Assisting Delay and Bandwidth Sensitive Applications
in a Self-Driving Network

Sharat Chandra Madanapalli
University of New South Wales
Sydney, Australia
sharat.madanapalli@student.unsw.
edu.au

ABSTRACT

Packet networks are agnostic to applications, which have served to
keep the Internet infrastructure simple and scalable over the past
several decades. However, the best-effort model is now seen as an
inhibitor to meeting user experience expectations for the diverse
applications such as streaming video, gaming, browsing, and social
media. Current methods for prioritization of certain application
types are static, and do not react to changes in network conditions
or user experience. We envisage a self-driving network that is able
to continuously monitor user experience and intervenes to assist
applications as and when needed. Our contributions are: (1) We
propose a self-driving network architecture that directly measures,
optimizes, and dynamically controls application performance. We
develop a method to measure and model application state in real-
time using network behavior data. (2) We apply our framework
to two representative applications, video streaming and gaming,
and show how the network can detect application deterioration
in terms of playback buffers and ping latency respectively, and
apply remedial action to improve application performance without
requiring any explicit signaling.

CCS CONCEPTS

« Networks — Programmable networks; Network performance

modeling; Programming interfaces; Network measurement;

1 INTRODUCTION

User-perceived application experience is of paramount importance
in broadband as well as cellular networks, be it for video streaming,
teleconferencing, gaming, or web-browsing. The best-effort delivery
model of the Internet makes it challenging for Application/Content
Providers to maintain user experience, requiring them to implement
complex methods such as buffering, rate adaptation, dynamic CDN
selection, and error-correction to combat unpredictable network
conditions. Network operators, also eager to provide better user
experience over their congested networks, often employ middle-
boxes to classify network traffic and apply prioritization policies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

NetAI ’19, August 23, 2019, Beijing, China

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6872-8/19/08...$15.00
https://doi.org/10.1145/3341216.3342215

Hassan Habibi Gharakheili
University of New South Wales
Sydney, Australia
h.habibi@unsw.edu.au

Vijay Sivaraman
University of New South Wales
Sydney, Australia
vijay@unsw.edu.au

However, these policies tend to be static and applied on a per-
traffic-class basis, with the benefits to individual applications being
unclear, while also potentially being wasteful in resources.

It is envisaged that Self-Driving Networks of the future will be
able to address this problem through a combination of continuous
network measurement, automated inferencing of application perfor-
mance, and programmatic control to protect user experience. This
paper represents a first step towards this goal, leveraging recent
developments in programmable networks and machine learning.
Our aim is to show that the network need not be manually pre-
configured for resource sharing amongst applications; instead, it
can autonomously deduce application experience at run-time, and
provide assistance as and when required to specific traffic streams,
thereby restoring user experience in a self-driving manner (aka
without any explicit signalling).

We begin by outlining the architecture of our system that uses a
trained machine to dynamically deduce the application state and
apply corrective actions when application performance deterio-
rates to an unacceptable state (§2). We then prototype our system
and apply our state inference methods to two applications, namely
Netflix video streaming (that is sensitive to network bandwidth)
and Gaming (that is sensitive to network latency), and show that
network assistance can protect application experience in a timely
manner in the face of changing traffic conditions, without requir-
ing any explicit signalling (§3). Our work paves the way towards
a network that can self-manage user experience without human
configuration.

2 SYSTEM ARCHITECTURE AND DESIGN

To realize the self-driven network assistance, three tasks are needed
to be performed automatically and sequentially: (a) “measurement”,
(b) “analysis and inference”, and (c) “control”, as shown by a closed-
loop in Fig. 1.

In our architecture, a programmable switch is placed in-line on
the link between the access network and the Internet. In a typi-
cal ISP network, this link is the bottleneck (and hence the right
place to do traffic shaping) as it multiplexes subscribers to a lim-
ited backhaul capacity. First, traffic of a desired application (e.g.,
video streaming) is mirrored to FlowFetch module which exports
flow-level counters (measurement) to a classifier model. Next, the
network telemetry data is used by a classification model to deter-
mine the current experience state of an application (analysis and
inference) which is sent to the state-machine module. If a criti-
cal event of the application behavior (e.g., video re-buffering) is
detected by the state-machine (arising due to a transition among
states), an assist request is sent to actor module. Lastly, the actor

https://doi.org/10.1145/3341216.3342215

NetAl 19, August 23, 2019, Beijing, China

State Classification | State Assist —— Data traffic |
——————— > i “o====> Actor
Model Update State Machine Request | === signaling

i :
| Flow Counters Apply Change‘l'

Analysis Switch

Controller

T

Measurement Control

i
ki /
YoD !
s . Traffic Mirror o .
In-line Programmable Switch

Figure 1: System architecture of assisting applications.

requests changes (e.g., queue provision) to the switch controller
which in turn sends FlowMod and Queue Configuration messages to
the switch, executing the corresponding action in order to elevate
the application’s performance.

In order to automatically infer the performance (directly affecting
the quality-of-experience) of an application, we model its network
behavior using a state machine. Every application begins in state
“start”, when its first packet is seen on the network. Subsequently, it
transitions into different states depending on the type of application.
We illustrate in Fig. 2 an example of performance state-machine for a
video streaming application as a sequence of states: init — buffering
— stable — stable — depleting — terminate. Depending upon the
policies of network operator for video streaming, a required action
can be taken automatically at any of these states (e.g., when it
is found at depleting state, a minimum amount of bandwidth is
provisioned to corresponding flows, till the application comes back
to its stable state).

2.1 Data Collection

To realize such a system architecture, we first need to acquire net-
work activity data for the applications of interest, labeled by their
behavioral states. This enables the network operator to train classi-
fiers and build state machines which can infer application behavior
without the need of any explicit signals from either the application
provider or client. We have developed a tool for generating applica-
tion dataset — the high-level architecture of our tool is shown in
Fig. 3. It consists of three main components namely Orchestrator,
Application player, and FlowFetch. The orchestrator performs two
tasks: (a) initiates and runs the application instance, and keeps track
of its behavioral state, and (b) signals to the FlowFetch for record-
ing the corresponding network activities (i.e., time-trace of flow
counters). The optional network conditioner module can be used to
impose (synthetic) network conditions such as limited bandwidth
or extra delays to capture various behaviors of the application.

Labeling Application States: As mentioned earlier, important
application states need to be labeled since they help the state ma-
chine determine when a network assist is required. For example,
stall/buffer-depletion, high latency, and lag/jitter are crucial states
for video streaming, online gaming, and teleconferencing applica-
tions, respectively. Having identified the critical behavioral states
of an application, the orchestrator is configured to detect and label
these states. In prior research, authors have used GUI interaction
tools [1], javascript APIs [6] and web automation tools (e.g., Sele-
nium library) [14] to automatically interact with the application
and capture its behavior.

S. C. Madanapalli, H. Habibi Gharakheili, and V. Sivaraman

Figure 2: Example of performance states transition for a
video streaming application.

Measuring Network Activity: The network activity of applica-
tions can be measured in several ways ranging from a basic packet
capture (expensive recording and processing) to proprietary HTTP
loggers combined with proxies (limited scalability). We propose a
method that strikes a balance by capturing flow-level activity at
configurable granularity using conditional counters. This method
stores less data due to aggregation on a per-flow basis, and can
be deployed using hardware accelerators like DPDK or be imple-
mented in the data-plane using P4 [4].

We have built a tool called FlowFetch in Golang, which records
flow-level activity by capturing packets from a network interface.
By a flow, we mean a transport-level TCP connection or UDP stream
identified by a unique 5-tuple consisting of source IP, source port,
destination IP, destination port and protocol. Each flow has a set
of conditional counters associated with it — if an arriving packet
satisfies the condition, then the corresponding counter increments
by a defined value. For example, a counter to track the number of
outgoing packets greater than a volume-threshold (important to
identify video-streaming experience [18]) can be expressed using a
volume-based condition on each packet — if satisfied, the counter
increments by one. Similarly, other basic counters to track volume
of a flow can be defined to increment by the byte-size of its arriving
packet (without any explicit condition). The set of counters are
exported at a configurable granularity (e.g., every 100 ms) — it
depends on the complexity of application behavior.

Application data record: Our tool generates two time-series
data for each application “run”. The first one consists of application
states (e.g., for a video streaming, buffering for first 10 seconds,
followed by 40 seconds of stable and then termination). The second
one contains the corresponding flow-counters collected from the
network activity of the application at the configured granularity
(say, tracking byte and packet counters every 100 ms).

2.2 State Classification and State Machine

The training set, consisting of multiple labeled application runs, is
used to train and generate a model which will classify the applica-
tion state given its network activity patterns. Certain states can be
identified from prior knowledge of application (e.g., video stream-
ing always starts in buffering state). For other states which require
pattern recognition on the network activity, it requires to extract
important traffic attributes computed over a time window (say 10
seconds) and build an ML-based classifier. Thus, the State Classifier
is composed of rule-based and/or ML-based models which together
classify application’s current state that is passed as an update to
the state-machine, shown in Fig. 1.

Assisting Delay and Bandwidth Sensitive Applications
in a Self-Driving Network

Application FlowFetch H i %
i .

A

/
/

Store
Flow-level

counters

\

/
/
/’Slart/stop
And \ // Flow Capture
State Capture '\ y
\\

/
/

\
\nteraction\‘

network traffic
-----> signaling
——> measured data

Store
Application
States

Figure 3: Our data collection tool.

Orchestrator

'

State Machine Generation: The state machine of the applica-
tion is generated using the behavioral state labels available in the
dataset along with corresponding transitions. As explained earlier,
the orchestrator continuously labels states of the application as
it is running which can be used to capture the transitions which
happen in regular usage of that particular application We note that
all possible transitions may not occur for an application during
data collection, and hence we may need to edit the state machine
manually.

Experience-Critical Events Annotation: The state machine
that models application behavior needs to be annotated with Expe-
rience Critical (EC) events that require assistance from the network.
When such events occur within the state machine, a notification is
sent out to the Actor module (in Fig. 1). There might be multiple
types of EC events. For instance, a transition to “bad” state or spend-
ing long time in a certain state indicate QoE impairments, and thus
are considered as EC events. To exemplify, in a video-streaming
application, a transition from buffering state to stall state is a QoE
impairment and thus an EC event. Further, a prolonged buffering
state is also not desirable as the buffer level is very close to playback.
This EC event can be annotated using a timer on the buffering state.
Such events trigger a notification to the Actor (by the state machine)
while receiving the real-time state updates from State Classifier.

2.3 Actor: Enhancing Experience

Upon receiving assist requests from the State Machine, the Actor is
responsible for enhancing the performance of the application via
interaction with the Switch Controller. Typically the application’s
poor performance can be alleviated by prioritizing its traffic over
others in a congested scenario. The choice of what kind of appli-
cations to prioritize would depend on the policies of the ISPs and
their customers’ requirements. This paper focuses on providing a
mechanism to enhance the experience. This can be done in multiple
ways including but not limited to: (a) strict priority queues where
priority levels are assigned depending on the severity of the assist
requests, (b) weighted queues where more bandwidth is provisioned
to applications in need, or (c) use packet coloring and assigning
different drop probabilities to different colors, e.g., a two-rate three-
color WRED mechanism [11]. Assisting methods are confined by
the capability of the programmable switching hardware and the
APIs it exposes. Nonetheless, the actor needs to request the switch
controller to map the flow(s) of the application to the prioritizing
primitive (changing queues or coloring using meters, etc.).

Note that the assisted application needs to be de-assisted after
certain time for two reasons: (a) to make room for other applications
in need (to be prioritized), and (b) the performance (QoE) of the

NetAl ’19, August 23, 2019, Beijing, China

assisted application has already improved. However, doing so might
cause the application to suffer again and thus results in performance
oscillation (i.e., a loop between assistance and de-assistance). To
overcome this, we propose that the de-assisting policy could be
defined by the network operators using the network load (i.e., link
utilization). A primitive policy could be to de-assist an application
when the total link utilization is below a threshold, say, 70%. This
would ensure that the de-assisted application has enough resources
to (at least) maintain the experience, if not improve it. These policies
could be further matured depending on the number and type of
applications supported and also various priority levels defined by
the operator.

3 ASSISTING SENSITIVE APPLICATIONS

We now implement our framework and assist two applications,
namely, Netflix (representative of bandwidth sensitive video stream-
ing) and ping (representative of latency sensitive online gaming).
Although ping is relatively simple when compared to actual gaming
applications, we note that the requirement of the application still
remains the same, i.e., low latency. In what follows next, we describe
our measurements, state classification models of the applications
behavior, and subsequently elaborate on assistance methodology
which enhances the user experience.

3.1 Dataset and State Classification

Dataset: We use our data collection tool, shown in Fig. 3, to orches-
trate sessions of Netflix video streaming and ping as follows. For
Netflix, we use a web client on a chrome browser (i.e., the Applica-
tion block in Fig. 3) which is controlled by a python script (i.e., the
Orchestrator) using Selenium web automation library. The network
data is collected using our FlowFetch tool described in §2. The or-
chestrator also captures user experience by enabling a menu that
offers multiple video playback metrics. Of them, we consider Buffer
Health (in seconds and bytes) and Bitrate (denoting the quality of
video playback) to understand experience.

We detect bad experience in terms of buffer depletion which
often also leads to bitrate degradation as the video client adapts to
poor network conditions. Prior studies [6, 14, 16] have found that
chunks transfer in a flow starts by an upstream request packet of
large size (other small upstream packets are generally ACKs for
the contents received). To capture such transfers, we employ three
conditional counters: “ByteCount” transferred both downstream
and upstream, “PacketCount” both downstream and upstream, and
“RequestCount” for upstream packets greater than a threshold (say,
500 Bytes). We collected these flow counters every 100 ms, over 6
hours worth of Netflix video playback.

For gaming (represented by ping), the experience metric, latency,
is measured both at the client-end and in the network using the
FlowFetch. On the client, we have built a python wrapper which
reads the output of the ping utility. On the network, the FlowFetch
keeps track of the ICMPv4 flow using the 4-tuple sourcelP, destIP,
Protocol and ICMP ID. It calculates the latency by subtracting the
timestamp in request and response packets. We note that the latency
measured from network is slightly lower than measured on client
as it does not include the latency in the access network.

Classifying Buffer-State for Video Streaming: In our dataset,
we have observed that Netflix client: (a) in buffer-stable state, it

NetAl 19, August 23, 2019, Beijing, China

Requests > 10 5 < # Requests < 10

Stable

Requests < 5

Depleting

(a) Buffer-based state machine for video streaming.

S. C. Madanapalli, H. Habibi Gharakheili, and V. Sivaraman

latency < 50ms 50ms < latency < 100ms

===~ Medium

4

(b) Latency-based state machine for online gaming.

Figure 4: State machine of sensitive applications.

requests one video chunk every 4 seconds and an audio chunk every
16 seconds, (b) in buffer-increase state, it requests contents at a rate
faster than playback, and (c) in buffer-depleting state, it requests
less number of chunks than being played. Given this knowledge
of Netflix streaming, we devise a decision tree-based classifier for
the count of requests over a window of 20 seconds. To maintain
the buffer level over this window, the Netflix client should ideally
request for 7 chunks, i.e., 5 video chunks (of 4 second duration)
and 2 audio chunks (of 16 second duration). Thus, this naturally
indicates a threshold to detect buffer increase (>7 chunk requests)
and buffer depletion (<7 chunk requests). However, in practice, de-
viations from ideal behaviour are observed — we, therefore, built
our decision three by slightly broadening the threshold values as
depicted in Fig. 4(a). Therefore, using the uplink request packet
measurements, we are able to build a simple classifier which detects
the user experience in terms of buffer health. We acknowledge that
it is needed to have a combination of counters and statistical tech-
niques to isolate chunk data and extract features to predict bitrate
switches and startup delay, as studied in [6], to ideally capture the
experience of video streaming. However, the scope of this paper
is limited to develop a framework for automatic assistance of ap-
plications by acting upon triggers detected by real-time network
measurement. The framework can incorporate any number states
reported by sophisticated models and assist the applications when
experience-critical events are detected.

Classifying Latency-State for Gaming: In multiplayer online
gaming applications, an important experience metric is latency
which represents the end-to-end delay from the gaming client to
either the servers or other clients (i.e., peers). The latency (also
referred to as “lag”, “ping rate”, or simply “ping”), arises by the
distance between end-hosts (static), and congestion in the network
(dynamic) which causes packets to wait in queues. Our solution
attempts to alleviate the gaming performance by reducing the delay
caused in congested networks. Although the latency requirements
differ depending on the type of game being played, typically at least
a latency of under 100 ms is desired to have a smooth experience
[17] - although top gamers prefer a latency of up to 50 ms. Using the
latency measurements, we define three states of gaming, i.e., “good”
(0-50 ms), “medium” (50-100 ms) and “bad” (>100 ms), as depicted in
Fig. 4(b) - these latency ranges were reported by players of various
popular gaming applications such as Fortnite, Apex Legends and
CSGO. Any transition into the bad state triggers a notification
requesting an assist to the actor.

3.2 Performance Evaluation

With state machines and classification models built, we now demon-
strate the efficacy of our framework by implementing the end-to-
end system from measurement to action in a self-driving network.
Our lab setup consists of a host on the access network running
Ubuntu 16.04 with a quad-core i5 CPU and 4 GB of RAM. The
access network is connected to the Internet via an inline SDN en-
abled switch (i.e., Noviflow model 2116). On the switch, we have
capped the maximum bandwidth of the ports at 10 Mbps. We have
pre-configured three queues (i.e., A, B, and C) on two ports (i.e.,
P1: upstream to the Internet and P2: downstream to the access)
which are used to shape the traffic, assisting sensitive applications.
Queue A, is the lowest-priority default queue for all traffic and
is unbounded (though maximum is still 10 Mbps). Queue B has
medium priority and Queue C has the highest priority. This means
that packets of the queue C are served first, followed by the queue
B, and then the queue A.

We now set up a scenario with three applications — Netflix
client on Chrome browser representing video streaming application,
ping utility representing gaming, and iperf to create cross-traffic
on the link. First, we use the applications without any assistance
wherein all network traffic is served by one queue without priori-
tizing any traffic (i.e., best-effort) — performance of applications is
shown in Fig. 5.

The flow of events is as follows. At t=0, we start a ping to 8.8.8.8
— this traffic persists during the entire experiment (400 seconds).
At t=10, we launch the chrome browser and log in to Netflix. We
observe that ping latency (shown by solid orange lines), which is
initially at around 2 ms, starts increasing to 100 ms once the user
logs into Netflix. The user, loads a Netflix movie (“Pacific Rim”) and
starts playing it at t = 30. From this point onward, we observe that
the ping latency rises up to 300 ms, and Netflix requests chunks
and transfers contents at its peak rates (purple lines) — the link
utilization hits 100%, as shown by solid black lines in the bottom
plot. On the Netflix client, we see that the buffer-health is increasing
slowly (solid blue lines), and the client selects the highest available
bitrate of 2560 Kbps (dashed red lines).

At t = 70, we initiate a downstream flow of UDP traffic with a
max rate of 9 Mbps using the iperf tool to create congestion. We
immediately notice that both sensitive applications start to suffer
with the link utilization remains at 100%. The buffer level on the
client starts depleting from 110 to 100 after which the Netflix client

Mbps # Packets Mbps Seconds

Percentage

Assisting Delay and Bandwidth Sensitive Applications
in a Self-Driving Network

2000+ T T —— Gaming Latency
1500+ T :
—n 1)
500 | » » \
0 Jm/«’J BN]
200
100 ! !
—— Video Buffer Health
0
41 T T T T --- Video Bitrate
2 o gy e P e e
i l" [—— !
0
» » » —— Video Chunk Requests
1\ | LIN.,..,MH MY e
157 —— Video Download Rate
. im.) " Hhh A (i
—— Link Utilization
100+
501
0
0 60 120 180 240 300 360 420

Time (Seconds)

Figure 5: Performance of sensitive applications without net-
work assistance.

switches to a lower video bitrate. The video client does not request
enough chunks as shown by a gap in the purple curve. It only starts
sending out requests again at around t = 100, when the video bitrate
dropped. The ping suffers even more and the latency reaches to
1300-1400 ms. Once the download finishes at t=130, we notice that
the video starts to ramp up its buffers, but at a lower bitrate (because
it just detected poor network conditions) and reaches the stable
buffer value of 4-minute at around t = 140. The ping also displays a
better performance with the latency between 300-400 ms (during
video buffering), but it gets even better dropping to 100 ms when
the video enters into its stable state.

At t = 220, we initiate another UDP traffic stream which makes
the applications suffer again. This time, we notice that video transi-
tions into buffer-depleting state from buffer-stable state. Again we
observe gaps in video chunk requests, clearly indicating decrease
in buffer, and subsequently the video download rate falls below
2 Mbps. Ping reacts similarly by reporting the latency of over a
second. Note that during this congestion period, the video client
switches its resolution three times, with two events of lowering
the bitrate that result in poor user experience. Upon completion of
the download, we note that both sensitive applications display an
acceptable performance.

For our second scenario, we demonstrate the automatic assis-
tance from a self-driving network which continuously monitors the
applications states and intervenes whenever needed. We use the
state machines and classification models explained earlier in §3.1
to capture the application states and trigger assist requests to the
Actor. The Actor, assists the application by shifting its flows to a

NetAl ’19, August 23, 2019, Beijing, China

wn T T
€ 2000 —— Gaming Latency
S 1500
& 1000
= 5001
= 0
§ 200 /
o
S 100]
8 —— Video Buffer Health
%]
0 ol | |
T T
" 41 --- Video Bitrate
(Q] | bl bty S R B S r==
s 21 I
7
0
4 T T
‘3 10 —— Video Chunk Requests
X
§ 5
#* (e \|HHH\|H‘H‘LH hl\i\\l‘l\i\\\iHI‘HiHH'I‘H\
T T T
" —— Video Download Rate
]
i
[T T
2 —— Link Utilization
€ 100+
(V]
Y 501
(]
& 0
0 60 120 180 240 300 360 420

Time (Seconds)

Figure 6: Performance of sensitive applications with net-
work assistance.

separate priority queue (i.e., queue B or C) and de-assists the appli-
cation by putting it back into the default queue A. In our prototype,
we allocate the highest priority queue C to gaming applications,
which will ensure reduction in latencies. The video streaming flows,
when require assistance, are served by the queue B. Note that we
configured the max-rate on the queue B at 4 Mbps — when exceeded,
the priority of exceeded packets becomes equal to of the queue A.
In other words, traffic will be prioritized as long as it consumes less
than 4 Mbps beyond which it needs to compete with traffic on the
queue A. The need for such a mechanism is due to the elastic nature
of video streaming application, it will take up as much bandwidth
as available. If streaming video is given a pure priority over the
default traffic, it will throttle the default traffic to almost 0.

With these settings, we notice a significant improvement in the
experience of both sensitive applications as shown in Fig. 6. As
described earlier, we start with only ping where it reports a very
low latency (i.e, <5 ms). Logging into Netflix at t = 20 causes ping
latency to go beyond 100 ms. First, the classifier finds the gaming
application in the medium state (a transition from the good state)
which results in a request for assistance. The actor elevates the
ping experience by shifting its flow to the queue C. Following this
action, we observe that the ping latency immediately drops back to
around 2 ms. Meanwhile, the video stream starts and is detected
to be in the buffer-increase state, given the large number of chunk
requests. At t = 70, when the UDP iperf traffic (i.e., download) is
introduced, we note that the buffer depletes and no chunk requests
are sent for a few seconds. Our classifier now detects the video state
at buffer-depleting which initiates an assist request. Following it,

NetAl 19, August 23, 2019, Beijing, China

all flows corresponding to the video stream are pushed to the queue
B. Upon assisting the video, we observe that buffer starts to rise
again. Note that the buffer rises slower this time because Netflix
application gets about 4-5 Mbps due to the queue configuration.
Nonetheless, this ensures that the video performs better without
heavily throttling the download on the default queue. When the
download stops, the buffer steeply rises till it enters into the stable
state. At this point, latency values go up to 100ms. This happens due
to de-assist policy which pushes back the applications’ traffic to the
default queue as the link utilization falls below the 70% threshold
(for video) and 40% threshold (for gaming) respectively.

At t= 220, the iperf generates traffic again. As soon as the ping
values go above 100 ms, the ping flow is assisted, and thus its
performance is improved. Similarly, the video application is re-
assisted as it is found in the buffer-depleting state. This time the
video buffer fills up very quickly, taking the application back to its
stable state. Note that the video stream is not de-assisted since the
iperf traffic is still present (i.e., high link utilization), and the video
download rate is capped at around 4-5 Mbps. Once the download
traffic subsides (and thus the link utilization drops), both video
stream and ping traffic are pushed back to the default queue A.

In summary, with automatic assistance from the network, despite
of heavy congestion the user experience of sensitive applications
was maintained by detecting critical experience impairment events
using data-driven classification model and behavioral state machine.
We clearly see that the video stream was always played in the
highest available bitrate with a reasonable buffer-health, and the
gaming application always had a latency under 100 ms.

4 RELATED WORK

Prior studies measure user experience for sensitive applications
(video streaming [14], gaming [12] and interactive calls [5]), but
they do not attempt to enhance the quality of experience. Those
solutions can be readily used in our scheme by providing means to
classify the state of application performance. Several approaches
have leveraged network programmability offered by SDN to dy-
namically respond to QoE requirements and improve the end-user
experience. Works in [8] and [10] propose interactions between
applications and the network via APIs. This interaction can be used
for various purposes including separating traffic on priority lanes
to improve user experience as suggested in [10]. Although such an
approach would be ideal to enhance user experience by receiving
triggers from the application, realizing such method seems chal-
lenging since today application/content providers typically do not
cooperate with network provider and even if they do, a mature
standard of implementation is yet to come [13].

Multiple methods have used the paradigm of SDN to improve
the quality of applications without any active participation from
the applications. One class of approaches have looked at improv-
ing general QoS features (e.g., packet loss, delay, jitter) by using
resource management and path planning (7, 15]. These proposals
work in the context where every network element is SDN-enabled
which is not yet a reality for many ISP networks. The other class of
approaches came up with designs and methodologies to improve
QoE of individual applications, mostly video streaming. SDNHAS
[3] and SDNDASH [2] propose an SDN-enabled architecture that

S. C. Madanapalli, H. Habibi Gharakheili, and V. Sivaraman

enhances the QoE of HTTP Adaptive Video Streaming applications.
However, their system design requires modifications in the video
streaming application to communicate with the controller. Work
in [9] improves QoE fairness by using an OpenFlow switch at the
point of congestion similar to our proposed architecture. However,
it attempts to read Manifest Files from the network traffic which
would only work for unencrypted traffic.

5 CONCLUSION

Sensitive applications need dynamic prioritization from a self-
driving network that reacts to changes in user experience. In this
paper, we have proposed an architecture for continuous monitoring
and dynamic control over the performance of sensitive applications.
We have developed data-driven models for the behavioral state of
applications in real-time. Lastly, we showed how our scheme is able
to detect performance deterioration and take remedial action for
two popular sensitive applications, video streaming and gaming.

REFERENCES

[1] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan. 2014.
Prometheus: Toward quality-of-experience estimation for mobile apps from
passive network measurements. In Proc. ACM HotMobile. Santa Barbara, CA,
USA.

A. Bentaleb, A. C. Begen, and R. Zimmermann. 2016. SDNDASH: Improving QoE

of HTTP Adaptive Streaming Using Software Defined Networking. In Proc. ACM

Multimedia. Amsterdam, Netherlands.

[3] A.Bentaleb, A. C Begen, R. Zimmermann, and S. Harous. 2017. SDNHAS: An
SDN-enabled architecture to optimize QoE in HT TP adaptive streaming. IEEE
Transactions on Multimedia 19, 10 (2017), 2136-2151.

[4] P.Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, et al. 2014. P4: Programming protocol-
independent packet processors. ACM SIGCOMM Computer Communication Re-
view 44, 3 (2014), 87-95.

[5] S.Chen, C. Chu, S. Yeh, H. Chu, and P. Huang. 2014. Modeling the QoE of Rate

Changes in Skype/SILK VoIP Calls. IEEE/ACM Transactions on Networking 22, 6

(Dec 2014), 1781-1793.

G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki. 2016. Measuring

video QoE from encrypted traffic. In Proc. ACM IMC. Santa Monica, CA, USA.

[7] H.E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp. 2012. OpenQoS: An
OpenFlow controller design for multimedia delivery with end-to-end Quality of
Service over Software-Defined Networks. In Proc. IEEE APSIPA. Hollywood, CA,
USA.

[8] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi. 2013.
Participatory networking: An API for application control of SDNs. In Proc. ACM
SIGCOMM. Hong Kong, China.

[9] P.Georgopoulos et al. 2013. Towards network-wide QoE fairness using openflow-

assisted adaptive video streaming. In Proc. ACM FhMN. Hong Kong, China.

H. Habibi Gharakheili. 2017. The Role of SDN in Broadband Networks. Springer.

J. Heinanen and R. Guerin. 1999. A Two Rate Three Color Marker. (1999).

E. Howard, C. Cooper, M. P. Wittie, S. Swinford, and Q. Yang. 2014. Cascading

Impact of Lag on Quality of Experience in Cooperative Multiplayer Games. In

Proc. IEEE NetGames. Nagoya, Japan.

J.Jiang, X. Liu, V. Sekar, L. Stoica, and H. Zhang. 2014. EONA: Experience-Oriented

Network Architecture. In Proc. ACM HotNets. Los Angeles, CA, USA.

T. Mangla, E. Halepovic, M. Ammar, and E. Zegura. 2018. eMIMIC: Estimating

HTTP-based Video QoE Metrics from Encrypted Network Traffic. In IEEE TMA.

Vienna, Austria.

F. Ongaro, E. Cerqueira, L. Foschini, A. Corradi, and M. Gerla. 2015. Enhancing the

quality level support for real-time multimedia applications in software-defined

networks. In Proc. IEEE ICNC. Garden Grove, CA, USA.

L Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov. 2017. A machine learn-

ing approach to classifying YouTube QoE based on encrypted network traffic.

Springer, Multimedia tools and applications 76, 21 (2017), 22267-22301.

R. Presser. 2018. The Importance of Latency in Online Gaming. https://bit.ly/

2GdQXrB.

D. Tsilimantos, T. Karagkioules, and S. Valentin. 2018. Classifying flows and

buffer state for youtube’s HTTP adaptive streaming service in mobile networks.

In Proc. ACM MMSys. Amsterdam, Netherlands.

—
s

—_
2

=
NS

(13

[14

(15

[16

[17

=
&

https://bit.ly/2GdQXrB
https://bit.ly/2GdQXrB

	Abstract
	1 Introduction
	2 System Architecture and Design
	2.1 Data Collection
	2.2 State Classification and State Machine
	2.3 Actor: Enhancing Experience

	3 Assisting Sensitive Applications
	3.1 Dataset and State Classification
	3.2 Performance Evaluation

	4 Related Work
	5 Conclusion
	References

