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Abstract—Many enterprise campuses have poor signal cover-
age indoors from one or more mobile operators, and thus are
increasingly embracing carrier Wi-Fi calling services, allowing
their users to make and receive mobile phone calls over the
enterprise Wi-Fi connection. Mobile carriers employ IPSec tun-
nels to secure user calls and messages that traverse untrusted
enterprise networks and possibly the public Internet. These
encrypted connections from user handsets are seen as potential
security threats in enterprise networks. In this paper, we develop
a machine learning-based system for monitoring encrypted traffic
of IPSec tunnels on the network to distinguish Wi-Fi calling
traffic from anomalies. Our contributions are as follows: (1)
We analyze traffic traces consisting of carrier Wi-Fi calls made
over four mobile networks to highlight network behavioral
characteristics of this enterprise application. We develop a set of
models using one-class and multi-class classification algorithms
to determine if Wi-Fi calling application is present on the IPSec
tunnel (if so, to classify its state), otherwise generate a notification
to block the non Wi-Fi calling flow, and (2) We evaluate the
efficacy of our system in detecting real calls and their states
(initiation, heartbeat, and actual call) as well as raising true
alarms in case of anomalous traffic.

I. INTRODUCTION

Carrier Wi-Fi calling, one of the voice-over-Wi-Fi applica-
tions, was initially launched by a handful of mobile operators
in the US and Europe and is being offered by a growing
number of Tier-1 operators around the world [1]. According
to Cisco, it will take 53% of mobile IP voice service usage
by 2020, a more than three-fold increase from 2015 [2].
This technology was primarily designed for consumers to
compensate poor cellular coverage inside their homes but also
benefits enterprises with wireless-shielded buildings. It is a
standard protocol that allows users to make regular mobile
phone calls (and also send texts and other media) over Wi-Fi
networks with no need for an additional application – just from
phones native dialer. For mobile network operators, offload of
mobile voice traffic onto Wi-Fi access networks is beneficial,
since they can offer high-quality voice calls and SMS at a
lower price, thereby combating over-the-top applications like
Skype and WhatsApp.

Mobile carriers do not trust third-party-owned Wi-Fi access
networks (and the Internet) to carry important voice calls, and
therefore they establish secure tunnels (IPSec) between user
devices and their core packet gateway to protect the Wi-Fi-
calling traffic. However, the use of IPSec tunnels creates a
security concern for enterprises who want to allow the Wi-Fi-

calling service within their organization, since their firewall
policy needs to unblock IPSec flows with no ability to detect
the application carrying the encrypted traffic.

This paper describes our solution for modeling network
behavior of Wi-Fi calling traffic that enables enterprise net-
work operators to automatically monitor encrypted UDP flows
and detect anomalies in real-time. We begin by analyzing
real traffic traces of Wi-Fi calls from four mobile network
operators and highlight the key characteristics of Wi-Fi calling
flows on the network. We then train one-class classifiers as
well as a multi-class classifier that are collectively able to
distinguish Wi-Fi-calling flows from anomalous ones. Finally,
we prototype our system and validate it with real traffic.

II. RELATED WORK

Mobile data offload onto Wi-Fi access networks is well
understood and practiced by industry and academia [3], [4].
However, mobile voice offload has become prevalent only in
recent years when phone manufacturers started to natively
support Wi-Fi calling [5]. Analysis of network traffic to iden-
tify applications has been an active research area for decades.
Specifically, voice over IPSec has been studied in [6] where
the authors quantified the performance of the application in
terms of bandwidth usage and transmission delay. Similar to
our work, authors of [7] aim to detect VoIP packets over IPSec
tunnels to forward them with the highest priority (i.e., for
quality of service). Their proposed method is quite simple
and only checks the packet size within a fixed range. We,
instead, compute 8 attributes from time-series profile of each
IPSec flow and develop four ML models to capture the normal
behavior of Wi-Fi calling application.

In terms of security, work in [8] surveys threats and vulnera-
bilities of VoIP technology. However, security of Wi-Fi calling
application has not been well studied until recently [9], [10].
Authors of [9] demonstrate various attacks on end-user devices
where IPSec keys can be extracted from SIM cards. Work
in [10] conducts a comprehensive study on vulnerabilities of
the Wi-Fi calling service over major mobile operators in the
US, and highlight several privacy risks (e.g., inferring user
identity, call statistics, and device information) for users of
this application. Our work primarily aims to automatically
ensure that only Wi-Fi calling traffic is exchanged with trusted
mobile operators over IPSec tunnels from enterprise networks
– anomalous flows are blocked in real-time.



III. MODELING WI-FI CALLING APPLICATION

A. Network Behavior of Wi-Fi Calling

A Wi-Fi calling session starts with IPSec tunnel estab-
lishment, followed by initiation phase wherein it exchanges
device details like phone number, and then stays in a heartbeat
(i.e., keep-alive) phase until a call is made [10]. Let us now
look into a real trace of a real Wi-Fi calling session and its
various phases in Fig. 1. The Wi-Fi call was made over a
major US-based carrier network using an LG Android device
– we observed similar network profiles on iOS devices across
various carrier networks.

IPSec Tunnel Establishment. When a mobile device (with
Wi-Fi calling feature enabled) connects to a Wi-Fi network,
it first fetches a server IP corresponding to carrier’s Wi-Fi
calling endpoint by sending a DNS query. The device next
establishes a secure IPSec tunnel with the server using the
IKE and ISAKMP protocols [11] and encapsulates the data
in the tunnel using ESP protocol over UDP [12]. Note that
we can not solely rely on DNS information to ensure that the
application is Wi-Fi calling or not. For example, in case of a
DNS spoofing attack, the man-in-the-middle attacker can reply
to the legitimate DNS query, causing the device to establish
the tunnel to a malicious server. Therefore, it is needed to
detect the application using the profile of traffic exchanged
over the tunnel which is a non-trivial exercise.

Initiation. Following tunnel establishment, the Wi-Fi Call-
ing application exchanges device specific information (e.g.,
phone number) with the carrier’s server. This typically takes
about 7 to 10 seconds and results in the first peak highlighted
in red (Fig. 1). This phase consists of ESP packets (typically
over 1000 bytes each) transferred at a rate of 200-400 Kbps.

Keep-Alive. Following the initiation, the application enters
into a Keep-Alive phase wherein one packet (of 60 bytes)
is sent every 20 seconds from the server to the device only
for keeping the NAT mappings alive (as described in detail
in [12]). Also, every couple of minutes, a pair of ISAKMP
request/response (Informational type) packets of size 122 bytes
are exchanged. The application continues to be in this phase,
until a call is made.

Call. When a user makes a call, the device send/receives
call data using the IPSec tunnel established over Wi-Fi. It can
be seen in Fig. 1 that data packets flow bidirectionally. The
amount of data transferred depends on the conversation, i.e.,
in this example, the user who made the call does not seem to
talk much and hence less upload traffic. Further, in comparison
to the initiation, the traffic rates is lower and seems to have
an upper cap of around 100 Kbps. The packets exchanged are
typically 174 bytes. Note that upon termination of the call, the
application switches back to the Keep-Alive phase.

Although a representative Wi-Fi calling session occurs this
way, we have also observed certain minor differences. For
example, the IPSec connection might get terminated and re-
established periodically (commonly observed in iOS devices).
We think it is probably because the phone disconnects the
session to save battery during idle periods (i.e., keep-alive
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Fig. 1. Network profile of Wi-Fi calling traffic.

phase). We note that only one IPSec connection is active at
any point in time. Further, we observed that sometimes during
tunnel re-establishment the server IP might change (but it can
be captured by an updated DNS response) due to dynamics of
cloud-based services. Additionally, we have observed that the
UDP port used on the client is selected at random in Android
devices, but is set to 4500 (identical to the server port) in iOS
devices. Nonetheless, across the 4 major providers and the
two operating systems, we have observed the traffic profile of
each phase to be almost identical and thus helping us build a
general model to detect and monitor the Wi-Fi calling.
B. Phase Classification and Anomaly Detection

We now explain our method to detect Wi-Fi calling sessions
using the network activity data. As explained in previous
section a Wi-Fi calling flow can be in one of three phases:
Initiation, Keep-Alive or Call. Thus, given an IPSec flow
established for Wi-Fi calling, we need to detect and monitor
these phases in real-time. We also need to identify IPSec
flows which are not established for Wi-Fi calling, considered
as anomalies in our use-case. To perform these tasks, we
first break the traffic profile (i.e., time-series signal) into
fixed-length windows and extract appropriate features from its
activity. These features are used to train models which perform
two tasks: (a) classify phases of a legitimate Wi-Fi calling
session, and (b) detect anomalous behavior by a non Wi-Fi
calling session.

Feature Extraction. We have observed that Wi-Fi calling
application exhibits certain characteristics: (a) transfers content
at rate less than 500 Kbps, (b) is generally idle (i.e., mostly in
Keep-Alive phase), and (c) has a distinct patterns of packet-
sizes. Using these observations we extracted a set of attributes
for a 10-second window of each IPSec flow. We have chosen
10 seconds for our window size since the initiation phase
typically takes 7-10 seconds to finish and to classify this
phase we need a minimum of 10-second worth of data. Each
10-second window consists of byte counts and packet counts
computed every 100ms, i.e., a total of 100 data points.

For each window, we compute the following set of attributes
in both upload and download directions: (1) average packet
size for highlighting the initiation phase; (2) zero fraction
(fraction of time no data is exchanged) for highlighting the
Keep-Alive phase, (3) average, and (4) max transfer rate for
highlighting the call phase. These attributes help us classify
phases and detect anomalies as explained below.
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(a) Random-Forest model.
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Fig. 2. Performance of: (a) Random-Forest, and (b) Isolation-Forest, models.

Training Dataset. We collected 20 PCAP traces of Wi-
Fi calling sessions from Cisco labs. We then built a dataset
consisting of a total of 4,162 labeled instances, each cor-
responding to 10-second worth of traffic trace for phases
Initiation (255 instances), Keep-Alive (3,574 instances), and
Call (317 instances). Unsurprisingly, most of instances are
keep-alive since the application tends to spend more time in
this phase. Each labeled contains 8 attributes mentioned above.

Multi-Class Classification. We trained a Random Forest
classifier (i.e., decision tree-based learning) on our dataset
using the scikit-learn library in Python – this model would
generate a pair of outputs: a label (i.e., Initiation, Keep-Alive,
or Call) and a confidence-level. We used 80% of the data to
train our model and the remaining 20% for testing it. We have
achieved an accuracy of 99.7% in classifying phases. Fig. 2(a)
shows the confusion matrix of our Random-Forest model. We
can see that this model performs well in learning patterns to
distinguish among the expected phases. We also need more
precise and possibly sensitive models (i.e., one-class classifier
is explained next) for individual phases which together with
the Random-Forest model enable us to detect anomalous flows.

One-Class Classification. We built three models using
Isolation Forest algorithm, each is specialized in expected
behavior of one phase in a Wi-Fi calling flow – each model
would generate a binary output (i.e., positive if expected profile
is detected in the instance, otherwise negative). Consequently,
an anomaly (i.e., a non Wi-Fi calling flow) would be detected
if none of these models generate a positive output. To train
the models, we passed 80% of the data corresponding to
each phase and set the contamination rate (of Isolation forest
algorithm) to 0.05. We tested each models by two datasets:
(a) remaining 20% of instances from its corresponding phase,
and (b) all instances from other two phases. For example,
the initiation model was tested by 20% of Initiation instances
(unseen by the model during training) and all instances of
Call and Keep-Alive. Fig. 2(b) shows the confusion matrix of
testing Isolation-forest models. For example, 95.08% of Keep-
Alive instances are correctly detected by its intended model
(top left cell), while less than 1% incorrectly detected by the
Initiation model and none by the Call model. We also note
that 4% of Keep-Alive instances are not detected by any of
the three models, this measure is 9% and 5% for the Initiation
and Call instances, respectively.

Combination of One-Class and Multi-Class. Note that
Random Forest performs well in capturing decision boundaries
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Fig. 3. System architecture of prototype for Wi-Fi calling monitoring.

and develops rules to differentiate the behavior of various
classes. However, even if the input does not belong to any of
trained classes (i.e., anomalies), the model still predicts one
of leaned classes – such predictions are typically accompanied
by lower confidence values since there will be a disagreement
among decision trees within the forest. This task of identifying
anomalous data can be better done using Isolation Forest.
They form tight bounds on attribute values of a benign class,
and report anomalies if a small non-conformance is observed.
However, these models tend to be very sensitive and may
miss to output positive signal for benign instances. do not
generalize well to differentiate among classes and perform
the task of classification. Thus, in our system, we use both
types of models to accurately monitor the carrier Wi-Fi calling
application, i.e., tracking its intended phases and also reporting
non Wi-Fi calling IPSec traffic.

IV. PROTOTYPE AND EXPERIMENTATION

We prototyped our scheme in a small testbed, depicted in
Fig. 3, which can be readily deployed in enterprise networks.
In this architecture, “Device Agent” (running on a network
switch) extracts flow level information from the raw packets
passing through the switch. In our prototype, we have used
Cisco’s Joy [13] open-source software to perform this task. Joy
extracts a time-trace of byte and packet counts from each flow
and aggregates them over a time window, say 10 seconds, and
sends an IPFIX packet to “Data Processor”. The data processor
decodes the IPFIX packet and performs the following tasks:
(a) extracts DNS query name and the corresponding server IP
(used to identify carrier Wi-Fi calling endpoints), (b) filters
IPSec flows (i.e., UDP 4500), and (b) aggregates raw byte-
count and packet-count at resolution of 100ms to generate
100 data points. These inputs are passed on to “Arbiter”
which performs multiple functions and finally outputs whether
the application in the IPSec tunnel is Wi-Fi calling with a
confidence value.

Before understanding the arbiter module and its functions,
let us walk through how our models perform for real Wi-Fi
calling and non Wi-Fi calling flows as shown in Figures 4 and
5. For the Random-Forest model (Fig. 4(a) and Fig. 5(a)),
each column represents a time window of 10 seconds and
its color shows the classified phase – red, blue, and green
respectively correspond to Initiation, Keep-Alive and Call.
For the Isolation-Forest models (Fig. 4(b) and Fig. 5(b))
color codes are identical to of Random-Forest and each row
represents the output of each Isolation-Forest mode – a darker
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Fig. 4. Performance of models with a Wi-Fi calling flow.

color indicates the positive signal from the model.
Considering a legitimate Wi-Fi call, the Random-Forest

model, as shown in Fig. 4(a), consistently classifies with
high confidence (i.e., >= 97%), the first instance as initi-
ation, followed by three Keep-Alive instances, and 14 call
instances until the second 180. The Isolation-Forest models
also accurately detect the same phases in the first 18 epochs,
as shown in Fig. 4(b). The next instance (i.e., 180-190 sec-
ond), however, gets classified as initiation by random forest
with lower confidence and isolation forest models do not
detect any phase. Right after that, the last four instances are
accurately classified by random forest while isolation forest
misses one instance (i.e., 200-210 second). We investigated
the misclassified instance between 180s and 190s and found
that the call was active for the first 3 seconds followed by 7
seconds of Keep-Alive. This caused the models to be confused
as they were trained on epochs containing just one phase.
We acknowledge that such false alarms might occur for a
single instance but instances surrounding this miss-classified
instance should still be accurately classified (given that the
traffic corresponds to a Wi-Fi call). For a non Wi-Fi calling
application, we can see that random forest detects Keep-Alive
first (which never occurs in Wi-Fi calls) and subsequently
mostly classifies instances as initiation phase with a highly
varying confidence (< 85%). Further, the isolation forest
models, shown in Fig. 5(b), do not detect any of the phases for
most of the time except detecting keep-alive in the beginning
and one initiation between seconds 30 and 40.

These observations from performance of our models on
real traffic helped us design the functions of the Arbiter to
accurately predict the phase of Wi-Fi calling flows, monitor
them, and detect anomalies. The arbiter needs to perform the
following functions: (a) to maintain a window of models’
outputs to discount one-off miss-classifications and accurately
report anomalies, (b) to combine outputs of multiple models
to take a decision, and (c) to report events such as IPSec
session detected, presence of and current phase of Wi-Fi
calling application, and anomalous non-WiFi calling IPSec
flows. The arbiter keeps track of each bidirectional IPSec
flow and the corresponding model outputs for the last “k”
epochs. Then it looks at these k epochs to decide whether the
application is indeed Wi-Fi calling. For example, with k=3
(over last three epochs), if the isolation forests did not detect
any of the phases and average confidence of random forest
classifier is lower than a configurable threshold, say 80%, it
deems the flow to be anomalous and sends an anomaly event
notification. Otherwise, it is a normal Wi-Fi calling session.
We additionally use the DNS information captured by the
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Fig. 5. Performance of models with a non Wi-Fi calling flow.

arbiter to decide the parameter k. If the domain queried is
indeed legitimate, we set k to be a larger value say 5 to tolerate
miss-classifications, if any, as DNS information suggests a
legitimate Wi-Fi call. The phases are reported by using the
classification output and confidence of random forest classifier
as it specializes in that task. Whenever the arbiter detects a
flow that is not present in its state, it sends a new IPSec flow
event notification. It ages out flows based on inactivity using
a timer and sends a notification for the IPSec flow terminated.
With this system design, we were able to accurately identify
Wi-Fi calls and raise anomalies within the first window of
observation for non Wi-Fi calling IPsec sessions.

V. CONCLUSION

In this paper we have developed a solution for enterprise
networks who want to allow Wi-Fi calling over encrypted
IPSec tunnels. We have analyzed real traces of Wi-Fi calling
traffic and identified key behavioral network patterns. We then
developed ML-based models to classify three phases of a Wi-
Fi calling flow and detect anomalous traffic exchanged inside
an IPSec tunnel. Lastly, we prototyped our scheme in a testbed
to show how benign Wi-Fi calling traffic can be automatically
distinguished from anomalous IPSec flows.
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