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Abstract. Enterprise networks are becoming more complex and dy-
namic, making it a challenge for network administrators to fully track
what is potentially exposed to cyber attack. We develop an automated
method to identify and classify organizational assets via analysis of just
0.1% of the enterprise traffic volume, specifically corresponding to DNS
packets. We analyze live, real-time streams of DNS traffic from two or-
ganizations (a large University and a mid-sized Government Research
Institute) to: (a) highlight how DNS query and response patterns dif-
fer between recursive resolvers, authoritative name servers, web-servers,
and regular clients; (b) identify key attributes that can be extracted ef-
ficiently in real-time; and (c) develop an unsupervised machine learning
model that can classify enterprise assets. Application of our method to
the 10 Gbps live traffic streams from the two organizations yielded results
that were verified by the respective IT departments, while also revealing
new knowledge, attesting to the value provided by our automated system
for mapping and tracking enterprise assets.

Keywords: Enterprise network · DNS analysis · Machine learning.

1 Introduction

Enterprise networks are not only large in size with many thousands of con-
nected devices, but also dynamic in nature as hosts come and go, web-servers
get commissioned and decommissioned, and DNS resolvers and name servers get
added and removed, to adapt to the organization’s changing needs. Enterprise
IT departments track such assets manually today, with records maintained in
spreadsheets and configuration files (DHCP, DNS, Firewalls, etc.) – this is not
only cumbersome, but also error prone and almost impossible to keep up-to-date.
It is therefore not surprising that many enterprise network administrators are
not fully aware of their internal assets [12], and consequently do not know the
attack surface they expose to the outside world.

The problem is even more acute in university and research institute campus
networks for several reasons [6]: (a) they host a wide variety of sensitive and lu-
crative data including intellectual property, cutting-edge research datasets, social
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(a) Outgoing DNS queries.
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(b) Incoming DNS responses.

Fig. 1: University campus: outgoing queries and incoming responses, measured
on 3 May 2018.

security numbers, and financial information; (b) their open-access culture, de-
centralized departmental-level control, as well as federated access to data makes
them particularly vulnerable targets for unauthorized access, unsafe Internet us-
age, and malware; and (c) they typically have high-speed network infrastructure
that makes them an attractive target for volumetric reflection attacks.

Our aim in this paper is to develop an automated method to map internal
hosts of an enterprise network by focusing only on DNS traffic which: (a) is
a key signaling protocol that carries a wealth of information yet bypasses fire-
walls easily; (b) constitutes a tiny faction of total network traffic by volume
(less than 0.1% from our measurements in two networks); and (c) is easy to
capture with only a couple of flow entries (i.e mirroring UDP packets to/from
port 53) in an Openflow-based SDN switch. By capturing and analyzing DNS
traffic in/out of the organization, we dynamically and continually identify the
DNS resolvers, DNS name-servers, (non-DNS) public-facing servers, and regular
client hosts behind or not behind the NAT in the enterprise. This can let net-
work administrators corroborate changes in host roles in their network, and also
equip them with information to configure appropriate security postures for their
assets, such as to protect DNS resolvers from unsolicited responses, authoritative
name servers from amplification requests, and web-servers from volumetric DNS
reflection attacks.

Our specific contributions are as follows. We analyze real-time live streams of
DNS traffic from two organizations (a large University and a mid-sized Govern-
ment Research Institute) to: (a) highlight how DNS query and response patterns
differ amongst recursive resolvers, authoritative name servers, and regular hosts;
(b) identify key DNS traffic attributes that can be extracted efficiently in real-
time; and (c) develop an unsupervised machine learning model that can classify
enterprise assets. Application of our method to the traffic streams from the two
organizations yielded results that were verified by the respective IT departments
while revealing new information, such as unsecured name servers that were being
used by external entities to amplify DoS attacks.
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2 Profiling Enterprise Hosts

In this section, we analyze the characteristics of DNS traffic collected from the
border of two enterprise networks, a large University campus (i.e., UNSW) and
a medium-size research institute (i.e., CSIRO). In both instances, the IT depart-
ment of the enterprise provisioned a full mirror (both inbound and outbound) of
their Internet traffic (each on a 10 Gbps interface) to our data collection system
from their border routers (outside of the firewall), and we obtained appropri-
ate ethics clearances for this study3. We extracted DNS packets from each of
enterprise Internet traffic streams in real-time by configuring rules for incom-
ing/outgoing IPv4 UDP packets for port 53 on an SDN switch (extension to
IPv6 DNS packets is left for future work). The study in this paper considers the
data collected over a one week period of 3-9 May 2018.

2.1 DNS Behavior of Enterprise Hosts

Enterprises typically operate two types of DNS servers: (a) recursive resolvers
are those that act on behalf of end-hosts to resolve the network address of a URL
and return the answer to the requesting end-host (recursive resolvers commonly
keep a copy of positive responses in a local cache for time-to-live of the record
to reduce frequent recursion), and (b) authoritative servers of a domain/zone
are those that receive queries from anywhere on the Internet for the network
address of a sub-domain within the zone for which they are authoritative (e.g.,
organizationXYZ.net).

In order to better understand the DNS behavior of various hosts (and their
role) inside an enterprise network, we divide the DNS dataset into two categories:
(a) DNS queries from enterprise hosts that leave the network towards a server on
the Internet along with DNS responses that enter the network, (b) DNS queries
from external hosts that enter the network towards an enterprise host along with
DNS responses that leave the network.

This analysis helps us identify important attributes related to host DNS
behavior, characterizing its type/function including authoritative name server,
recursive resolver, generic public-facing server (e.g web/VPN servers), or end-
host inside the enterprise that may not always be fully visible to the network
operators. This also enables us to capture the normal pattern of DNS activity
for various hosts.

Outgoing queries and incoming responses Fig. 1 shows a time trace of
DNS outgoing queries and incoming responses for the university campus4, with
a moving average over 1-minute intervals on a typical weekday. The university
network handles on average 353 outgoing queries and 308 incoming responses per

3 UNSW Human Research Ethics Advisory Panel approval number HC17499, and
CSIRO Data61 Ethics approval number 115/17.

4 We omit plots for the research institute in this section due to space constraint,
they are shown in Appendix A.
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(a) Incoming DNS queries.
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(b) Outgoing DNS responses.

Fig. 2: University campus: incoming queries and outgoing responses, measured
on 3 May 2018.

second. By checking the transaction ID of queries and responses, we found that
17.28% of outgoing queries are “unanswered” (i.e., 5.26M out of 30.46M) on 3
May 2018. It is also important to note that 5.24% of incoming responses to the
university campus network (i.e., 1.39M out of 26.59M) are “unsolicited” on the
same day5. A similar pattern with lower number of outgoing queries and incom-
ing responses (i.e., average of 107 and 80 per second respectively) is observed in
the research institute network. This network experiences approximately double
the amount of unanswered queries (i.e., 34.14%) and unsolicited responses (i.e.,
12.15%) compared to the university network.

Query per host: We now consider individual hosts in each enterprise. Un-
surprisingly, the majority of outgoing DNS queries are generated by only two
hosts A and B in both networks, i.e., 68% of the total in the university campus
(shown by blue and yellow shades in Figures 1(a)) and 82% of the total in the
research institute – these hosts are also the major recipients of incoming DNS
responses from the Internet. We have verified with the respective IT departments
of the two enterprises that both hosts are the primary recursive resolvers of their
organizations.

In addition to these recursive resolvers, we observe a number of hosts in
both organizations, shown by red shades in Fig. 1(a), that generate DNS queries
to outside of the enterprise network. The 2,642 other Univ hosts in Fig. 1(a)
are either: end-hosts configured to use public DNS resolvers that make direct
queries out of the enterprise network, or secondary recursive servers operating
in smaller sub-networks at department-level. We found that 286 of these 2,642
University hosts actively send queries (at least once every hour) over the day and
contact more than 10 Internet-based DNS servers (resolvers or name-servers).
These 286 hosts display the behavior of recursive resolvers but with fairly low
throughput, thus we deem them secondary resolvers. The remaining 2,356 hosts
are only active for a limited interval (i.e., between 5 min to 10 hours) and contact
a small number of public resolvers (e.g., 8.8.8.8 or 8.8.4.4 of Google) over the
day. We found that 15 of 340 hosts in the research institute display behavior of
secondary resolvers.

5 We acknowledge that some DNS packets could have been dropped by the switches
on which the span-port was configured, especially during periods of overload.
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(a) Unsolicited incoming responses. (b) Unanswered incoming queries.

Fig. 3: University campus: CCDF of (a) unsolicited incoming responses and (b)
unanswered incoming queries per host, measured on 3 May 2018.

Response per host: Considering incoming responses (Fig. 1(b) for the uni-
versity network), a larger number of “other” hosts in both organizations are
observed – approximately 8K hosts in the University and 5.8K hosts in the re-
search institute. Most of these “other” hosts (i.e., 67%) are the destinations of
unsolicited responses. To better understand the focus target of these potentially
malicious responses, we analyze unsolicited incoming responses for the two en-
terprises. Fig. 3(a) shows the CCDF of total unsolicited incoming responses per
each host over a day for the university campus. Interestingly, the primary recur-
sive resolvers in both organizations are top targets: (a) in the University campus,
hosts A and B respectively are the destinations of 522K and 201K unsolicited in-
coming responses (i.e., together receive 52% of total unsolicited DNS responses),
and (b) in the research institute, hosts A and B respectively are the destination
of 435K and 135K unsolicited incoming responses (i.e., together receive 69% of
total unsolicited DNS responses).

Incoming DNS queries Enterprises commonly receive DNS queries from the
Internet that are addressed to their authoritative name servers.

It can be seen that two hosts of the University campus (i.e., hosts C and D
in Fig. 2) and one host (we name it Host C) of the research institute are the
dominant contributors to outgoing DNS responses – we have verified (by reverse
lookup) that these hosts are indeed the name servers of their respective organi-
zations. Interestingly, for both organizations we observe that a large number of
hosts (i.e., 197K hosts of the University campus and 244K hosts of the research
institute (shown by red shades in Fig. 2(a) for the university network) receive
queries from the Internet, but a significant majority of them are unanswered
(i.e., 82.18% and 62.09% respectively) – these hosts are supposed to neither re-
ceive nor respond to incoming DNS queries, highlighting the amount of unwanted
DNS traffic that targets enterprise hosts for scanning or DoS purposes.

To better understand the target of these potentially malicious queries, we an-
alyze unanswered incoming queries over a day for the two enterprises. Fig. 3(b)
is the CCDF of total incoming unanswered queries per each host for the uni-
versity campus. It is seen that two hosts of the university campus receive more
than a million DNS queries over a day from the Internet with no response sent
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Table 1: Host attributes.
QryFracOut numExtSrv numExtClient actvTimeFrac

Univ name server (host C) 0 0 0.29 0

Rsch name server (host C) 0 0 0.61 0

Univ recursive resolver (host A) 1 0.26 0 1

Rsch recursive resolver (host A) 1 0.49 0 1

Univ mixed DNS Server 0.55 0.03 0.06 1

Rsch mixed DNS Server 0.29 0.0008 0.0018 1

Univ end-host 1 0.00002 0 0.375

Rsch end-host 1 0.00003 0 0.25

back, whereas one host in the research institute has the similar behaviour. By
reverse lookup, we found that the University hosts are a DHCP server and a web
server that respectively received 9.4M and 4.4M unanswered queries (together
contributing to 72% of red shaded area in Fig. 2(a)).

Furthermore, we analyzed the question section of unanswered incoming queries
that originated from a distributed set of IP addresses. Surprisingly, in the Uni-
versity dataset we found that 72% of domains queried were irrelevant to its zone
(e.g., 47% for “nist.gov”, 5% for “svist21.cz”, and even 2% for “google.com”),
and in the research institute dataset we found 84% of domains queried were ir-
relevant to its zone (e.g., 8% for “qq.com”, 7% for “google.com”, and 5% for
“com”).

Considering outgoing responses (shown in Fig. 2(b) for the university net-
work), there are 68 hosts in the campus network (shown by the red shade) and 21
hosts in the research network that respond to incoming DNS queries in addition
to name servers (i.e., hosts C and D). We have verified (by reverse lookup) that
all hosts that generate “no Error” responses are authoritative for sub-domains of
their organization zone. We also note that some hosts that reply with “Refused”,
“Name Error” and “Server Failure” flags to some irrelevant queries (e.g., com)
– these are secondary name servers.

2.2 Attributes

Following the insights obtained from DNS behavior of various hosts, we now
identify attributes that help to automatically (a) map a given host to its function,
including authoritative name server, recursive resolver, mixed DNS server (i.e.,
both name server and recursive resolver), a (non-DNS) public-facing server, or
a regular client; and (b) rank the importance of servers.

Dataset Cleansing We first clean our dataset by removing unwanted (or ma-
licious) records including unsolicited responses and unanswered queries. This is
done by correlating the transaction ID of responses with the ID of their corre-
sponding queries. In the cleaned dataset, incoming responses are equal in number
to outgoing queries, and similarly for the number of incoming queries and out-
going responses.

Functionality Mapping As discussed in §2.1, recursive resolvers are very ac-
tive in terms of queries-out and responses-in, whereas name servers behave the
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opposite with high volume of queries-in and responses-out. Hence, a host at-
tribute defined by the query fraction of all outgoing DNS packets (QryFraqOut)
should distinguish recursive resolvers from name servers. As shown in Table 1,
this attribute has a value close to 1 for recursive resolvers and a value close to 0
for name servers.

In addition to recursive resolvers, there are some end-hosts configured to use
public resolvers (e.g., 8.8.8.8 of Google) that have a non-zero fraction of DNS
queries out of the enterprise network. We note that these end-hosts ask a limited
number of Internet servers during their activity period whereas the recursive
resolvers typically communicate with a larger number of external servers. Thus,
we define a second attribute as the fraction of total number of external servers
queried (numExtSrv) per individual enterprise host. As shown in Table 1, the
value of this attribute for end-hosts is much smaller than for recursive resolvers.
Similarly for incoming queries, we consider a third attribute as the fraction
of total number of external hosts that initiate query in (numExtClient) per
individual enterprise host. Indeed, this attribute has a larger value for name
servers compared with other hosts, as shown in Table 1.

Lastly, to better distinguish between end-hosts and recursive resolvers (high
and low profile servers), we define a fourth attribute as the fraction of active
hours for outgoing queries (actvTimeFrac). Regular clients have a smaller value
of this attribute compared with recursive resolvers and mixed DNS servers, as
shown in Table 1.

We note that public-facing (non-DNS) servers typically do not have DNS
traffic in/out of the enterprise networks. To identify these hosts, we analyzed
the answer section of A-type outgoing responses.

Importance Ranking Three different attributes are used to rank the impor-
tance of name servers, recursive resolvers, and (non-DNS) public-facing servers
respectively. Note that we rank mixed DNS servers within both name servers
and recursive resolvers for their mixed DNS behaviour.

For recursive resolvers, we use QryFracHost defined as the fraction of out-
going queries sent by each host over the cleaned dataset. And for name servers,
we use RespFracHost as the fraction of outgoing responses sent by each host.
For other public-facing servers, we use RespCount as the total number of out-
going responses that contain the IP address of a host – external clients that
access public-facing servers obtain the IP address of these hosts by querying the
enterprise name servers.
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3 Classifying Enterprise Hosts

In this section, we firstly develop a machine learning technique to determine if an
enterprise host with a given DNS activity is a “name server”, “recursive resolver”,
“mixed DNS server”, or a “regular end-host”. We then detect other public-facing
(non-DNS) servers by analyzing the answer section of A-type outgoing responses.
Finally, we rank the enterprise server assets by their importance.

Our proposed system (shown in Fig. 4) automatically generates lists of active
servers into three categories located inside enterprise networks, with the real-
time DNS data mirrored from the border switch of enterprise networks. The
system first performs “Data cleansing” that aggregates DNS data into one-
day granularity and removes unsolicited responses and unanswered queries (i.e.,
step 1); then “Attribute extraction” in step 2 computes attributes required
by the following algorithms; “Server mapping” in step 3 detects DNS servers
and other public-facing servers; and finally “server ranking” in step 4 ranks
their criticality. The output is a classification and a ranked order of criticality,
which an IT manager can then use to accordingly adjust security policies.

3.1 Host Clustering using DNS Attributes

We choose unsupervised clustering algorithms to perform the grouping and clas-
sification process because they are a better fit for datasets without ground truth
labels but nevertheless exhibit a clear pattern for different groups/clusters.

Selecting Algorithm We considered 3 common clustering algorithms, namely
Hierarchical Clustering (HC), K-means and Expectation-maximization (EM).
HC is more suitable for datasets with a large set of attributes and instances that
have logical hierarchy (e.g., genomic data). In our case however, hosts of enter-
prise networks do not have a logical hierarchy and the number of attributes are
relatively small, therefore HC is not appropriate. K-means clustering algorithms
are distance-based unsupervised machine learning techniques. By measuring the
distance of attributes from each instance and their centroids, it groups data-
points into a given number of clusters by iterations of moving centroids. In our
case there is a significant distance variation of attributes for hosts within each
cluster (e.g., highly active name servers or recursive resolvers versus low active
ones) which may lead to mis-clustering.

The EM algorithm is a suitable fit in our case since it uses the probabil-
ity of an instance belonging to a cluster regardless of its absolute distance. It
establishes initial centroids using a K-means algorithm, starts with an initial
probability distribution following a Gaussian model and iterates to achieve con-
vergence. This mechanism, without using absolute distance during iteration,
decreases the chance of biased results due to extreme outliers. Hence, we choose
an EM clustering algorithm for “DNS Host Clustering Machine”.
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Table 2: University campus: host clusters (3 May 2018).
Count QryFracOut numExtSrv numExtClient actvTimeFrac

name server 42 0.0057 1e-5 0.02 0.03
recursive resolver 14 0.99 0.06 0 0.94
mixed DNS server 14 0.57 0.01 0.02 0.66
end-host 2195 1 2e-5 0 0.31

Table 3: Research institute: host clusters (3 May 2018).
Count QryFracOut numExtSrv numExtClient actvTimeFrac

name server 12 7e-7 5e-6 0.07 0.01
recursive resolver 4 0.99 0.20 9e-5 1
mixed DNS server 6 0.21 0.001 0.019 0.625
end-host 249 1 7e-4 0 0.25

Number of Clusters Choosing the appropriate number of clusters is the key
step in clustering algorithms. As discussed earlier, we have chosen four clusters
based on our observation of various types of servers. One way to validate the
number of clusters is with the “elbow” method. The idea of the elbow method is
to run k-means clustering on the dataset for a range of k values (say, k from 1 to
9) that calculates the sum of squared errors (SSE) for each value of k. The error
decreases as k increases; this is because as the number of clusters increases, the
SSE becomes smaller so the distortion also gets smaller. The goal of the elbow
method is to choose an optimal k around which the SSE decreases abruptly (i.e.,
ranging from 3 to 5 in our results, hence, k = 4 clusters seems a reasonable value
for both the university and the research institute).

Clustering Results We tuned the number of iterations and type of covariance
for our clustering machine to maximize the performance in both enterprises. Ta-
bles 2 and 3 show the number of hosts identified in each cluster based on data
from 3 May 2018. We also see the average value of various attributes within each
cluster. For the cluster of name servers, QryFracOut approaches 0 in both orga-
nizations, highlighting the fact that almost all outgoing DNS packets from these
hosts are responses rather than queries, which matches with the expected behav-
ior. Having a high number of external clients served also indicates the activity
of these hosts – in the University campus and research institute respectively 42
and 12 name servers collectively serve 84% (i.e., 42×2% and 12×7%) of external
hosts.

Considering recursive resolvers in Tables 2 and 3, the average QryFracOut is
close to 1 for both organizations as expected. It is seen that some of these hosts
also answer incoming queries (from external hosts) possibly due to their mis-
configuration. However, the number of external clients served by these hosts is
very small (i.e., less than 10 per recursive resolver) leading to an average fraction
near 0. Also, looking at the number of external servers queried (i.e., numExtSrv),
the average value of this attribute for recursive resolvers is reasonably high, i.e.,
14 and 4 hosts in the University and the research network respectively contribute
to 84% and 80% of total numExtSrv – this is also expected since they commonly
communicate with public resolvers or authoritative name servers on the Internet.
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(a) Univesity campus. (b) Research institute.

Fig. 5: Hosts clustering results across one week.

Hosts clustered as mixed DNS servers in both organizations have a moder-
ate value of the QryFracOut attribute (i.e., 0.57 and 0.21 for the University
and the research network respectively) depending on their varying level of in-
bound/outbound DNS activity. Also, in terms of external clients and servers
communicated with, the mixed servers lie between name servers and recursive
resolvers. Lastly, regular end-hosts generate only outbound DNS queries (i.e.,
QryFracOut equals to 1), contact a small number of external resolvers, and are
active for shorter duration of time over a day (i.e., actvTimeFrac less than 0.5).

Interpreting the Output of Clustering Our clustering algorithm also gener-
ates a confidence level as an output. This can be used as a measure of reliability
for our classifier. If adequate information is not provided by attributes of an
instance then the algorithm will decide its cluster with a low confidence level.
The average confidence level of the result clustering is 97.61% for both organiza-
tions, with more than 99% of instances classified with a confidence-level of more
than 85%. This indicates the strength of our host-level attributes, enabling the
algorithm to cluster them with a very high confidence-level.

Server Clusters Across a Week We now check the performance of our clus-
tering algorithm over a week. Fig. 5 shows a heat map for clusters of servers.
Columns list server hosts that were identified in Tables 2 and 3 (i.e., 70 hosts
in the University network and 22 hosts in the research network). Rows display
the cluster into which each server is classified. The color of each cell depicts the
number of days (over a week) that each host is identified as the corresponding
cluster – dark cells depict a high number of occurrences (approaching 7), while
bright cells represent a low occurrence closer to 0.

In the University network we identified 42 name servers, shown by H1 to H42
in Fig. 5(a); the majority of which are repeatedly classified as a name server over
a week, thus represented by dark cells at their intersections with the bottom row,
highlighting the strong signature of their profile as a name server.

Among 14 recursive resolvers of the university campus, shown by H43 to H56
in Fig. 5(a); two of them (i.e., hosts A and B in Fig. 1) are consistently classified
as recursive resolver, and the rest are classified as either mixed DNS server or
even end hosts (due to their varying activity). Lastly, 14 mixed servers, shown
by H57 to H70 in Fig. 5(a), are classified consistently though their behavior
sometimes is closer to a resolver or a name server.

Our results from the Research Institute network are fairly similar – Fig. 5(b)
shows that hosts H1-H12 are consistently classified as name servers, while hosts
H13-H16 are recursive resolvers and H17-H22 are mixes servers.
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3.2 Server Ranking

Our system discovered 5097 public-facing (non-DNS) servers in the University,
and 6102 at the Research Institute. However, only top 368 and 271 of these
servers respectively appeared in the answer section of more than 100 outgoing
DNS responses over a day. Additionally, 6 top ranked DNS servers, in each
organization, contribute to more than 90% of outgoing queries and responses.
Servers ranking provides network operators with the visibility into the criticality
of their internal assets.

3.3 IT Verification

IT departments of both organizations were able to verify the top ranked DNS
resolvers, name-servers, and non-DNS public-facing servers found, as they are di-
rectly configured and controlled by IT departments of the two organizations,(e.g.,
major name-servers and web-servers). Additionally, we revealed unknown servers
configured by departments of the two enterprises (we verified their functional-
ity by reverse DNS lookup and their IP range allocated by IT departments).
Interestingly, 3 of the name-servers our method identified were implicated in a
DNS amplification attack soon after, and IT was able to confirm that these were
managed by affiliated entities (such as retail stores that lease space and Internet
connectivity from the University) - this clearly points to the use of our system in
identifying and classifying assets whose security posture the network operators
themselves may not have direct control over.

3.4 Clustering of End-hosts: NATed or Not?

Lastly, to draw more insights we further applied our clustering algorithm (using
the same attributes introduced in §2.2) to IP address of end-hosts, determin-
ing whether they are behind a NAT gateway or not (i.e., two clusters: NATed
and not-NATed). In both networks, all WiFi clients are behind NAT gateways.
Additionally, some specific departments of the two enterprises use NAT for
their wired clients too. We verified our end-host clustering by reverse lookup
for each enterprise network. Each NATed IP address has a corresponding do-
main name in specific forms configured by IT departments. For example the
University campus wireless NAT gateways are associated with domain-names as
“SSID-pat-pool-a-b-c-d.gw.univ-primay-domain”, where “a.b.c.d” is the
public IP address of the NAT gateway, and SSID is the the WiFi SSID for the Uni-
versity campus network (we will disclose SSID and univ-primay-domain when
this paper is de-anonymized). Similarly, in the Research institute NAT gateways
use names in form of “c-d.pool.rsch-primary-domain” where “c.d” is the
last two octets of the public IP address of the NAT gateway in the Research
institute. On 3rd May, our end-host clustering shows that 292 and 19 of end-
hosts IP addresses are indeed NATed in the University campus and the Research
institute respectively – we verified their corresponding domain names configured
by their IT departments.
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We note that the two clusters of end-hosts are distinguished primarily by
one attribute actvTimeFrac – a NATed IP address (representing a group of end-
hosts) is expected to have a longer duration of DNS activity compared to a
not-NATed IP address (representing a single end-host)6. We observe that some
IPs with domain-names of NAT gateways are incorrectly classified as not-NATed
end-hosts. This is because their daily DNS activity was fairly low, i.e., less
than an hour. On the other hand, not-NATed end-hosts with long duration of
DNS activity (i.e., almost the whole day) were misclassified. Verifying end-hosts
classified as NATed, 84.3% of them in the University campus and and 86% in
the Research institute have corresponding domain-names as for NAT gateways
allocated by IT departments. For end-hosts classified as not-NATed, 80.7% and
90.0% in the respective two organizations do not map to any organizational
domain-names.

Looking into the performance of end-hosts clustering across a week, we note
that 78.3% end-hosts in the University campus are consistently labeled as NATed
over 7 days 7. However, for the research institute, only 32.0% of NATed IPs are
consistent across the entire week – 34.5% of IPs were absent on some days and
the remaining 33.4% were misclassified as not-NATed for their low activity (e.g.,
only active 2 hour during a day).

4 Related Work

DNS traffic has been analyzed for various purposes, ranging from measuring
performance (effect of Time-to-Live of DNS records) [7, 13, 3] to identifying ma-
licious domains [8, 9, 2] and the security of DNS [5, 10, 11, 14]. In this paper we
have profiled the pattern of DNS traffic for individual hosts of two enterprise net-
works to map network assets to their function and thereby identify their relative
importance for efficient monitoring and security.

Considering studies related to malicious domains, [8] inspects DNS traffic
close to top-level domain servers to detect abnormal activity and PREDATOR
[9] derives domain reputation using registration features to enable early detection
of potentially malicious DNS domains without capturing traffic. From a security
viewpoint, the authors of [5] study the adoption of DNSSEC [1], highlighting that
only 1% of domains have implemented this secure protocol due to difficulties in
the registration process and operational challenges; [10, 11] focus on authoritative
name servers used as reflectors in DNS amplification attacks; some researchers
[14] have reported that the amplification factor of DNSSEC is quite high (i.e.,
up to 44 to 55) whereas this measure is 6 to 12 for regular DNS servers.

DNS data can be collected from different locations (such as from log files of
recursive resolvers [7, 4] or authoritative name servers) or with different gran-
ularity (such as query/response logs or aggregated records). Datasets used in
[10, 11, 5] contain DNS traffic for top level domains such as .com, and .net. We
collect our data at the edge of an enterprise network, specifically outside the

6 We omit CCDF plots due to space constraint, they are shown in Appendix B.
7 We omit consistency plots due to space constraint, they are shown in Appendix B.
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firewall at the point of interconnect with the external Internet. We note that
while using data from resolver logs can provide detailed information about end
hosts and their query types/patterns, this approach limits visibility and may not
be comprehensive enough to accurately establish patterns related to the assets
of the entire network.

5 Conclusion
Enterprise network administrators find it challenging to track their assets and
their network behavior. We have developed an automated method to map inter-
nal hosts of an enterprise network by focusing only on DNS traffic which carries
a wealth of information, constitutes a tiny faction of total network traffic and is
easy to capture. By analyzing real-time live streams of DNS traffic from two or-
ganizations we highlighted how DNS query and response patterns differ amongst
recursive resolvers, authoritative name servers, and regular hosts. We then iden-
tified key DNS traffic attributes that can be extracted efficiently in real-time.
Lastly, we developed an unsupervised machine learning model that can classify
enterprise assets, and we further applied our technique to infer the type of an
enterprise end-host (NATed or not-NATed). Our results have been verified with
IT departments of the two organizations while revealing unknown knowledges.

Acknowledgements. This work was completed in collaboration with the Aus-
tralian Defence Science and Technology Group.

References

1. DNS Security Introduction and Requirements. https://www.ietf.org/rfc/

rfc4033.txt (2018), accessed: 2018-05-28
2. Ahmed, J., Habibi Gharakheili, H., Russell, C., Sivaraman, V.: Real-Time De-

tection of DNS Exfiltration and Tunneling from Enterprise Networks. In: Proc.
IFIP/IEEE IM. Washington DC, USA (April 2019)

3. Almeida, M., Finamore, A., Perino, D., Vallina-Rodriguez, N., Varvello, M.: Dis-
secting DNS Stakeholders in Mobile Networks. In: Proc. ACM CoNEXT. Incheon,
Republic of Korea (Dec 2017)

4. Choi, H., Lee., H.: Identifying Botnets by Capturing Group Activities in DNS
Traffic. Computer Networks 56(1), 20–33 (Feb 2012)

5. Chung, T., van Rijswijk-Deij, R., Choffnes, D., Levin, D., Maggs, B.M., Mislove,
A., Wilson, C.: Understanding the Role of Registrars in DNSSEC Deployment. In:
Proc. ACM IMC. London, United Kingdom (Nov 2017)

6. Deloitte: Elevating cybersecurity on the higher education leadership agenda.
https://www2.deloitte.com/insights/us/en/industry/public-sector/

cybersecurity-on-higher-education-leadership-agenda.html (2018)
7. Gao, H., Yegneswaran, V., Jiang, J., Chen, Y., Porras, P., Ghosh, S., Duan, H.:

Reexamining DNS From a Global Recursive Resolver Perspective. IEEE/ACM
Transactions on Networking 24(1), 43–57 (Feb 2016)

8. Hao, S., Feamster, N., Pandrangi, R.: Monitoring the Initial DNS Behavior of
Malicious Domains. In: Proc. ACM IMC. Berlin, Germany (Nov 2011)

9. Hao, S., Kantchelian, A., Miller, B., Paxson, V., Feamster, N.: PREDATOR: Proac-
tive Recognition and Elimination of Domain Abuse at Time-Of-Registration. In:
Proc. ACM CCS (October 2016)



14 M.Lyu et al.

10. MacFarland, D.C., Shue, C.A., Kalafut, A.J.: Characterizing Optimal DNS Am-
plification Attacks and Effective Mitigation. In: Proc. PAM. New York, NY, USA
(Mar 2015)

11. MacFarland, D.C., Shue, C.A., Kalafut, A.J.: The best bang for the byte: Charac-
terizing the potential of DNS amplification attacks. Computer Networks 116(C),
12 – 21 (Apr 2017)

12. Marshall, S.: CANDID: Classifying Assets in Networks by Determining Importance
and Dependencies. Tech. rep., University of California at Berkeley, Electrical En-
gineering and Computer Sciences (May 2013)

13. Müller, M., Moura, G.C.M., de O. Schmidt, R., Heidemann, J.: Recursives in
the Wild: Engineering Authoritative DNS Servers. In: Proc. ACM IMC. London,
United Kingdom (Nov 2017)

14. van Rijswijk-Deij, R., Sperotto, A., Pras, A.: DNSSEC and Its Potential for DDoS
Attacks: A Comprehensive Measurement Study. In: Proc. ACM IMC. Vancouver,
BC, Canada (Nov 2014)

Appendix 1 DNS Behavior of Hosts (Research Institute).
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(a) Outgoing DNS queries.
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(b) Incoming DNS responses.
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(c) Incoming DNS queries.
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(d) Outgoing DNS responses.

Fig. 6: Research institute: outgoing queries, incoming responses, incoming queries
and outgoing responses, measured on 3 May 2018.
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(a) Unsolicited incoming responses. (b) Unanswered incoming queries.

Fig. 7: Research institute: CCDF of (a) unsolicited incoming responses and (b)
unanswered incoming queries per host, measured on 3 May 2018.

Appendix 2 NATed vs. not-NATed end-hosts.
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(a) University campus.
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Fig. 8: CCDF: fraction of active hour per day for end-host IP addresses
with/without domain names.
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(a) University campus.
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Fig. 9: CCDF: Consistency of end-hosts clustering across a week.


