dose to users [7]. In 2016, an
Australian insurer, Commlinsure, colluded with doctors to
alter and conceal patient medical records [8].

Research in the field has mostly focused providing indi-
vidual security properties, such as data confidentiality, data
integrity, and authentication. In this paper we present a data
logging solution which secures the contextual relationships
between sensor data streams in a lightweight manner. We
leverage the fact that the density of smart devices in homes
and buildings is increasing. Indeed, according to Gartner,
a typical family home could contain more than 500 smart
devices by 2022 [9]. In our solution smart devices in the
same broadcast domain act as witnesses for neighboring
sensors by logging all data transmissions (or conversations)
that they overhear. However, instead of recording entire
conversations, the sensors use Bloom filters to maintain
fingerprints of conversations instead, thereby dramatically
reducing the associated overheads. These fingerprints may
later be examined for forensics purposes.

To further clarify the concept of witnesses, we consider
an application scenario first presented by Prasad et al.
[10]: a health worker, Devi, visits pregnant women in a
village in India to perform medical checkups. She uses a



mobile sensor kit consisting of blood pressure and heart
rate monitors, weight scale, fetal monitor, spiral monitor,
and smoke sensor. This sensor data is later uploaded into
an electronic health record system at the village health
clinic where it can be examined by doctors. There is a
strong requirement here for a mechanism which preserves
the contextual relationships between the data originating
from the different sensors. For example, the system may
inform the doctor that one patient is experiencing a decrease
in lung capacity. The doctor may wonder if the spirometer
is functioning correctly. However, the smoke sensor may
show a strong concentration of nicotine in the patient’s
home which may be the actual cause. The system should
also ensure that the sensor readings belong to the patient in
question and they have not been tampered with in transit.
This application scenario is equally applicable to hospitals.

In our solution, the gateway device will maintain a
record of data it has received from all sensor devices during
set time periods (or epochs). The smart devices in turn
will maintain fingerprints of all data transmissions that they
overhear.

In this paper, we make the following specific contribu-
tions:

1) We present a scheme that logs wearable healthcare
sensor data in a secure and lightweight manner.

2) We present experimental results that confirm the
effectiveness of the scheme.

3) We define performance parameters of the scheme
and quantify their cost benefit trade-offs through
simulation results.

The rest of the paper is organized as follows. §2 presents
the background of this work. §3 describes our secure log-
ging solution with the help of witnesses. §4 discusses the
performance analysis of the scheme and we conclude the
paper in §5.

2. Background

2.1. Prior Work

As we noted earlier, prior work for bodyworn sensing
devices has mostly focused on primary security properties
such as data confidentiality, data integrity, and authentica-
tion. Here we briefly highlight research in domains such
as timestamping, authentication, and data provenance which
has similarities to our solution:

Masdari et al. [11] provide a comprehensive survey of
authentication mechanisms for bodyworn sensing devices.
Ali et al. [12] in particular propose a method to amortize
digital signatures to ensure integrity and non-repudiation for
data recorded by bodyworn devices.

Digital timestamping originated in the work of Haber
and Stornetta [13] and Pinto and Freitas [14]. Sundararaman
et al. survey the techniques to improve the relative times-
tamps in wireless sensor networks [15], and, in the context
of wearable healthcare devices, Siddiqi ef al. [6] devise a
protocol to authenticate timestamps on data packets.

Data provenance, i.e. the context in which data has been
created and its evolution within a system, is another domain
which bears resemblance to our solution. Prasad et al. [10]
argue persuasively for a mechanism to preserve the contex-
tual relationships for data originating from multiple sensor
devices with a view to improving medical diagnoses. Ali et
al. [16] propose a solution that binds data with a wireless
link fingerprint between two communicating devices which
may be used for forensics at a later time. Wang et al. [17]
interpret provenance as the information regarding the path
data takes from source to destination in a sensor network
and secure this using Bloom filters.

On a related note, some researchers have proposed gen-
eralized architectures for communication and body area
networks [18] [19] to enable certain properties but they do
not focus on security or contextual relationships between
sensor data as we do.

Recently, the blockchain has emerged as a popular se-
cure logging solution. Developed by Satoshi Nakamoto
in 2008 and used in Bitcoin, the blockchain maintains a
secure distributed ledger of all Bitcoin transactions. Our
solution loosely borrows from the blockchain architecture by
chaining together blocks of readings from successive epochs
to prevent retroactive tampering with data.

To the best of our knowledge, we are the first to propose
a scheme for secure logging and forensics of medical data
for bodyworn sensing devices. In our application, secure
logging may be considered an umbrella term comprising
a variety of important security properties, including infor-
mation about the origins and integrity of the data, local-
ization, timestamping, and chronological ordering of the
individual data items. The use of Bloom filters on sensor
devices ensures that the scheme is lightweight suited to run
on resource-constrained devices. Furthermore, whereas our
scheme does not explicitly provide data confidentiality, en-
cryption mechanisms may easily be deployed independently
of it to ensure privacy.

2.2. Bloom Filters

A Bloom filter is a space-efficient probabilistic data
structure [20]. It is a compact way to store data where the
requirement is to enquire membership and not to retrieve
data. A query may provide a false positive with a probability,
however, it cannot result in a false negative. A Bloom filter
is indeed a bit array of a pre-defined size with all bits
initialized to ‘0’. A data element that needs to be stored
is hashed using one or more hash functions whose outputs
are random and uniformly distributed over the indices of the
bit array. Bits at the locations thus addressed are set to ‘1°.
Same hash functions are used for membership query and the
corresponding bits are checked. For a membership query to
be “probable”, all such bits must be set, however, a single
‘0’ bit results in negative.

A Bloom filter is shown in Fig. 1 where m is the filter
size in bits, n and k are the number of elements and hash
functions respectively. Elements d;, de, and d3 are inserted
in the filter using three hash functions h;, hs, and hs. Here
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Figure 1. Bloom filter by example

bit at index ‘9’ (red) is set twice as a result of collision.
Note that another element ¢ gives a false positive.
The probability of a false positive f is given below [21].

fra(1—ekn/myt (1)

Optimum value of k is given by: ko ~ (m/n)ln2
The filter size m for a given n and the probability of
false positive f is given by:
m =~ —niln(f)/(In2)? (2)

A comprehensive survey on Bloom filters is found in [22].
3. Our Logging Solution

3.1. The Architecture

The architecture of our solution is depicted in Fig. 2.
In our case, the gateway maintains a detailed log of all
conversations that it conducts with sensor devices which it
forwards in epoch-level blocks to a centralized server. These
blocks are chained together, similar to the blockchain, i.e.
each successive block contains a hash value of the previous
block, and the chain is replicated in multiple locations to
prevent retroactive data tampering. Sensor devices log all
communications they overhear between other parties in the
network and maintain a record which they later forward to
the gateway. For this reason, we refer to these devices as
witnesses.

However, we note a conflict: in case there is heavy
traffic in the network, recording (and later communicating)
all transmissions may pose unacceptably large memory and
communication overheads for witnesses. Therefore we pro-
pose the witnesses use Bloom filters to log (or fingerprint)
all transmissions they hear. Bloom filters considerably re-
duce the memory consumption and transmission overhead as
well as ensure simple and accurate verification. However, in
dense deployments of sensor devices, it is possible that mul-
tiple devices overhear communication from multiple sensors
adding a lot to the cost. In order to further reduce logging
overheads, it might be desirable that witnesses instead log
the communication probabilistically.

It is assumed that the gateway and sensors use a time
synchronization protocol at the start of every epoch. All sen-
sors append a running counter value to every data transmis-
sion they overhear prior to inserting it into their Bloom filter,
thereby enabling verification of the chronological ordering
of the data in the gateway log, as well as a loose form of
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Figure 2. Architecture of witnesses logging scheme

localization or proximity. At the conclusion of each epoch,
witnesses upload their Bloom filters to the centralized server.
The fingerprint data is digitally signed by the witnesses,
thereby enabling integrity and non-repudiation.

Forensics specialists may later use these fingerprints to
certify the data in the detailed logs reported by the gateway.
Given that there is packet loss in wireless networks, all
sensors may not witness all data transmissions, however,
as our experimental results indicate, there is a very high
probability that a transmission is overheard by at least one
witness.

3.2. The Experiment

We conduct an experiment with real wireless devices:
a human subject wearing a MicaZ mote on his right arm
(acting as a sensor device) walks for half an hour in a long
office hall with cubicles (as depicted in Fig. 3 (Left)). One
MicaZ mote acts as a gateway while three such motes act as
witnesses, two are stationary while one is mobile similar to
the subject. The sensor mote transmits at the rate of 1 pkt/sec
at maximum transmission power which gateway logs. The
witness motes in the range also log whatever they hear. Here,
the number of packets are ‘n = 1800’. For the accuracy of
99% (1 — f), we set the size of the Bloom filters to be m
= 2.1 KB (using Eq. 2), and number of hash functions to
be k = 7. We use python implementation of Murmur3 hash
for Bloom filters.

The verification process uses the packets logged by the
gateway mote and the three Bloom filters from the witness
motes. The results are depicted in Fig. 3 (Right) where 97%
packets are heard by at least one witness, which motivates
our scheme and validates its effectiveness.
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Figure 3. Layout of the experimental setup (Left). Results: Packets logged
by the witnesses (Right)

3.3. Dimensioning for a Hospital Scenario

To better understand the scheme, let us consider the
scenario of a hospital ward where the patients’ vital signs are
monitored by bodyworn sensing devices and the measure-
ments are forwarded to a medical database through wireless



gateways. The monitored vital signs can be, but not limited
to, temperature, blood pressure, blood glucose, heart rate,
ECG values, respiration rate, and blood oxygen saturation.
Size of an acute care unit (ACU) of most of the hospitals
vary from 10 to 100 beds while recommended ICU size is 8—
12 beds [23]. It is reasonable to assume that a smart device
such as a smoke detector, wireless access point, or any smart
medical equipment in the hospital ward can be within the
broadcast range of around 10 beds. Consider three vital
signs (axillary temperature, heart rate, and respiration rate)
are monitored from each patient including and transmitted
to the gateway every 2 minutes (rate used by a medically
approved device SensiumVitals System [24]). Under the
given assumption, these smart devices hear approximately
30 packets every 2 minutes (a rate of 0.25 pkts/sec). In cases
where there is more frequent reporting (e.g. ECG) or there
are more sensors, however, this rate can reach or exceed 1
pkt/sec. Recall that an epoch is a time period after which
witness devices forward their signed data (Bloom filters) to
the gateway. Table in Fig. 4 lists the design choices (i.e. filter
size and number of hash functions) for two different epoch
lengths and four different bounds on the probability of false
positive. Similarly, design choices can be worked out for
other scenarios such as home, office, street, and transport.

Epoch Length 1 hour 12 hours

Optimal
Size of Bloom Filter Hash
m (Bytes)

Size of Bloom Filter

Probability of 1 (Bytes)
False Positive y . Functions
@025 pkt/s @1 pkt/s @0.25pkt/s @1 pkt/s k)

(n=3600) (n=10,800) (n=43,200)

() (1=900)

1%

Figure 4. Bloom filter design choices for a hospital ward

It is apparent from the table in Fig. 4 that reducing
the size of a Bloom filter for a given number of elements
increases the probability of false positive. It is important
to note that relaxing the probability of false positive from
1% to 5% gives the best trade-off in terms of memory and
processing. In applications where storage and communica-
tion overhead are limited, Bloom filter size can be reduced
if a greater probability of false positive can be tolerated.
Moreover, decreasing the epoch length requires smaller
Bloom filter (less storage) and hence lower communication
overhead but increases the frequency of transmissions.

4. Performance Analysis

In this section, we define and discuss the performance
parameters we use to evaluate our scheme. We also present
and discuss the results from our simulation of the scheme.

4.1. Choice of Hash Function in Bloom filters

Hash functions play a fundamental role in Bloom filters
and are chosen carefully depending upon the application. A
hash function used in a Bloom filter must have its output
uniformly distributed over the length of the Bloom filter as

a fundamental requirement. Other parameters to consider
while selecting a hash function are the security (crypto-
graphic or non-cryptographic hash function) and compu-
tation cost. As the messages overheard by witnesses in a
medical wearable scenario are most likely encrypted already,
we may not need to use cryptographic hash functions. As
wearable devices are resource-constrained, we need to re-
duce the computation cost of the hash function used. Double
hashing technique reduces the cost of computation of k£ hash
functions to only two independent hash functions as this
technique allows us to generate more hash functions from
only two independent hash functions. Popular choices of
hash functions include MDS5, Murmur3, CRC32, and SHAI.
In our scheme, trust in an element’s membership depends
on how many witnesses overhear it. Use of different hash
functions for different devices help reduce the probability
of false positives further because, by doing so, an element
causing a false positive in one Bloom filter is highly unlikely
to produce a false positive in others.

4.2. Probabilistic Logging Parameter

Let W; be the total number of witnesses available that
hear the ith packet from a bodyworn sensing device. For
probabilistic logging, the sensing device appends the count
of number of devices it can hear to each packet. The
witnesses then log the packets with a probability depending
upon that number W; after reading it from the packet. Let
L be the event that a packet is logged by a witness, the
probability of logging the ¢th packet is given by:

B - .
Py =qm W=D 3)
1, otherwise

Here S is the design parameter we refer to as Probabilistic
Logging Parameter as it translates to the logging probabil-
ity and determines how many witnesses ideally should log
the data. Let w; be the number of witnesses out of available
W, witnesses that successfully log the ith packet, where:

w; = {ﬂ (on average), if W; > @)

W; otherwise

In summary, the average number of witnesses who log the
data are: B

w; <B<W; (5)
If P(L;) = 1 Vi, this we refer to as All Witnesses Logging
compared to Probabilistic Logging in which P(L;) < 1
for certain ¢ in an epoch.

4.3. Cost of Logging

Let Cy be the cost of logging a packet in a Bloom filter
managed by a witness for this purpose. Cost to log the ith

packet is given by: . — Cow ©)
i = Cow;

Let T be the length of an epoch (in seconds) and R be
the average transmission rate from the sensing device (in
pkts/sec), then total packets transmitted by the device in an



epoch are T'R. Total cost of logged data in an epoch is given

by: TR TR
C=> Ci=Cod w 7)
i=1 i=1
Average cost of logging data in an epoch becomes:
TR
C = Cow; Z = OQQDLTR (8)

i=1
This gives us an upper bound on average cost.
C < CoBTR ®

The cost of the Probabilistic Logging at its worst is equal
to the cost of All Witnesses Logging, however, for most
practical cases, it will be considerably less.

4.4. Accuracy of Verification

Let f,, be the probability of false positive in the Bloom
filter managed by an nth witness, the accuracy of the
membership query for the ith packet is defined as below:

Ai=1-1] 1 (10)
n=0
Here, we define fo = 1 to get A; = 0 when w; = 0, that
is the accuracy of the membership query when there are no
witnesses to log the packet.
Accuracy of the data logged in an epoch can be cal-
culated by averaging out the accuracy values for individual
packets over all the packets in an epoch:

_ 1 1
A=g=d Ai=1--=> [[H an

=1 i=1 n=0

As it may seem that the accuracy of verification in
Probabilisitic Logging is lower than the one in All Witnesses
Logging (equal at best), however, it is important to note
that the probability of false positive f,, for the former case
is usually far less than that of the later case (equal at
worst). This is due to the fact that for the given size of
a Bloom filter and number of hash functions, number of
packets logged determine the probability of a false positive.
Since in Probabilistic Logging, witnesses do not log all the
packets, it decreases the probability of false positive. Hence
the accuracy does not reduce drastically.

4.5. Trust in the Validity of Data

Our confidence in a packet logged by the gateway in-
creases if witnesses log it as well. Given the fact that there
is a certain probability of false positive in a Bloom filter,
trust has to increase with the number of witnesses. Trust in
the validity of ith packet is defined as below:

r=1—ea" (12)
Here, « is a design parameter we refer to as Trust Defining
Parmater, which is used to define the value of trust 7 with
respect to the number of witnesses. For a > 1, the trust

values drop for a given number of witnesses while for o < 1,
they increase. The choice of a depends upon the requirement
whether there is a need for more witnesses or one or two
suffice. If the probability of false positive is greater, it is a
good idea to set o > 1 as more witnesses are required for
a better trust. (refer to Fig. 5)
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Figure 5. Trust in logged data vs number of witnesses at varying a

Trust in the data logged in an epoch can be calculated
by averaging out the trust values for the individual packets
over all the packets in the epoch:

1 1 <&
F=_— =1—- — = 13
T TRle TR;6 (13

Trust value in Probabilistic Logging is lower than the
one in All Witness Logging (equal at best). However, the
true comparison of trust between the two cases depends
upon the selection of Trust Defining Parameter «. Trust
should always be read alongside accuracy because it com-
pensates for a lower value of trust. For example, for a
lower trust value that indicates that one witness has logged
a packet, if the accuracy is very high (corresponding to
very low probability of false positive), it calls for a positive
verification.

4.6. Simulation Results

We simulate our scheme using the Python language
where a sensing device transmits at the rate of 1 pkt/sec.
Different number of witnesses (ten at maximum) at random
log the data at varying probabilities depending upon the
number of witnesses available for each packet (value of W;
in each packet). Length of the epoch is set to be 1 hour,
so total number of packets in an epoch are 3600. Size of
each Bloom filter managed by witnesses is set to be 22,447
bits ~ 2.75 KB. The Bloom filter size is set targeting the
accuracy (1 — f) of 99.5% (Eq. 2), if a witness were to log
all the packets in an epoch. Five Murmur3 hash functions
are used to log a packet in the Bloom filter.

We log the sensing data of an epoch for different values
of Probabilistic Logging Parameter (0 < 8 < 10), which
translates to the probability of logging (refer to Eq. 3).
Graph in Fig. 6 shows the average cost of logging data
in an epoch for different values of Probabilistic Logging
Parameter (/3). Graph in Fig.7 shows the average accuracy of
verification of data in an epoch (refer to Eq. 11) while graph
in Fig. 8 provides the average trust in data (at & = 1) in an
epoch (refer to Eq. 13) for different values of Probabilistic
Logging Parameter (3). From these graphs it is apparent that
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at varying values of the Probabilistic Logging
Parameter (3)

the Probabilistic Logging offers a much more cost effective
solution than that of All Witnesses Logging scheme. In fact,
setting Probabilistic Logging Parameter (/3) value to 3 gives
an accuracy of 98.5% and a trust of 90% with a huge 47%
savings in the cost and offers a desirable alternative.

5. Conclusion

Wearable technology has the potential to bring about a
major change in how the healthcare system works today.
Stakeholders including healthcare providers, insurers, and
patients are reluctant to shift to this emerging ecosystem
because of the successful attacks on such systems by hackers
surfacing severe underlying vulnerabilities. Assurances on
the authenticity and integrity of data from these devices
are the key requirements. To meet these requirements, we
presented a scheme that leverages the presence of neighbor-
ing smart devices we referred to as witnesses and provides
a lightweight secure data logging solution. The solution
amortizes cost of logging using Bloom filters and stores
chronologically ordered data of forensic significance in a
blockchain fashion. We motivated our idea with promising
results from our experiment with real wireless devices.
We defined performance parameters of our protocol and
illustrated their cost benefit trade-offs through simulation
results. Our scheme is the first step towards secure logging
and forensics of medical data for bodyworn sensing devices.
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