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Abstract—Operators of enterprise and carrier networks in-
creasingly require real-time visibility into traffic patterns in their
network, so they can do better resource management (congestion
detection, dynamic routing, capacity scheduling) and security
protection (detection of intrusions and volumetric attacks). Of
particular interest are elephant flows that transfer large volumes,
since they demand most resources and can inflict most damage.
Today’s techniques for detecting and monitoring elephant flows
are based on software-based packet analysis or hardware-based
inspection, which are either unscalable or expensive. In this
paper we design, implement, and evaluate an SDN-based solution
that is scalable (to tens of Gigabits-per-second) and inexpensive
(built using commodity OpenFlow switches). We first develop a
system architecture that judiciously combines software packet
inspection with hardware flow-table counters to identify and
monitor heavy flows. We then use real traffic traces taken from
a campus network to tune our algorithm parameters for desired
trade-off between software load and hardware table size. Finally,
we prototype our solution on a commodity OpenFlow hardware
switch together with open-source controller and packet inspection
software, and demonstrate operation at 10Gbps in a real campus
network.

I. INTRODUCTION

Elephant flows typically constitute only a small fraction (5-
10%) of flows by number, but account for a vast majority (60-
80%) of traffic by volume [1]. Detecting and isolating elephant
flows can therefore help an operator in a variety of ways: they
can bandwidth-limit elephant flows, or dynamically route them
along alternate paths, in order to protect performance for short
flows; they can classify traffic by application (e.g. video versus
peer-to-peer) for better capacity planning and provisioning;
they can bypass elephant transfers across middle-boxes (like
firewalls) so as to reduce the load on these expensive appli-
ances; and they can log such transfers for forensic purposes
in case security breaches or copyright violations need to be
investigated. Indeed, several carriers and enterprises we have
talked to have expressed a strong interest in some or all of the
capabilities mentioned above.

Existing solutions for detecting and isolating elephant flows
are software-based, and hence unscalable to high rates, or
hardware-based, and hence prohibitively expensive. Some op-
erators use NetFlow to periodically obtain aggregated IP flow
information from switches — this not only requires hardware
capability to decode, collate and export flow entries, which
entails a cost-premium, but also imposes a penalty in switch
CPU utilization in the range of 7-22% [2]. Statistical sampling
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of traffic using sFlow reduces this overhead, but inevitably
leads to reduced accuracy. Moreover, NetFlow and sFlow can
only passively monitor elephant flows, they cannot actively
isolate or control them. Special-purpose hardware appliances,
often marketed as “deep packet inspection” (DPI) engines (e.g.
from Sandvine and Procera) are able to inspect, isolate, and
control elephant flows, but come at prohibitive cost, often
running into the hundreds of thousands of dollars for 10 Gbps
operation.

In this paper we explore the use of the Software Defined
Networking (SDN) paradigm for identifying, isolating, and
monitoring elephant flows. The use of Openflow, which allows
match-action rules at the flow-level, seems by its nature ideally
suited to provide flow-level visibility and control in a low-
cost and scalable manner. Indeed, prior works such as [3]-
[6] have used SDN (OpenFlow and/or P4) for elephant flow
monitoring, and as we will discuss in $II, they differ from our
work in their approach and trade-offs decisions. While the use
of per-flow rules in OpenFlow may seem conceptually trivial,
there are significant challenges to be overcome when trying to
implement these at high rates: flow-tables in switch hardware
are limited in size, and the switch agents cannot handle a
large number of interactions (additions or stats collections)
with flow-table entries. It therefore becomes necessary to limit
the number of hardware flow-table entries and the flow-mod
rate, by absorbing some of the load in software. Further, this
has to be done without overloading the controller, ensuring
soft resilience in the case of controller failures.

In this paper we design, implement, and evaluate an
OpenFlow-based method to detect, isolate, and monitor ele-
phant flows. Our method dynamically balances the load be-
tween software and hardware so that desired performance is
achieved within the constraints of hardware table size and
update rate. Our first contribution is to develop a system
architecture that judiciously partitions load between software-
based packet inspection and hardware-based flow-forwarding,
without imposing load on the controller. For our second contri-
bution, we conduct an offline evaluation of our scheme using
trace data from a campus network, and show how the critical
parameters can be tuned to achieve desired performance trade-
off. For our final contribution we implement our scheme using
a commodity OpenFlow switch and open-source software, and
demonstrate its ability to identify, isolate, and monitor elephant
flows at 10 Gbps in a live campus network.
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Fig. 1. Architecture.
II. RELATED WORK

Detection and monitoring of elephant flows have been in-
vestigated by many researchers in legacy networks, SDNs and
the upcoming custom dataplane based solutions. In [1], authors
proposed a Bayes’ theorem based framework to find the
most efficient threshold towards number of per flow packets
in elephant flow detection. Empowered by machine learning
classification models, network traffic carrying elephant flows
can be identified with about 90% accuracy using sampled
packets [7]. NetFlow and sFlow are popular choices which
collect IP-based flow-level statistics using packet sampling on
legacy network devices. Approaches using NetFlow introduce
significant overheads towards CPU utilization on hardware
switch and may compromise network performance [8]. Also,
adopting sFlow-based solutions affects accuracy of elephant
flow detection due to low sampling rate resulting in delayed
detection and/or missing an elephant flow.

There are several solutions which leverage the flexibility
offered by SDN. However, Openflow agent in commodity SDN
suffers when a large number of flow-level statistics are queried
from the switch [9]. Many approaches have been taken to
address the issue of heavy periodic polling for elephant flow
detection ranging from dynamic change of thresholds [4] to
hierarchical approach [10]. Customizing the data plane seems
to help alleviate the scalability issues in Openflow agent. De-
voFlow [3] employs packet sampling, threshold-based trigger
and approximate counter to reduce polling overhead when
monitoring elephant flows. HashPipe [5] uses P4 to implement
and maintain heavy-hitters’ flow-level information entirely on
data plane with a low rate of false detection when enough
switch memory is available. However, modifying data plane is
not completely feasible in commodity SDN-enabled networks.
Also, the system’s capability is constrained by limited memory
size of hardware switches. Therfore, we propose a solution to
detect and isolate elephant flows on commodity SDN switch
without the need for customizing data plane, and minimize
polling overhead by only monitoring isolated heavy-hitters.

III. SYSTEM DESIGN AND ARCHITECTURE

In this section we describe our SDN-based architecture,
including the major architectural decisions, the functional
blocks and our Openflow table structure.

A. Architectural Decisions and Functional Blocks

Our solution is designed to be a “bump-in-the-wire” on the
link at which active monitoring of elephant flows is desired.
Our system is therefore transparent to the network, and does
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Fig. 2. Distribution of flows during peak hour.

not modify packets in any way. Further, our SDN switch
does not send any data packets to the controller; instead, any
packets that need to be inspected in software are sent as copies
to a separate interface of the switch, to which a software
inspection engine is attached. This protects the controller from
overload from the data-plane, allowing it to service other
SDN applications. Fig. 1 shows the functional blocks in our
architecture applied to a typical carrier or enterprise network.
The operational flow of events is as follows: assume that traffic
enters (from the content provider) on port-1 and exits (towards
the users) on port-2; the switch is initially configured to mirror
all traffic to the packet processing software on port-3.

Our second architectural decision is in the judicious com-
bination of flexible software for packet-header processing and
scalable hardware for flow-counter monitoring. The software
tracks all the flows uniquely identified by 5-tuple. It maintains
its internal data structures that contain the duration and volume
of individual flows. Using a built-in event mechanism, the
software is able to detect an elephant flow, and makes a
request to the controller (through a REST API exposed by
an SDN application running on top of the controller) inserting
a reactive rule to isolate the elephant flow. The elephant flow
isolation serves two purposes. Firstly, the elephant flow is no
longer mirrored to the software and hence reduces the load on
the software. Secondly, the specific flow-entry enables fine-
grained monitoring of the isolated elephant flow.

Upon insertion of a reactive flow-entry, the SDN App starts
polling its counter periodically. The application dynamically
adjusts the polling frequency based on the number of existing
entries on the switch as well as flow-mod rate on the OpenFlow
agent. The collected counters are written into a time-series
database from which any other application can read and
perform desired operations such as traffic classification, rate
control, anomaly detection, etc.
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Fig. 3. Evaluation of elephant flow detection using various volume threshold.
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B. OpenFlow Table Pipeline

The match and action paradigm of SDN is used to dy-
namically isolate elephant flows once they are detected by
the packet processing software. The Openflow pipeline on
the SDN switch consists of two tables. Table-0 consists of
the reactive rules which correspond to the detected elephant
flows. Reactive rules have an inactivity timeout of 60 sec
to minimize the active number of entries on the hardware.
The action corresponding to these rules is to forward the
packets without mirroring them. These reactive flow rules also
enable flow level telemetry to be carried out by the use of
OpenFlowStatsRequest messages on the OF-Channel. Table-0
is initialized with only one flow rule — packets which miss this
table are automatically processed by rules in Table-1.

Our Table-1 contains only two rules that forward and mirror
bidirectional traffic. Note that proactive rules ensure that no
PACKET_IN message is generated, reducing load on the
Openflow agent of the switch as well as the SDN controller.
The flow insertion happens when events occur in software.

IV. ELEPHANT-FLOW DETECTION METHOD

We aim to develop an efficient method which is able to
detect elephant flows quickly and accurately after their com-
mencement while keeping the load on the software tractable.
To perform such a detection, the software packet analyzer
can employ thresholds on flow volume and/or flow duration,
which need to be judiciously tuned to achieve our objective.
We use several packet traces obtained from a fraction of our
University campus network during peak hours (i.e. 2-5pm),
each one-hour trace comprising of over 500 million packets
from over 4 million flows. We believe that these uniformly
sampled short traces still represent the composition of flows
in our campus traffic. We describe the characteristics of trace
data, then quantify the benefits from our solution.

A. Trace Data

We collected a pcap trace data during peak hours from
the university wired network serving thousands of students
and staff — an ethics clearance was obtained (UNSW Human
Research Ethics Advisory Panel approval number HC16712)
in order to conduct this trial. We then log the time-stamp,
header (i.e 5-tuple), and length of individual packets in a file,
and use the log file to compute flow-level statistics.

We start examining the properties of flows in campus traffic
traces. Fig. 2 depicts the scatter plot of flow duration versus
flow volume, followed by distributions of flow duration and
flow volume. In Fig. 2(a), it can be seen that a large fraction
of flows are short in duration and small in volume — centered
around the origin. We also observe that the duration of mice
flows (i.e. those with small volume) spans the entire range
of [0, 2000] seconds in Fig. 2(a) — data points are scattered
across and close to the x-axis suggesting that the flow duration
can not be indicative of the flow type either elephant or mice.
Note that 99% of flows have duration less than 1000 seconds
as shown in Fig. 2(b). However, the CCDF plot of flow volume
in Fig. 2(c) shows that only 0.26% of all flows have volume
greater than 4 MB, suggesting potential elephant flows. This
small fraction of flows collectively contribute to 72% of total
volume of all flows seen in our dataset.

B. Simulation Methodology and Results

We wrote a native simulation that takes packet arrivals,
header, and size from the trace as input, and performs soft-
ware service (maintaining flow-level states, detecting elephant
flows, and offloading to hardware) and hardware service
(maintaining flow-table entries, updating per-flow counters
and aging-out inactive flows). Both software and hardware
modules maintain their internal states using separate data
structures. For each run, a threshold of flow volume is passed
to the simulation which is used to offload elephant flows from
the software module to the hardware module.

The number of flow-mod, hardware flow-entries, and the
load on the software is tracked in our simulation of each
one-hour trace data. Fig. 3 shows the evaluation results of
our simulation. Each data point shows the average value
of corresponding metric computed from a number of runs
with an error bar representing the standard deviation value.
Unsurprisingly, as volume threshold increases it results in less
flows being pushed into the hardware (as shown by solid blue
lines and left y-axis) and more load is offered to the software
(as shown by dotted black lines and right y-axis). For example,
increasing the threshold from 1 MB to 4 MB, the average
number of flows on the hardware is reduced by 55% (i.e. from
9000 to 4000), in exchange, the fraction of software load is
increased by 66% (i.e. from 18% to 30%). Since monitoring
of reactive flow-entries (i.e. counter collection request) causes
the SDN switch to return a multi-part reply (e.g. our Noviflow
switch returns usage statistics of 25 flows per each reply), this
imposes a significant delay to our SDN App to collect the
per-flow counter of all reactive entries. We therefore choose
to operate our system that maintains on average 4000 flow-
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(a) Duration versus volume of flows

entries on hardware which ensures a sustained polling period
of 5 seconds — this means that a 4 MB threshold would suit
our traffic and network setup. Further, since the average size
of a web-page as of 2017 is about 2.5 MB [11] the chosen 4
MB threshold would avoid isolating mice flows corresponding
to HTTP-based web traffic. Fig. 4 depicts the rate of new flow
arrival to software and hardware over one-hour period in our
simulation. We observe that all traffic flows are captured by
software at bootstrap thus a large number of flows per second
(more than 18000) are detected as new arrival (including
ongoing flows), this is stabilized to 12000 flow arrivals per
second in 90 seconds, and reaches to 10000 arrivals per second
on average after 15 minutes. Of this large number of new flow
arrivals to software, only 25 flows per second on average arrive
to hardware (i.e. detected elephant flows).

Note that among reactive flow-entires inserted into the hard-
ware, we find a fraction of flows that do not exhibit elephant
behavior. We deem hardware flow-entries with average rate of
greater than 300 Kbps (equivalent of rate required for the low-
est resolution video streaming [12]) as “actual” elephant flows.
We found that that the fraction of actual elephant flows rises
as the threshold increases and is stabilized at 5 MB threshold.
Therefore, we propose to consider a threshold of flow duration
in addition to primary threshold of flow volume, enhancing the
accuracy of elephant flow detection. We explored the impact
of the duration threshold for given thresholds of 4 MB on
our metrics of software load and number of hardware flow-
entries (the plot is omitted due to space constraints). We
therefore perform a duration check in the software module
once the flow volume hits the chosen threshold. Our results
show that offloading flows with the volume of 4 MB and the
duration of at most 300 seconds would significantly reduce the
number of hardware flow-entries (i.e. 10%) while incurring a
negligible increase in software load (i.e. 2.5%). We emphasize
that these threshold values should be chosen by the network
operator based on profiles of traffic, constraints of hardware,
and resources available to the software engine.

V. PROTOTYPE IMPLEMENTATION

We have implemented a fully functional prototype of our
system that uses our proposed solution. Our system includes
NoviSwitch 2116 hardware, Ryu SDN controller, NetBricks
[13] as packet processing software, and InfluxDB. Ryu con-
troller and InfluxDB are run in separate virtual machines
configured by 4-core CPU and 32 GB RAM on an enterprise
standard server. A physical server with 32GB RAM and 16-
core CPU that runs NetBricks framework over Data Plane
Development Kit (DPDK) [14] to perform software packet
processing of the mirrored campus traffic.

Fig. 5 depicts the evaluation results of our system prototype
for a period of 24 hours. The hardware load is shown by
solid red line in Fig. 5(a) and the software load is stacked
on top of it, shown by dotted blue line. As we can see the
total load (sum of software and hardware) of our campus
traffic peaks during afternoon hours exceeding 9 Gbps. We
note that only one third of total load on average is handled by
the software which slightly grows during peak hours reaching
to 43%. Considering performance constraints, we track the
number of hardware flow-entries and profile the average CPU
usage of software in Fig. 5(b) — the average CPU usage is
always below 100% and only exceeds 90% during the peak
hour (a negligible packet loss). It is also seen that the number
of flow-entries is capped to 4000 except for few minutes —
this results in dynamic reduction of the frequency of polling
per-flow counters during that period from our SDN App.

We now look at the elephant flows of our campus traffic
that are detected by software and isolated by hardware table
entries within 24 hours. Our SDN App periodically monitors
counters of individual reactive flow-entries from the hardware
and writes into a table of InfluxDB. Fig. 6 depicts the analysis
of reactive flow-entries present on the hardware. Fig. 6(a)
is visually insightful as data points in the scatter plot of
duration versus volume are grouped along the y-axis which
is completely orthogonal to the observation we had earlier
in Fig. 2(a) from all traffic flows — thus representing elephant
flows. Considering the flow average rate in Fig. 6(b), more than
90% of reactive hardware entries indeed represent elephant
flows, those that operate at the rate of more than 300 Kbps —
this corroborates with our simulation results with enhancement
due to additional duration check.

VI. CONCLUSION

Real-time visibility into elephant flows is increasingly be-
coming of high interest for network operators due to their
resource consumption. Existing tools of monitoring of elephant
flows are either costly hardware-based inspectors, or unscal-
able software-based analyzer. In this paper, we have proposed
our solution that combines the scalability of commodity SDN
hardware with the flexibility of packet processing software. We
have developed our method to detect elephant flows, tuned our
algorithm parameters using real traffic traces obtained from our
campus network, and implemented a prototype and evaluated
our solution operating at 10 Gbps in a real campus network.
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