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ABSTRACT
Student enrollments world-wide are increasing each year, while
lecture attendance continues to fall, due to diverse demands on
student time and easy access to online content. The resulting under-
utilization of classrooms entails cost penalties, especially in cam-
puses where real-estate is at a premium. This paper outlines our
efforts to instrument a University campus with sensors to measure
classroom attendance, in a cost-effective and scalable manner with-
out endangering student privacy. We begin by undertaking a lab
evaluation of several approaches to measuring class occupancy,
and compare them in terms of cost, accuracy, and ease of deploy-
ment and operation. We then instrument 9 lecture halls of varying
capacity across campus, collect and clean live data on occupancy
spanning about 250 courses over 12 weeks during session, and draw
insights into attendance patterns, including identification of can-
celed lectures and class tests; our occupancy data is released openly
to the public. Lastly, we show how classroom allocation can be
optimized based on attendance rather than enrollments, resulting
in potential savings of 52% in room costs.

CCS CONCEPTS
• Information systems → Data analytics; • Computer sys-
tems organization → Sensor networks; • Hardware → Sen-
sor applications and deployments;
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1 INTRODUCTION
Higher education institutes continue to experience steady growth
in enrollment demand [8]. A major factor limiting Universities in
fulfilling this demand is real-estate, since enrollment in a course
is capped by the capacity of the classroom to which the course is
allocated. However, with recent trends towards student lifestyles
that mix study with work and other commitments, as well as greater
access to online content, there is ample anecdotal evidence that
classroom attendance is often well below the enrollment number.
This presents an opportunity for education institutes to better opti-
mize the usage of classroom space based on attendance rather than
enrollments. However, this requires real-time visibility into atten-
dance, which can vary significantly between courses and across
weeks of the session, so as to dynamically re-allocate courses to
rooms while minimizing the risk of attendance exceeding room
capacity.

Several methods are available to count the number of people
in an indoor space, such as WiFi-based locationing, camera im-
age processing, thermal imaging, ultrasound imaging, and beam
counters affixed to entryways. Each method has its own pros and
cons in the various aspects such as cost, power, communications,
ease of deployment and operations, privacy, and accuracy. For ex-
ample, WiFi-positioning and cameras endanger privacy; thermal
and ultrasound imaging have low accuracy; and camera-based im-
age processing is expensive. Furthermore, a method that works
well in a small room may not be as effective in a large lecture the-
ater, and cost/accuracy may also be impacted by the layout of the
room, the number/width of doorways, and the availability of power
and wired/wireless network connections. Understanding both the
benefits and the challenges in measuring classroom attendance
in a large campus of varying lecture-rooms cannot be done as a
paper-study, and requires experimental field-work in deploying,
integrating, operating and evaluating the various systems aspects
in a real campus.

This paper describes our experiences in building a system for
measuring classroom occupancy, and its deployment across 9 rooms
in a large campus. We begin by testing several sensing methods in
a lab environment, and characterizing their trade-offs in aspects
such as cost, ease of installation, method of data extraction, and
accuracy. We then make appropriate sensor selections, build a full
system, and deploy it across 9 lecture-theaters of varying size across
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a university campus. We collect and clean the data to obtain real-
time visibility of occupancy across these rooms in real-time over a
period of 12 weeks, integrate it with University timetabling systems
to infer attendance patterns of nearly 250 courses, and highlight
interesting findings such as attendance trends, canceled lectures,
and class tests. We also make our data openly available to the
research community. Finally, we develop an optimization algorithm
for allocating courses to rooms based on dynamic attendance rather
than static enrollments, and show potential saving of 52% in room
costs.

The rest of this paper is organized as follows: §2 describes rele-
vant prior work. We present our lab evaluation of various sensing
methods and their trade-offs in §3, while §4 describes our field
deployment across campus and the interesting insights obtained
therein. §5 presents our optimization technique and quantifies the
benefits of attendance-based allocation, and the paper is concluded
in §6.

2 RELATEDWORK
An obvious approach to deducing occupancy counts is to use in-
formation from existing WiFi access point (AP) infrastructure to
infer the location and number of users in a room [6, 12, 13, 18].
There are, however, factors that may affect the accuracy of people
counting using this method – not every occupant may have a de-
vice connected to the AP, some may possess multiple devices, and
devices carried by people outside the room may be connected to
the same AP. Obtaining WiFi connectivity data may also constitute
a violation of privacy if the identities of connected users can be
deduced.

Several studies have also used video camera based approaches for
people counting; [14, 15] have achieved good accuracy by applying
complex image processing algorithms, however they require fairly
heavy computational resources. The work in [19] successfully uses
image processing to extract people counts from a large classroom
with many occupants. Nevertheless, this method only works well
when there is not much movement in the classroom. Privacy also
remains an issue, especially if images and videos of people are taken
without their explicit consent.

Some studies have used special-purpose sensors for occupancy
counts – [9] deployed a complex sensor network including ambient-
sensing and carbon dioxide monitors, and apply Hidden Markov
Models to detect occupancy in offices. The method shows 73% accu-
racy, but is tested only in small rooms with less than 10 occupants.
In [20] a single passive infrared (PIR) sensor is combined with in-
telligent machine learning to predict room occupancy; though the
method offers a low-cost solution, it is tested in rooms with only
14 or less occupants. Work in [16] has collected the occupancy data
a commercial space using depth sensors (Kinect for XBOX One) for
a duration of 9 months, and authors have released their dataset in
[17]. The work attempts to predict future occupancy using histori-
cal data, but it suffers from a high error rate of prediction (i.e. up to
2100%).

Much of the aforementioned works focus on dynamic occu-
pancy detection as an end in itself, or for energy optimization
(heating/cooling) purposes. The problem of allocating classrooms
to courses in the University context has been studied by previous

works such as [7, 10, 11]; however, they are based on (static) en-
rollment numbers, rather than (dynamic) attendance counts. To
the best of our knowledge our work is the first to combine dy-
namic occupancy measurement with classroom space allocation.
We however emphasize that the current work does not predict room
occupancy (such models are the subject of future work), and instead
shows the potential gains if the optimization were run off-line with
a priori knowledge.

3 LAB TRIAL: SENSING METHODS AND
TRADE-OFFS

We briefly describe the various sensing methods we tried in 3.1, and
outline their relative trade-offs in 3.2, with a view towards making
appropriate selections suitable for a larger-scale deployment across
the campus.

3.1 Sensor Selection and Data Collection
Sensors: We investigated several commercial sensors and straight-
away eliminated those that send data to the vendor’s cloud servers,
since we wanted to: (a) keep the data entirely on-premises and not
risk it leaving our campus infrastructure; and (b) not be beholden
to a vendor to access our own data, hence freeing us from ongoing
service costs. In other words, we wanted a “sale” model of the device
so we could have unfettered access to our data without any ongoing
“service” fees. We were quite happy to buy spares of the units to
cover for device failures; further, this model allows us to integrate
data into a centralized repository to facilitate better analytics across
the many data feeds we have on campus.

We narrowed our lab trials to four types of commercial sen-
sors: EvolvePlus Wireless Beam Counter [2], EvolvePlus Overhead
Camera [1], Steinel HPD Camera (pre-market release), and Steinel
Presence Detector [3]. In addition, the University IT department
provided us with timestamped connections logs from two WiFi
access points (one inside our lab and one just outside), so we could
compare our approaches to those obtained from WiFi logs. We
note that the WiFi logs gave us personal user information such as
their device MAC address, user-ID, and connection durations; we
therefore obtained ethics clearance (UNSWHuman Research Ethics
Advisory Panel approval number HC17140) for this experiment.

The Beam Counter comprises a pair of infrared (IR) break-
beam sensors mounted on the door frame, and counts the number
of people passing through in each direction. It communicate the
counts (for “in” and “out” directions) to a gateway every 30 seconds
using a propriety wireless protocol, and the gateway then posts
these readings via Ethernet to an SQL DB server hosted on a VM
in our on-premises cloud infrastructure. The Overhead Camera
is a thermal sensor mounted on the ceiling close to the entrance
facing downwards, and counts the number of people passing below
it. It also communicates the counts in each direction to the same
gateway as the beam counter, which then forwards it on to the SQL-
DB. We wrote a script that pulls data from the SQL-DB, stamps the
data with the time and the unique UUID of the gateway, and posts
as a JSON string to our master database (which holds data from
many sources) via a REST API.

The HPD Camera (pre-market release) is a people counting
sensor mounted in a corner with full view of the room. It uses
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in-built image processing to compute the number of people present
within a configurable zone of interest. It is powered over Ethernet,
and comes pre-configured with a server that be queried via a REST
API. We wrote a “broker” script that polls the camera every 30
seconds to get the people count, and posts the time-stamped and
sensor UUID-stamped data in JSON format to our master database.
The Presence Detector is a passive infrared (PIR) sensor mounted
on the ceiling in themiddle of the room, and detects motion. Though
it does not count the number of people in a room, it gives a binary
indication on whether the room is occupied or not – this sensor
can be used as a way to calibrate the other counting sensors which
may accumulate errors with time. The PIR sensor sends its binary
occupancy state every 60 seconds to its corresponding gateway via
a propriety wireless interface, which then posts it to a broker script
that again time- and sensor-UUID-stamps the data and posts to our
master database.

Lastly, we receive a CSV file of daily WiFi connection logs for the
two access points from our IT department every morning at 7am –
real-time feed of data was not possible due to technical limitations
of the AP vendor.Wewrote a script to parse the log file and compute
the number of unique users connected to each AP every 30 seconds
– this was also posted to our master database.

3.2 Sensor Comparison
Our lab trial helped us compare the various counting methods in
terms of their ease of installation, calibration, power and communi-
cations requirements, accuracy, cost, and privacy, as summarized
in Table 1.

Our comparison across these measures is qualitative rather than
quantitative. Even aspects such as accuracy, that can be quantified,
depend on factors like room size and layout, mounting position,
number of doors, and width of doorways, which can vary widely
across deployment environments. We therefore resort to qualitative
measures (low, medium, and high) in this table, derived from our
experience across the rooms we instrumented, and we back these
up with several data points presented later in the paper.

Installation: The thermal camera, HPD camera, and PIR sensor
needed professional installation by certified tradesmen, since each
needed special mounting brackets and extra wiring for mounting
on (or near) the ceiling. We could install the beam counter sensor
easily by ourselves using two-sided adhesive strips on the door
frame at around waist-height.

Calibration and Positioning: Sensor positioning is another
key factor in our comparison. The thermal camera needs to be po-
sitioned at a certain height range (i.e. 2.2m - 4.4m) recommended
by the manufacturer and close to the entrance allowing the best
coverage to count everyone that passes underneath. This require-
ment makes it hard or impossible to use the thermal camera in
very large lecture halls with high ceilings. Beam counters require
to be mounted at around waist-height (too low causes each leg to
get counted separately, and too high causes the swinging arms to
get counted!). Once an appropriate height is chosen for the beam
counters, doors of all classrooms need to be outfitted in the same
way. The HPD camera needs prior configuration for zone of interest
that can vary across rooms depending on the room size and the
place at which the camera is mounted. The PIR sensor is positioned

Table 1: Sensors comparison.
Installation Calibration Power Comms Accuracy Cost Privacy

Beam counter easy easy battery wireless high medium ✓

Thermal camera hard medium/hard AC power wireless low high ✓

HPD camera medium hard PoE Ethernet medium medium ✓

PIR sensor hard easy AC power wireless binary medium ✓

WiFi existing existing existing existing low 0 ✗

at the center of the room (on the ceiling) to have a symmetrical
coverage over an area that can also vary across rooms depending
on their seating arrangement.

Power and Communications: Provisioning power was chal-
lenging for the thermal camera and PIR sensor, since the campus
has pre-built and fixed wiring only in certain locations in each class-
room. Therefore our Facilities Management was required to supply
new exterior wiring for these three sensors. The beam counters
are battery powered (with stated battery life in excess of a year),
and the HPD camera required a special PoE switch that provides
Ethernet for both power and communications. The corresponding
gateways for the beam counter, thermal camera, and PIR sensor
were hidden inside a closet with available power and Ethernet.

Accuracy: We performed several spot measurements in our lab
to extract ground truth on occupancy. We found that the beam
counter is the most accurate among the four techniques. We note
that the beam counter has very good accuracy when the the door is
narrow, like in our lab. However, for a wider doorway its accuracy
is worse, since it does not always capture individuals walking in/out
side-by-side (this became more evident in our field-trial, described
in the next section). We found the accuracy of the thermal camera
to be very sensitive to mounting position and distance from the
entrance. Moreover, since the door of our lab opens inwards, it was
not very conducive for the overhead thermal camera (mounting
it on the outside of the room was not an option as it was a busy
corridor). The HPD camera tended to have a non-zero absolute
count error, which made its relative error high when the number
of people in a room is small (e.g. less than 10) and low when the
number of people is high (e.g. more than 40). We could not test its
accuracy scaling to larger counts as our lab can only accommodate
around 40 people. Lastly, the people count derived from the WiFi
access points was wildly inaccurate, because our lab is adjacent to
a busy corridor and study space that is busy with students during
regular hours, and we could not distinguish who was inside versus
outside the room.

Cost: The beam sensors and PIR sensors are priced in the range
of a few hundreds of dollars, while the cameras are in excess of
a thousand. The beam counter and thermal camera both need a
gateway to send their readings to the back-end server, and each
gateway is priced in at nearly a thousand dollars. Bear in mind that
each gateway can connect up to 20 sensors (though our deployment
described in the next section maps at most 4-5 sensors to a gateway
in large lecture theaters). The beam counters therefore end up
as a more cost-effective solution than the cameras for large-scale
deployment across campus.

Privacy: Among the four sensing techniques, WiFi clearly en-
dangers students privacy as their IDs are visible (due to PEAP
authentication their devices perform to connect with the campus
WiFi network). The HPD camera does on-board processing and
does not store or transmit any images of people (though it is pos-
sible to log in to it to view the current image), and can hence be
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deemed to preserve privacy. The beam counter and the thermal
camera are truly privacy-preserving, since they can only sense the
number of people passing through the doorways without sensing
any private attributes of the individuals.

Summary: The trade-offs discussed above are summarized in
Table 1. WiFi is not an option as it compromises privacy and is
inaccurate. The cameras are eliminated as being expensive, difficult
to install/position, and poor in accuracy (though we are considering
them for open spaces that do not have doorways). The PIR sensor
has only binary output, and is used for re-calibration rather than
counting. We therefore decided on a larger-scale deployment of the
beam counter, based on its relatively lower cost, easy deployment,
high accuracy, and good protection of privacy. Our deployment in
classrooms is described next.

4 FIELD TRIAL: DATA PROCESSING AND
VISUALIZATION

We worked with campus staff to identify appropriate classrooms
for a field trial, and picked 9 rooms of varying sizes, as shown by
top two rows in Table 2. Some of the doorways to the lecture-halls
posed a challenge as they were very wide, increasing the likelihood
that multiple students walking out side-by-side get counted as one.
The data collected over the first few days was manually verified (vol-
unteers were used to do head-counts) so as to obtain ground-truth
and calibrate the errors. In what follows we describe our meth-
ods for data cleansing, linking with class-timetabling information,
processing, and visualization using a web-UI.

4.1 Data Processing
We compared two methods for deducing the occupancy based on
the number of entries and exits at each door.

Method 1 – Room Occupancy: Our first (naive) method for
deriving occupancy is to set it to the cumulative number of entries
minus the cumulative number of exits across all doorways of a
classroom. However, errors arise when students walk in/out in
groups; though we reset counts to zero at midnight each day, errors
accumulating during the day can become significant.

Method 2 – Course Occupancy: To reduce the errors accumu-
lating during the day, we enhance our method by computing course
attendance independent of each other by linking our sensor data
with course timetables databases obtained from our University. We
assume that students may enter the room up to 10 minutes prior to
start of the scheduled lecture time, and may leave up to 10 minutes
after the scheduled lecture time. Attributing each entry and exit to
a specific lecture therefore allows us to compute attendance per-
course, and errors are not carried over from one lecture to the next
even if they are adjacent in time to each other.

Accuracy of Counting: To evaluate the accuracy of our count-
ing methods, we obtained ground-truth information by having
volunteers physically count attendance during the lectures. We
collected a total of 50 samples covering 31 lectures over 4 days.
The ground-truth samples were collected from 8 out of 9 class-
rooms in which the sensors have been deployed. Table 2 shows
the average error of the computed occupancy using the two meth-
ods described above, applied to the various rooms. As expected,
course-based occupancy computation yields lower errors (average:

Table 2: Measured error from ground-truth of occupancy.
BUS105 BUS115 CLB7 CLB8 MatA MatB MatC MatD PhTh

No. of doors 1 1 4 3 6 3 2 2 4
No. of seats 35 53 497 231 472 246 110 110 369
Room-based 21.7% 34.2% 89.5% 26.3% 25.5% 16.3% 14.6% 16.9% NA
Course-based 13.0% 17.3% 4.6% 16.1% 8.0% 9.1% 24.4% 9.2% NA

12.71%) compared to room-based occupancy computation (average
error: 30.60%). We also noted that the room-based method gradually
built-up errors over the course of a day, whereas the course-based
method had a stable error irrespective of time-of-day (since the
errors do not accumulate). However, it should be noted that the
course-based method requires access to timetabling information,
which may not be generalizable to other environments.

Occupancy data: Ourweekly dataset, computed using theMethod-
2 above, is openly available for download [4]. Each row in a CSV file
represents the real-time measurement from beam sensors compris-
ing time-stamp, week of semester, room information including room
name, number of doorways, and number of seats, course information
including course-id (we have intentionally obfuscated the actual
names of courses), course start-time, and course end-time, sensor
measurements including count-in, count-out, and computed number
of attendance (i.e. occupancy). Note that count-in and count-out
are available for the entire day (even during times with no lectures
scheduled), whereas occupancy is available only when a course is
scheduled.

4.2 Data Visualization
Tool:We developed a web-application to provide an intuitive UI for
real-time occupancy monitoring, using Shiny (an R web framework)
and the interested reader can see the interface live at [5]. The user
can choose the date and classroom to view occupancy level in real-
time along with the lecture capacity and number of enrollments.
The interface also allows the user to view the attendance pattern
of a course (by choosing from the course dashboard tab), as well
as the utilization rate (number of attendees divided by the total
number seats available for each classroom) for different time-slots.

Insights: Our UI provides some interesting insights into atten-
dance patterns. Fig. 1 show our UI output for a chosen room (CLB8)
on a specific day during week 4 of term. It shows the number of
attendees (solid green lines), enrollments (dotted orange lines), and
the capacity (dashed blue lines) for six lectures that are scheduled
between 9am to 9pm. In general, attendance is seen to vary widely
across courses, and can be in the range of 10-90% of enrollments; in-
terestingly, we can see here that the lecture scheduled for 1-2pm has
enrollment of 211, but close to zero attendance; this indicates that
the lecture was probably canceled, leading to a waste of allocated
classroom space on that day. This shows the benefit of our tool in
quantifying space utilization that is otherwise largely unknown to
facility managers.

Our visualization tool also allows us to track the attendance
pattern of various lectures over the semester, as shown in Fig. 2 for
three selected courses (we have obfuscated course names). Course-
059 in solid blue lines exemplifies a (typical) gradual decline in
attendance over the weeks. Course-188 in dashed orange lines
shows a sudden rise in attendance in week-6, which is indicative of
a class-test (typically held in week 6 or 7 of the 13-week term) - we
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Figure 1: Occupancy pattern of a classroom.
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Figure 2: Attendance pattern of various course.

were able to verify this is indeed the case by looking up the mid-
term test date on the course web-page. Lastly, Course-075 shown
by the dotted-green lines depicts a canceled lecture in week 4.

Our tool also provides visualization of the utilization “heat-map”
of the classrooms on a chosen day, as shown in Fig. 3 – bright
(yellow) cells depict a utilization (ratio of attendance to capacity)
approaching 1, while dark (blue) cells represent poor utilization
closer to 0. For example, room MatB is under-utilized during the
time-slot 3-4pm. Hovering over that cell, it shows that Course-031
has 15 attendees with the room capacity of 246 (i.e. 6% utilization).
This interface helps campus managers track classrooms utilization,
with a view towards more optimal allocation, as described next.

5 DYNAMIC ALLOCATION OF CLASSROOM
We observed in the previous section that course attendance varies
over the weeks which leads to under-utilization of classrooms.
This presents an opportunity for campus managers to employ a
dynamic allocation scheme to save cost. In this section, we de-
velop an optimization formulation to determine the potential cost
savings. Our formulation assumes prior knowledge of attendance
numbers, which is of course not practical, but is meant to estab-
lish a benchmark upper-bound on the potential cost savings (thus
helping business stakeholders justify their upfront investment into
instrumenting classrooms). A practical implementation could use
historical attendance data (say from the previous year) to develop
a dynamic schedule for a course using our optimization algorithm,

Figure 3: Occupancy Heatmap.

while leaving some margin for error arising from the use of ret-
rospective rather than prospective attendance counts. The practi-
calities of this are beyond the scope of this paper and deserve a
separate study in its own right.

5.1 Problem Formulation
We now formulate the problem of optimal classrooms allocation.
First, let there be R rooms available on campus, and each room has
a cost associated with it (proportional to its capacity). The cost of
room j is denoted by Cj where 1 ≤ j ≤ R.

We consider our optimization problem over a one-hour window.
Therefore, let there be L courses in operation over the window of
interest, and the number of attendees and enrollments for course i
are denoted by ei and ai respectively, where 1 ≤ i ≤ L.

We define our variable by xi, j that represents whether or not
course i is allocated to room j over the window of interest. xi, j can
be written in the following equation:

xi, j =

{
1 if course i allocated to room j
0 otherwise

(1)

Therefore, the total cost of allocation for a given window is
specified as:

J =
R∑
j=1

{
Cj

L∑
i=1

xi, j

}
(2)

Our aim is to minimize the total cost J in (2). Note that alloca-
tion of a course to a room incurs a full cost of that room, and an
unallocated room incurs no cost.

We note that each course can only be allocated to one room
during a window. These L constraints are captured by:

R∑
j=1

xi, j = 1 ∀ i (3)

Further, a room cannot be occupied by more than one course at
a time. These R constraints are captured by:

L∑
i=1

xi, j ⩽ 1 ∀ j (4)

We need to ensure that attendees of a course are fitted into the
allocated room. To allocate a course, we consider two cases: (a)
enrollment-based, where the room capacity needs to be larger than
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Figure 4: enrollment-based vs. attendance-based cost.

enrollments, and (b) attendance-based, where the room capacity
needs to be larger than the number of attendees. These constraints
are captured by:

oi ⩽
R∑
j=1

Cjxi, j ∀ j (5)

where oi can is either ei for enrollment-based approach, or ai
for attendance-based approach.

5.2 MILP Optimization and Results
Algorithm:We employ Mixed Integer Linear Programming (MILP)
algorithm to solve our problem. MILP is conducive for a problem
that has a linear objective function subjected to linear constraints
with integer variables. Eq. 2 is used as an input objective function,
Eq. 3 defines equality constraints, and Eq. 4 and Eq. 5 defines in-
equality constraints. The optimization variable xi, j is forced to be
binary based on Eq. 3. We assume that there are some spare rooms
available for optimal allocation – we use only one spare room of
100 seats capacity. For our optimization problem, we use real data
obtained over 8 weeks from courses that are operating in the 9
classrooms.

Results: We run our optimization algorithm for the two ap-
proaches (i.e. enrollment-based and attendance-based) for individ-
ual one-hour window on each day of a week, and obtain the cost of
allocation for each window. We note here that the cost of using a
room for an hour is proportional to its capacity. We then compute
the weekly cost of allocation by adding hourly costs across the week.
We plot the weekly total cost in Fig. 4 – total costs are normalized
with respect to the enrollment-based scenario as a baseline (solid
blue line). Unsurprisingly, the enrollment-based approach results a
constant cost as it tries to meet the fixed constraints every week.
On the other hand, total cost obtained from attendance-based allo-
cation (dashed orange lines) falls gradually due to falling pattern
of attendance for majority of courses. This suggests that campus
can benefit from 52% cost saving over 8 weeks of operation by
employing a dynamic allocation of classrooms.

6 CONCLUSION
In this paper we have outlined our experiences in designing and
deploying an occupancy sensing system for a real campus environ-
ment. We undertook a lab evaluation of various commercial sensors

and compared them in terms of cost, ease of operation, and accu-
racy. We then deployed our beam-counter based system in 9 real
classrooms of varying sizes across campus, and collected data over
a period of 12 weeks covering 250+ courses, which we release to the
public. Our data and visualization reveal interesting insights into
course attendance patterns and class utilization measures. Based
on this real data, we developed an off-line optimization method for
dynamic allocation of courses to classrooms based on attendance
rather than enrollments, and showed gains of 52% in room costs.
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