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Abstract—Building operators are required to conduct pe-
riodic drills to ensure smooth evacuations in the event of
emergencies. However, quantitative evaluation of the drill for
adherence to building codes is largely manual and error-prone.
Further, unplanned evacuations are seldom documented, let alone
evaluated. This paper explores the use of building WiFi data
for quantitative evaluations of both planned and unplanned
evacuation events. We collect and analyze WiFi connectivity
logs spanning a period of 180 days from 14 buildings in a
large University campus. For our first contribution, we isolate
WiFi data for known planned evacuation drills, conduct floor-
level analysis to eliminate noise associated with transient WiFi
connections or persistently connected devices, and highlight the
anatomy of evacuations across multiple representative buildings
each with differing number of levels, exit layouts, and occupant
types. Armed with a detailed understanding of the anatomy
of a planned evacuation, our second contribution develops a
novel method to automatically identify evacuation events from
WiFi data; we use it to detect 29 unplanned evacuations, and
corroborate them against documented records where available.
Our third contribution deduces quantitative measures to compare
planned and unplanned evacuations, in terms of evacuation speed
and occupancy levels, and further quantifies the man-days of
productivity loss arising from unplanned evacuation events across
campus. We believe our work is the first to show that building
evacuations can be evaluated systematically and accurately at
scale using WiFi data, both to corroborate current manual
records and to gain new insights.

Index Terms—WiFi, Connection Logs, Evacuation, Data Ana-
lytics

I. INTRODUCTION

Building safety standards mandate procedures to be in place
to quickly and safely evacuate occupants in the event of
emergencies such as fires. In order to periodically test these
procedures, evacuation drills are enforced, at least once per
year [1], [2]. The standards require that these drills measure
speed of evacuation (to ensure they are within a reasonable
limit, say 30 minutes) and number of occupants evacuated (to
ensure drills are conducted when the building occupancy is
typical). Current methods to measure these are manual and
error prone, especially for multi-level buildings with many
hundreds of occupants and several exit doors. Further, un-
planned evacuations are rarely documented or evaluated, lead-
ing to gaps in our knowledge of whether they are conducted
with similar efficiency to planned drills, and the productivity

loss they cause especially since a large majority of unplanned
evacuations turn out to be false alarms.

WiFi connectivity data presents an opportunity to address
the gaps above. Almost everyone in the world carries one or
more mobile WiFi-connected devices, and WiFi connectivity
is routinely logged by campus/building IT systems without
any additional cost. Monitoring the WiFi connectivity patterns
can therefore indicate when individuals are entering/exiting the
building and/or moving across floors, which can be immensely
helpful in evaluating evacuation events. We emphasize that our
objective is not to use WiFi connectivity to guide an evacuation
process as it is occurring, since the false negatives (people who
do not carry a WiFi connected device) and false positives
(people who leave their mobile device at their desk when
they step out) can significantly confound evacuation personnel.
Rather, our objective is to use the WiFi connection logs for
a post-mortem analysis of evacuation efficiency. While WiFi
connection logs have been used to study building occupancy
patterns [3], [4], we believe detecting and measuring emer-
gency evacuations pose new questions and challenges (outlined
below) which have not been addressed to-date.

The most important measures pertinent to a planned evac-
uation are the speed (time from sounding of alarm to last
person exiting the building) and occupancy count (in relation
to the typical number of occupants housed in the building) [5].
These are measured manually today by a team of fire wardens
and estate management personnel, who position themselves
at various exits. A WiFi count based approach can not only
corroborate these measures, but also offer richer insights into
the evacuation process. It can allow estimation of finer-grained
occupancy, for example, for individual floors within a building,
and compare it to historical occupancy profiles. It can also
help profile evacuation speed as a time evolution distribution
rather than a single number, and identify bottlenecks at some
floors due to elevators becoming unusable. However, the use
of WiFi comes with many challenges – passers-by could be
mistakenly counted as occupants, occupants may leave their
devices connected at their desk or conversely get disconnected
while using stairways, and devices may remain connected even
after evacuation if the congregation area is within WiFi range.
Overcoming these challenges requires us to come up with
novel approaches/methods that are significantly different to



Table I
ATTRIBUTES OF REPRESENTATIVE BUILDINGS.

Building Primary usage # floors Area size (m2) # APs
F21 Study and meeting 14 4254 303

C22 Office 5 2533 62

F23 Teaching 16 2384 171

J17 Multi-purpose academic 6 1410 101

those developed in prior building occupancy studies that use
WiFi connectivity data.

For this study we obtained WiFi connectivity logs for 14
buildings spread around a University campus, over a period
of 180 days that include weekdays and weekends but exclude
holiday shutdown periods (appropriate ethics approvals were
obtained for this study). Using four different buildings as
representative examples, we first examine the anatomy of an
evacuation from a WiFi perspective, showing how it varies
by building size, number of floors, layout, and use (offices
versus classrooms). We then develop a novel filtering-based
method to automatically detect evacuation events from the
WiFi data, distinguishing it from regular people movement
patterns including the start/end of lectures and lunch breaks.
Next, we apply our method to detect over 25 unplanned evac-
uations across 14 buildings, and validate our findings against
building records where available. Lastly, we quantitatively
compare planned versus unplanned evacuations, and estimate
the productivity loss arising from unplanned evacuations (that
largely tend to be false alarms). Our work establishes a
framework and methodology for large-scale, systematic, low-
cost and automatic evaluation of WiFi data to identify and
quantify building evacuations, providing corroboration of cur-
rent manual methods as well as new insights that do not require
manual effort.

The rest of the paper is organized as follows: §II highlights
the anatomy of an evacuation from a WiFi perspective and §III
presents our novel method to automatically detect evacuations
using WiFi data. In §IV, we quantitatively evaluate evacu-
ations, while in §V we describe the prior work. The paper
concludes in §VI.

II. PLANNED EVACUATION EVENTS
FOR CAMPUS BUILDINGS

The university campus in this study consists of 53 buildings
spread across a 38-hectare site, serving over 60,000 students
and staff. The buildings accommodate a variety of activities
ranging across teaching classrooms, study spaces, research
labs, social areas, administrative offices, and housing units.
The campus owns and operates a rich WiFi infrastructure con-
sisting of over 5000 access points (APs) that serve authorized
university users.

A. University Campus Buildings and Datasets

We begin by considering four representative buildings on
campus, and to preserve anonymity refer to them by their
quadrant location on the map. These include: F21 - the
largest building on campus that is primarily used for study
and meeting purposes; C22 - an office building; F23 - a
building which largely accommodates teaching spaces; and

Table II
SAMPLE WIFI SESSION LOGS.

User ID MAC addr AP name Assoc. time Disassoc. time Thput. (Kbps)
145e7e26 b76690ac J17 F1 AP01 31/01/2019 10:40 31/01/2019 11:15 0.1

145e7e26 127d4fb7 J17 F1 AP02 31/01/2019 10:55 31/01/2019 11:20 8.6

b6c72a33 decf7837 J17 F3 AP12 31/01/2019 11:15 31/01/2019 11:20 561.8

J17 - a multi-purpose academic building comprising offices,
lecture theaters, laboratories, and study spaces. Table I shows
attributes of these buildings including primary use, number of
floors, area size, and number of indoor WiFi APs.

For our study, we obtained two types of datasets; (1) build-
ing evacuation drill schedule and reports provided by campus
Estate Management and (2) daily WiFi sessions logs of all
campus APs (provided by the campus IT department). We note
that appropriate clearance (UNSW Human Research Ethics
Advisory Panel approval number HC190372) was obtained
from the University ethics review board for this study. We
further note that we anonymize user IDs and MAC addresses
contained in the WiFi logs prior to storage/analysis by apply-
ing a one-way hash function.

Evacuation dataset: Campus Estate Management provided
us with: (a) schedule of planned evacuations (aka drills) across
all buildings on campus over the 6-month period of this study,
(b) copies of drill reports from seven planned evacuations over
this period, and (c) date/time of all unplanned evacuations that
were recorded for the four selected buildings listed in Table I
over the study period.

Evacuation drills, typically one per year, are planned by
Estate Management at the beginning of each calendar year.
Each drill is attended by a team of fire wardens, some of
whom walk through various floors to clear people out while
others are stationed at the various exits. After the drill, a
report is filed that manually estimates the timing aspects of
the drill, such as time of alarm, end of evacuation, and start
of reoccupation, as well as number of occupants evacuated.
These reports are analyzed to check if adjustments need to be
made to the evacuation procedures to speed it up, and to make
qualitative judgments on whether the building was at typical
occupancy level during the drill. Our study uses these manual
reports as ground-truth information to validate our WiFi based
analysis of evacuation drills.

WiFi dataset: The University IT department provided us
with: (a) data showing the physical mapping of WiFi APs to
buildings and floor levels, and (b) daily session logs across the
5249 APs for a period of 210 days from Oct-2018 to May-
2019, from which we redacted data for the Christmas holiday
period (since campus operations are minimal) to get 180 days
of usable data. Combining the two gave us a total of around 65
million WiFi session records; Table II shows a representative
snapshot. Each record contains a unique User ID (note that we
have hashed this to preserve anonymity); device MAC address
(also hashed to preserve anonymity); a unique AP name that
clearly indicates the building name, floor level, and access
point ID; time at which the device associated to/disassociated
from the AP (note that this is in minutes and therefore we do
not have sub-minute accuracy); and avg throughput indicating
data rate during the session. For example, the top session
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(a) CCDF of WiFi session duration.
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(b) CCDF of daily average duration of device Wi-Fi
sessions per building.
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Figure 1. Overall statistics of session durations and device-user mapping in our WiFi dataset; distribution of: (a) sessions duration, (b) daily average of device
sessions per building, and (c) number of devices per-user.

in Table II belongs to user 145e7e26 who connected from
device b76690ac to AP1 located in building J17 floor F1,
from 10:40am to 11:15am, and used an average throughput of
0.1 Kbps over the session. The second record represents the
same user but with a different device 127d4fb7 connected to
AP2 located on the same floor of the building from 10:55am to
11:20am, while the third record is a different user connected to
a different floor of the same building, connected for 5 minutes
with an average throughput of 561.8 Kbps.

B. Inferring Building Occupancy and Evacuations from WiFi
Traces

Evacuations cause a sudden temporal change, i.e., drop
followed by a rise in building occupancy, and we expect this
to be reflected in the WiFi counts, which can be estimated for
a point in time by counting the total number of unique user
ids connected across all APs in the building at that time [3].
However, this method may overestimate building occupants
as people walking past the building may get connected to an
AP in the building for a short duration and thus wrongly
be counted as occupants. To get a sense of such transient
connections, we plot in Fig. 1(a) the CCDF of all session
durations in our log, and observe that as many as 43.2% of
sessions have a duration of less than 5 minutes. Indeed, when
we plotted this on a per-building basis we found that buildings
that are close to high foot traffic areas such as campus gates,
bus stops, and walk-ways have a significantly higher number
of transient connections. To estimate building occupancy, one
could filter out all transient sessions. However, some of these
transients are also observed during evacuations – such as when
a person walks down the stairway from floor-to-floor and
eventually exits the premises. We therefore need to devise a
method that eliminates transients associated with passers-by
while preserving the transients associated with an evacuation.

To do so, we first focus on devices (rather than sessions)
seen by a building over a day (midnight to midnight), and
for each such device, compute the average session duration in
that building over that day. The CCDF of the daily average
session durations per building is shown in Fig. 1(b). If the
average session length of a device in a building over a day is
under 5 minutes, we deem the device to be a “passer-by” for

that building, and do not consider it to be an occupant of the
building for that day. This method preserves devices that have
significant presence in the building, along with all their (long
and short) sessions, while eliminating devices that have only
short sessions. This method eliminated around 6.2% of overall
devices (which only had transient sessions across the buildings
considered), though buildings that are close to heavy foot-
traffic areas saw as many as 55% devices being filtered. Once
transient devices have been pre-filtered out, we might still have
transient sessions that could either be due to the device passing
by the building (“passer-by transient”), or due to it moving
between floors with potential intermittent connectivity during
an evacuation (“evacuation transient”). Post-filtering to remove
passer-by transients during the evacuation time-window will be
discussed in §II-C.

Another aspect to consider is that building occupants may
own multiple WiFi devices, e.g., laptop, tablet, phone. During
an evacuation, an occupant may carry one device (e.g., phone)
on their person while exiting the building, while leaving other
devices (e.g., laptop) inside. Since our WiFi data includes both
User-ID and MAC-address of the device, we are able to map
devices to users – Fig. 1(c) shows the histogram of daily count
of WiFi devices per user in a building. We observe that 75%
of users own a single device, 22.5% have 2 devices, and a
negligible fraction (2.5%) have more than two devices; the
average number of WiFi connected devices per-user is 1.282.
For our evacuation studies, we deem a user to have evacuated
if any of their devices has exited the premise.

C. Anatomy of an Evacuation

Evacuations are triggered by the sounding of an alarm –
either automatically due to detection of an emergency event
such as a fire, or manually by a person in the case of a planned
drill. Upon hearing the alarm all occupants are required to
leave the building by the nearest exit route, typically under the
coordination of building wardens. Usually a softer monotonic
alarm (during what’s termed the “pre-evacuation time”) gives
people time to prepare for evacuation, and this changes to a
louder fluctuating alarm to force people out – this marks the
start of the actual evacuation period, which is deemed to end
when the building is fully vacated.
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Figure 2. Time trace of building occupancy displays a sudden dip during a
planned evacuation event, in F21.

Building occupancy profile during planned evacuations:
In this section we study the anatomy of an evacuation using
known planned evacuations. We begin by considering building
F21 on campus which has 303 APs, and deduce its occupancy
in terms of devices and users using the WiFi logs for the day
when an evacuation was planned, as shown in Fig. 2. The total
count of device ids (solid blue lines) and user ids (dotted black
lines) is computed every minute (real-time count is sampled
at rate of 1-min), and “passer-by” devices are pre-filtered as
explained earlier. The evacuation drill scheduled for 10:30am
is evident as a sudden drop in occupancy – the number of
connected devices drops from 2633 to 937, while user ids
drop from 1897 to 881 – and this is followed by a rapid rise
as the building is reoccupied. Though this is as expected, there
are some interesting observations that can be made from the
WiFi occupancy plot:

(a) Even after the building is vacated, 937 devices remain in
the building – we expect these to be largely laptop computers,
though some smart-phones might also have been left behind
(which might explain why the number of residual devices
is slightly higher than the residual users). (b) The WiFi
occupancy plot allows us to deduce the start/end times of the
evacuation – the red inset box that expands the evacuation
interval in the top left part of Fig. 2 annotates the start Ts
when occupancy starts falling leading to the dip, and the end
Te when occupancy reaches its minimum before rising again
due to re-occupation – thereby allowing us to measure the
speed of evacuation. (c) Though the drill was planned for
10:30am, our plot suggests it started at 10:51am and ended at
11:03am. Indeed, the drill report provided by campus Estate
Management recorded a start time of 10:49am, an end time
of 11:01am, and evacuation duration of 12 minutes which
corroborate with the time observed in our WiFi study.

Filtering passer-by transients prior to evacuation: As
noted earlier, for each building, we are able to pre-filter devices
that have a daily average session duration of less than 5
minutes in that building, since they are not occupants. In
addition, while evaluating each evacuation event, we need to
further post-filter sessions that are passer-by transients just
prior to commencement of the evacuation. Specifically, devices
that are associated with the building at Ts, but not at Ts − 5

Reconnection
DisconnectionTs Te

A

B

C

time
Figure 3. WiFi connection types during evacuation.

minutes, are deemed to be non-occupant transients. Of the
2633 devices connected to building F21 at time Ts, 511 were
found to be passer-by transient devices (indeed this building
has high foot-traffic around it), and the remaining 2126 devices
are deemed to belong to occupants of this building when the
evacuation started.

Progression of evacuation: We now undertake a deeper
look into how the evacuation progresses by tracking individual
device sessions between time Ts and Te. In order to do
so we categorize the different possible connectivity patterns
experienced by occupant devices into three types as illustrated
in Fig. 3. Type A devices consistently remain connected to the
building WiFi throughout the event (i.e., from Ts to after Te)
– according to our data, these devices are statically connected
to a single AP, and hence become residuals (e.g., laptops);
type B devices disconnect from the building WiFi prior to
Te (red × in figure) – they may reconnect at different floors
(green X in figure) as they proceed toward exit points, but
eventually disappear from the building WiFi by time Te, when
they either leave the building or lose WiFi coverage (such as in
emergency stairways); type C devices may generate successive
connections during the evacuation (similar to type B), but they
manage to reconnect before Te and remain connected even
after time Te, possibly because they are lurking within WiFi
range of the building even after evacuation. For the planned
evacuation of building F21, a majority of devices, i.e., 68%
are of type B, while 25% are of type A and 7% of type C.

In order to determine when a device has evacuated, we
take the following approach: type A devices do not evacuate;
type B devices are estimated to have evacuated at the last red
“×” mark; and type C devices are deemed to have evacuated
at the last green “X” mark. This approach sets a lower
bound on evacuation time for a device, with the upper bound
obviously being Te. This categorization of devices gives us
deeper insights into the progression of the evacuation in terms
of per-floor distributions and their trajectories, as shown in
Fig. 4 for building F21.

In Fig. 4(a) we see how devices are distributed across the
14 floors at the start (black bars) and end (blue bars) of the
evacuation. Note that blue bars correspond to residual devices
at time Te. The main entrance/exit doors are located at the 2nd
floor of this building. At the beginning of the evacuation, it is
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(c) Floor transition of evacuees between start and
end of building evacuation.

Figure 4. Distribution of WiFi devices per-floor in building F21: (a) at evacuation start and end, (b) last connected/disconnected floor of building occupant,
and (c) floor transition and time for evacuated occupants.

seen that a large fraction (i.e., 1091 out of 2126) of occupant
devices are on floors 2, 3, and 4. By the end time Te, there are
varying number of residual devices across the floors, ranging
from 12 devices at floor 8 to 83 devices at floor 2. This gives
an idea of how many temporary versus permanent occupants
are on each floor – the floors with the largest drops correspond
to those with the largest number of temporary occupants, e.g.,
students using study spaces.

Fig. 4(b) helps us understand the floors from which dis-
connections happen; specifically, for each floor, the number
of type A/B/C devices last seen on that floor is depicted.
Considering floor 2 as an example, we see 83 residual devices
which do not leave the building (i.e., type A shown by blue
bar), 332 devices which last-disconnected from an AP at floor
2 (i.e., type B shown by red bar), and 57 devices which last-
reconnected to an AP at floor 2 (i.e., type C shown by light-
blue bar). It is not surprising to note that a majority of devices
are deemed to evacuate at floors 2, 3, and 4, since the building
has exits on levels 2. However, some devices are deemed to
have exited at upper floors, probably due to poor or no-existent
WiFi coverage in emergency stairways. Another observation
is that the majority of type C devices are seen at floor 2,
highlighting those users who walk out but stay within range
of the building WiFi.

Lastly, we show in Fig. 4(c) the transition of individual
devices (types B and C only) across floors between two points
in time, i.e., start of evacuation and the time at which device
type is declared. The x-axis denotes the timeline, the left y-axis
indicates the floor at which a device is located at Ts while the
right y-axis indicates the floor at which the device is last seen
during the evacuation. Each line represents the transition of a
device – thicker lines indicate a group of devices. Note that this
building has five stairways, two interiors with WiFi coverage
and three exteriors (emergency) with poor/no WiFi coverage.
We can make a number of observations: (1) devices are moving
from upper floors to lower floors, with concentration at two
lower floors 1 and 2 where main exits are located in this
building; (2) focusing on devices that start from upper floors
(e.g., floor 14), their last-seen floor varies, ranging from floor
8 (exited via emergency stairways) to floor 1 (used interior
stairways and exited via main door); (3) a majority of devices

that start from floors 2, 3, and 4 evacuated in less than 5
minutes as shown by the three thickest lines, while devices
starting from upper floors (e.g., floors 12 to 14) need longer
time (10-12 minutes).

Having understood the anatomy of a planned evacuation
event in the largest building (F21) of the campus, we now look
at the planned evacuation events in three other representative
buildings on our campus (i.e., C22, J17, and F23) to appreciate
the generality of our methodology.

Planned Evacuations in three representative buildings:
For each of the three buildings, we plot in Fig. 5 the building

occupancy profile (device-based) for the day on which the
evacuation drill (highlighted by the red box) is scheduled.
Building C22 is a medium-sized building that accommodates
about 600 people, as shown in Fig. 5(a). It is located next
to one of the main campus gates at which students and
staff typically access public transportation to/from city center,
and hence one can observe several WiFi connections from
outside the building, i.e., users who wait for buses on the
street. Though this results in a heavily fluctuating occupancy
profile during working hours, the dip caused by a planned
evacuation in the afternoon, i.e., at about 2:30pm is clearly
visible. Fig. 5(b) shows the occupancy profile of a fairly large
academic building J17. The planned drill at around 11:30am
is seen as a sharp dip (i.e., evacuation) followed by a sharp
rise (i.e., full re-occupation). It is interesting to note that there
is a significant dip followed by a rise between 5:00pm and
6:00pm, which is due to staff leaving work, and postgraduate
students simultaneously arriving to attend evening classes that
commence at 6:00pm – the distinction in profile will become
significant when we automatically detect unplanned evacua-
tions in the next section. Lastly, the teaching-focused building
F23 in Fig. 5(c) shows fluctuations (of up to 250 devices)
in occupancy profile at hourly boundaries (i.e., 1pm, 2pm,
3pm) since lectures begin/end at those boundaries resulting in
students moving in and out of the building. Observe that the
fluctuations in occupancy caused by these events are nearly
half of that caused by the evacuation drill at 10am.

Table III summarizes devices count at Ts (before and
after post-filtering short-term passers-by), and distribution of
static (type-A), disconnected (type-B) and reconnected (type-
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Figure 5. Building occupancy profile (devices) displays a sudden dip during a planned evacuation event in three representative buildings: (a) C22, (b) J17,
and (c) F23.

Table III
COUNT OF DEVICES DURING PLANNED EVACUATIONS

IN REPRESENTATIVE BUILDINGS.

Building
# dev. # dev. post-filtered # type-A # type-B # type-C

Ts Te

F21 2637 2126 541 [25%] 1452 [68%] 133 [7%]

C22 539 491 216 [44%] 243 [49%] 32 [7%]

J17 962 825 237 [29%] 519 [63%] 69 [8%]

F23 738 462 158 [34%] 254 [55%] 50 [11%]

C) devices at Te, during planned evacuations in the four
representative buildings. Form this table, we observe that a
significant fraction of devices (267 of 738) in building F23
are passer-by transients, and are thus excluded; C22 has the
highest number of static (type-A) devices highlighting the
behavior of occupants in permanent offices who tend to leave
devices inside the building during evacuation; devices that
disconnect from building WiFi (type-B) dominate in all the
four buildings with a varying share (49% to 68%); and about
10% of devices tend to stay in close proximity of the building
after evacuation (type-C).

Having understood the detailed anatomy of planned evac-
uations in four representative buildings, we next develop a
method to automatically detect evacuation events, especially
unplanned evacuations that may go unrecorded.

III. AUTOMATIC DETECTION OF EVACUATIONS

In the previous section, we analyzed evacuation drills for
which we had well-organized ground-truth data. In this sec-
tion, we focus on emergency evacuations that occur unex-
pectedly. Consequently, the ground truth data is often miss-
ing or incomplete. As explained earlier (§II-A), the campus
Estate Management provided us with documented records
of unplanned evacuations that have occurred in the four
representative buildings where available.

The motivation of this section is to develop a method to
automatically detect unplanned evacuation events based on
the knowledge gained from the 14 planned evacuations. We
validate our method using ground-truth data of six unplanned
evacuations, and use it to detect 29 unplanned evacuations
across campus.

A. Detection Method

We in §II-B showed that building occupancy profile displays
a sudden drop followed by a steep rise during evacuations. At
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evacuations, sudden change in building occupancy introduce a
high-frequency component reflecting movements taking place
at timescales between 15-min and 45-min. This is evidenced
by majority of planned evacuations – for example, building
F21 (shown in Fig. 2) was evacuated in 12 minutes and
re-occupied in 23 minutes. Consolidating data from the 14
planned evaluations, the evacuation duration lasts between 7-
14 minutes and the time for re-occupancy ranges from 9-23
minutes. This implies that an evacuation completes between
16 and 37 minutes. Thus we choose 15 and 45 as lower
and upper bounds of the timescale for evacuations. It is also
important to note that there could be other higher frequency
components corresponding to occupancy changes at timescales
of less than 15-min (due to movements at boundaries of classes
and/or seminars). Other typical movements within a building
contribute to lower frequency components of the occupancy
signal. Therefore, our objective is to isolate evacuation events
by applying a band-pass filter to the daily occupancy signal
X(t) of buildings. Given the above timescales of interest our
band-pass filter would need cut-off frequencies at 1

45minute
and 1

15minute .

Choice of Band-Pass Filter: In signal processing, for a
band-pass filter there exists a wide range of options such as
Butterworth, Bessel, Chebychev, Elliptic, or Savitsky-Golay
(SG). Typically a filter with certain properties is employed
depending upon the use-case and practical considerations such
as computational complexity or real-time processing. Given
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Figure 7. Process of isolating evacuation event: (a) daily occupancy signal of building F21 on 02-Apr-2019, (b) result of Butterworth filter, and (c) energy
of filtered occupancy signal.

our frequency band of interest, we need a filter with the fol-
lowing properties: (a) maximally flat pass-band (preserving),
(b) nearly zero stop-band (attenuation), and (c) sharp roll-off
at cut off frequencies (transition). We show, in Fig. 6, the
frequency response |H(f)| of five popular filters. We observe
that Chebychev (solid green) and SG (dashed pink) filters
do not meet the attenuation requirement due to significant
ripples in their stop-band regions. Bessel (dashed pink) and
Eliptic (dotted blue) filters fail due to undesirable behavior
(fluctuating) in their pass-band. Butterworth filter (solid black)
appears to satisfy all three conditions, though its transition is
not the sharpest among these options. Therefore, we choose
to use Butterworth filter which sufficiently satisfies our three
specifications stated above.

Energy of Filtered Signal: By applying our band-pass filter
to the building occupancy signal, we preserve the information
of potential evacuation event. Note that a sudden change
in occupancy signal (due to evacuation) would yield high
energy. We, therefore, quantify the energy (computing root-
mean-square energy) of the filtered signal to determine if
it contains an evacuation event or not. Let XBP (t) be the
resulting band-pass component of X(t) and N , the size of
the moving window. The root-mean-square energy (RMSE) is
computed by:

RMSE(t) =

√√√√√ 1

N

k=N/2∑
k=−N/2

XBP (t+ kT )2 (1)

where T is the sampling rate which is a minute (as explained
in §II-C). We have tuned the size of moving window to
maximize the RMSE for planned evacuation events and found
that the window size 5 gives the best results. In Fig. 7, we
illustrate the process of isolating evacuation event from a
building occupancy signal. It can be seen that the time-trace
of RMSE, in Fig.7(c), displays a “sharp” peak corresponding
to evacuation planned before noon in building F21. We note
that the height of this peak (arising from an evacuation) varies
across buildings.

Setting Threshold for Energy: In order to identify a sharp
peak (corresponding to evacuation events) in RMSE signal
we compute the ratio of peak-to-mean (PMR) – for example,
the PMR of the planned evacuation shown in Fig.7(c) is

Table IV
NUMBER OF UNPLANNED EVACUATION EVENTS

IN FOUR REPRESENTATIVE BUILDINGS.
Building ground-truth auto detected auto detected with ground-truth
F21 2 [+ 3] 6 2

C22 2 [+ 3] 4 1

F23 2 [+ 1] 3 1

J17 1 3 1

22.71 = 421.7
18.5 . A high PMR value results from high energy of

occupancy change (due to evacuation) compared to average
energy of minor changes that occur in a building over the
course of a day. Note that, as per the earlier discussion, we
employ a band-pass filter to remove the low and high fre-
quency components. By analyzing the PMR for the 14 planned
evaluations, we found that a threshold value of 18 seems
suitable for detecting unplanned evacuations. Our selection of
threshold value θ = 18 is validated by the detection of six
ground-truth unplanned evacuations (detailed in §III-B).

Estimating Ts and Te: Let us now go further and identify
the start and end times (Ts and Te) of the detected evacuation.
We begin by time T ∗ at which the peak of RMSE is observed.
Given T ∗, we search backwards and forwards on the corre-
sponding occupancy signal X(t) to determine time Ts (when
occupancy starts falling) and Te (when occupancy is flattened)
for the detected evacuation.

Summary: Given a building daily occupancy signal X(t),
we first obtain the band-pass filtered signal XBP (t), and
next construct the RMSE from the filtered signal. Then, we
compute the PMR value and check it against the threshold
θ = 18. The PMR ≥ θ detects an evacuation for which we
can deduce Ts and Te. In next subsection §III-B, a detailed
evaluation of our method is presented.

B. Detecting Unplanned Evacuations

We now evaluate the efficacy of our method by applying it to
data from the four representative buildings. Table IV shows the
number of unplanned evacuations in each of these buildings.
The second column is our ground-truth of unplanned evacua-
tions obtained from campus Estate Management – numbers in
square brackets indicate events that occurred during atypical
time of building occupancy (i.e., late night after 10pm or early
in the morning before 5am) which is out of the scope of
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(a) At time 1:51pm on 19-Feb-2019.
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(b) At time 2:50pm on 4-Mar-2019.
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(c) At time 2:56pm on 25-Mar-2019.
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(d) At time 2:36pm on 30-Apr-2019.

Figure 8. Auto-detected emergency evacuations in building F21 (without ground-truth records).
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(a) Not auto-detected, but recorded at
time 5:05pm on 22-Jan-2019.
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(b) Auto-detected at time 1:18pm on
20-Mar-2019.
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(c) Auto-detected at time 2:56pm on
25-Mar-2019.
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(d) Auto-detected at time 3:02pm on
29-Apr-2019.

Figure 9. Emergency evacuations in building C22: (a) ground-truth recorded, but not auto-detected, and (b, c, d) auto-detected without ground-truth records.
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(a) Probabaly incorrect record by
EM.
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(b) Auto-detected at 11:05am on 8-
Apr-2019.

Figure 10. Auto-detected emergency evacuations in building F23: (a) incorrect
record by EM, and (b) auto-detected without ground-truth.
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(a) Auto-detected at 1:43pm on 28-
Feb-2019.
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(b) Auto-detected at 1:52pm on 4-
Mar-2019.

Figure 11. Auto-detected emergency evacuations in building J17 (without
ground-truth records).

this study. For example, there are 5 emergency evacuations
recorded by Estate Management in F21 and three of them
happened at times 2:30am, 2:42am, and 2:44am at which the
number of occupants is negligible and thus our method does
not apply. In the third column of Table IV we report the
number of auto detected emergency evacuation events while
the last column shows the count of ground-truth events that are
auto detected by our method. Starting from building F21, our
method detects both the ground-truth evacuations and 4 more
unplanned evacuations. We show in Fig. 8, the building occu-
pancy profile for days with 4 emergency evacuations which the

campus Estate Management does not have a record. There are
prominent dips in all four plots supporting our truly detected
evacuations. In C22, we automatically detect 4 emergency
evacuations of which only one is captured by the ground-truth
dataset. The second ground-truth emergency event is missed
by our method. To further investigate these discrepancies, we
plot in Fig. 9 the occupancy profile of building C22 on four
days, i.e., the day with recorded emergency but not detected
as well as three detected ones but not recorded. Fig. 9(a)
shows the building daily occupancy on 22-Jan-2019 for which
an emergency is recorded at time 5:05pm (highlighted by
vertical red dashed line). Even though there is a presence of
a sudden dip at the recorded time it is not followed by a re-
occupation, and hence is not detected by our method. C22
houses administrative spaces of which staff typically would
start leaving work to go home at 5pm. Therefore, we can
assume C22 building occupants decided to finish their work at
this end-of-day emergency thus not reoccupying the building
(no sharp peak in energy is observed). Moving to Figures 9(b),
9(c) and 9(d), a visible dip in occupancy in each of these three
plots (afternoon events highlighted by red boxes) suggest that
these are likely evacuation events.

Considering building F23, it appears that 1 out of the 3
detected emergency evacuations corroborate with ground truth
Estate Management records. There are 2 ground truth emer-
gency evacuation records with Estate Management and our
method does not detect the other record of emergency on 27-
Feb-2019 at 2:32pm. We in Fig. 10 plot the building occupancy
to analyze the discrepancies. The building occupancy on 27-
Feb-2019 is shown by dotted black lines in Fig. 10(a) – we see
that the occupancy profile seems normal with no significant dip
at 2:32pm. Instead, we detect an emergency next day (28-Feb-
2019) at about same time (2:42pm). In the building occupancy
for this detected day shown by blue lines in the same Fig. 10(a)



Table V
SPEED OF EVACUATION IN REPRESENTATIVE BUILDINGS.

Building from drill manual report occupancy profile
F21 12 min 12 min
C22 7 min 7 min
J17 7 min 6 min
F23 6 min 6 min

we can visually confirm a sudden dip followed by a steep rise
occurring in the afternoon. There has been an error in the
date recorded for the evacuation. This clearly highlights the
possible human errors in manual Estate Management records.
The other evacuation detected for F23 from our method with
no Estate Management record is shown in Fig. 10(b) and as
highlighted by red box there is a likely evacuation. Lastly, for
building J17, automatic evacuation detection by our method
corroborates the ground-truth evacuation while detecting 2
additional emergency evacuations. The two unaccounted evac-
uations are fairly obvious in the building occupancy profile
for 28-Feb-2019 as shown in Fig. 11(a) and for 4-Mar-2019
as shown in Fig. 11(b).

In summary, it is seen that our method misses one (out
of a total of 7) unplanned evacuation in ground-truth Estate
Management records available for the four representative
buildings. Additionally, for these four buildings we detect 10
more evacuations which are not recorded by campus EM.

Auto-detection across 14 buildings: We extended our
automatic detection to all 14 buildings across our university
campus. In total, we detect 29 emergency events in 14 build-
ings (the four representative buildings included). We detect
4 unplanned emergencies in F25, 3 unplanned emergencies
each in H20 and G14, and 2 unplanned emergencies in C20.
Our method did not detect any emergency evacuations in the
remaining five buildings K17, F12, K15, M15 and J18.

In the next section, we deduce quantitative measures to
compare planned and unplanned evacuations detected by the
method we developed in this section, and then quantify the
loss of productivity caused by evacuation events across our
campus.

IV. EVALUATING EVACUATION EVENTS

Having understood the anatomy of a planned evacuation
event in §II, and developing a method to automatically de-
tect the evacuation events in campus buildings in §III, we
now quantitatively evaluate planned and unplanned evacuation
events.We mainly focus on three metrics: speed of evacuation
and count of evacuees, and additionally for planned evacua-
tions we quantify typicality of occupancy level. Then compare
the planned evacuations with unplanned evacuations. Lastly,
we compute the loss of productivity arising from interruptions
to day-to-day work during evacuations.

A. Planned Evacuations

We evaluate planned evacuations using three metrics: (a)
speed of evacuation indicates how quickly an evacuation is
executed – this metric is expressed as the time difference
between Ts and Te; (b) evacuee count indicates the total

Table VI
EVACUEES COUNT IN REPRESENTATIVE BUILDINGS.

Building drill report # diff. users # users B&C
F21 800 1016 1235

C22 350 255 258

J17 600 358 471

F23 700 291 263
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Figure 12. CCDF of device evacuation time in four buildings.

population of the evacuees – it is measured by change of
occupancy from Ts to Te; and (c) typicality of building
occupancy for an evacuation – this is the percentile level at
which the building is occupied at start of evacuation compared
to its historic occupancy count.

Speed of Evacuation: There is no standard specification
for a minimum evacuation time, but it is recommended to
evacuate a building within 30 minutes of an emergency, since
building materials can resist a fire up to 30 minutes [6]. We
note that minimizing the time for evacuation is key for safety
of building occupants, which is the reason drills are conducted.

The drill report dataset from campus Estate Management
records the time (to minute resolution) for the start and end of
evacuation, which lets us corroborate the recorded evacuation
speed against the one we obtain from the WiFi occupancy
profile (i.e., Te-Ts). Table V compares our method against
the drill report for the four representative buildings. The
match is nearly perfect, being identical in three of the four
buildings (F21, C22, and F23), differing by a minute for
building J17. This gives us confidence that evacuation speed
automatically measured from WiFi occupancy is as precise as
manual measurements. Focusing on the speed of individual
devices, we plot in Fig. 12 the CCDF of devices evacuation
time in our representative buildings. It is seen that the speed
of devices displays a minor variation (less than two minutes)
in three buildings C22, J17, and F23. In F21 (the largest
building), however, we see a 3-minute gap in the CCDF. This
is because devices that start from higher floors are likely to
use emergency stairways, and hence disappear from WiFi logs
for a few minutes till their last-seen time.

Count of Evacuees: In Table VI we show the number
of people evacuated in drills of representative buildings,
comparing our method (two last columns) with manual drill



report (second column). The evacuee count reported in the
drill dataset is roughly estimated by several fire wardens
stationed at various exits. We compute the count of evacuees
in two ways: one is by taking the difference of raw building
occupancy (users count) at times Ts and Te without post-
filtering (third column), and the other one is by counting total
users of types B and C after post-filtering passer-by transients
(the last column) as we discussed in §II. Note that users’ type
is obtained from the type of their associated device which
is last declared between Ts and Te – in other words, we
map devices to users. We note that the difference count of
users (i.e., # diff. users) is not very accurate because: (a) it
does not account users with multiple devices (a user who
indeed evacuated but has a device left inside the building,
is not counted as an evacuee!), (b) it uses the raw occupancy
data (unfiltered) containing passer-by transients. Therefore, we
observe that count of B&C users is larger than count of user
difference in three buildings F21, C22, and J17, except in
F23 which has a significant number of passer-by transients
as explained in Table III.

Typicality of Evacuation: Regulations for building fire
safety [7] recommend that fire drills be conducted with “ap-
propriate number” of people inside a building. This is indeed
merely a qualitative measure. We, instead, are able to quantify
this measure using the metric of typicality. This quantification
can help specify measurable guidelines for scheduling drills.
Fig. 13 shows the CCDF of building occupancy during the
period of our dataset. We mark (red ×) building occupancy at
start of its planned evacuation – note that occupancy count
is obtained from the data without post-filtering passer-by
transients. We can see that typicality is fairly high in percentile
(seemingly appropriate) across four buildings with F21 at 89%,
C22 at 93%, J17 at 95%, and F23 at 89%.

Evaluating 14 Planned Evacuations: We now evaluate the
planned evacuations for all the 14 buildings of our study. Our
results show that: (a) building evacuation speed varies between
6 to 20 minutes with an average of 11 minutes. We found that it
takes longer to evacuate larger buildings, except in residential
buildings. We think this is because occupants of campus dorms
tend to resist evacuation until they are forced out, especially
when they know it is an evacuation drill; as a result evacuation
events are always slower (takes longer time) in residential
buildings, both large or small size; (b) count of evacuee varies
by building size, but more than 50% of occupants (at Ts)
evacuated across all buildings – a significant fraction of single-
device owners leave their device behind as they expect to come
back to their desks soon; and (c) typicality ranges between
36% and 99% with an average of 85% – except two residential
buildings (36% and 47%), others seem relatively typical.

B. Comparing Evacuations: Drills versus Emergencies

We now analyze emergency evacuations and check how do
they differ from drills using two metrics, namely speed and
evacuee count. The typicality metric is of interest only to drills
(i.e., planned evacuations). Though we analyze data for 14
buildings, we only detail results for 4 representative buildings.
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Figure 13. CCDF of building occupancy (devices) during 6 months, high-
lighting the occupancy at planned evacuation.

Among the remaining 10 buildings there were no emergencies
in 5 and for the rest, we provide a summary of the results.

Speed of Evacuation: We found that emergencies are
generally slower than their corresponding building drill, except
in two events: Four of the emergency evacuations in F21 took
longer to evacuate than the drill spending 14, 17, 20 and 23
minutes whereas the drill was completed in 12 minutes. Other
two emergencies spend 12 minutes each, similar to the drill;
in J17, the three emergency evacuations were on average half
the speed of the drill which took 6 minutes; in C22, four
emergencies on average were 65% slower than the drill (9, 11,
13 and 13 minutes for emergencies versus 7 minutes for drill);
in F23, three emergencies on average were 3 times slower than
the drill. We think drills are carried-out faster than emergencies
because for planned events the team of fire wardens are well-
organized and prepared so that they are able to force people
out for a faster evacuation.

For the five buildings (H20, G14, F25, B16 and C20)
where we detected emergency evacuations, the emergency
evacuations were slower than the planned evacuations.

Count of evacuees: Emergencies can occur at any time in a
building (at low or high occupancy), and hence count of evac-
uees may not be very insightful when comparing emergencies
with drills. We, therefore, compute the ratio of evacuees count
to the building occupancy at start of evacuation.

Our results in F21 show that evacuee ratio was 64% for the
drill, and it varies from 35% to 70% for the six emergencies.
This is not surprising since the occupancy of this building
is highly variable depending on teaching and non-teaching
periods. For all three emergency evacuations that took place
in teaching space F23, evacuation ratios (55%, 61% and 64%)
are found to be higher than the evacuation ratio (51%) of
the drill. For the office building C22, it is found about 50%
evacuee ratio during drill, and average of 45% for emergencies.
We do not see a major variation of this ratio for planned and
emergencies in C22 because the composition of the building
occupants (only staff) persists across the year. Lastly, the
highest evacuee ratios were found in academic building J17
(69% for drill and 68%, 74% and 84% for the 3 emergency
evacuations).



Table VII
LOSS OF PRODUCTIVITY (HUMAN-DAYS).

Building productivity loss (drill) productivity loss (emergencies)
F21 68.5 161.5

C22 6.9 16.5

F23 7.3 39.7

J17 21 49.8

For the rest of five buildings with detected emergencies,
G14, F25, B16 and C20 showed higher evacuee ratio dur-
ing emergencies than drills. For H20, all three emergency
evacuations displayed on average 12% lower evacuee ratio
than the drill. Overall, we note that the evacuee ratio for
planned and unplanned evacuations for various buildings can
vary depending on factors such as type and composition of
occupants in the building, and the nature of emergency.

C. Loss of Productivity

Evacuations (both planned and emergency) cause interrup-
tion to normal activity of building occupants. While people
safety outweighs financial losses, repeated evacuations espe-
cially when caused by false alarms can incur heavy cost due
to loss of business hours. Therefore, it is recommended to
minimize asset and revenue loss when planning for drills [1].

We quantify the loss of productivity (human-hours) by
taking the product of two metrics, namely loss of business
hours and number of re-occupants. Loss of business hours is
computed by adding time to evacuate and time to reoccupy.
It is important to note that we do not consider productivity
loss for those evacuee who do not return to the building, since
we assume they are engaged in other useful activities (instead
of waiting). The number of re-occupants can be computed by
simply taking the change of building occupancy level during
re-occupation process.

We note that for drills, the building is reoccupied fairly
quickly after it is completed. However, for emergencies it
can take longer time to first identify and mitigate the cause
of emergency alarm, before occupants are allowed to enter
the building. According to our analysis, reoccupation process
can take up to about twice the amount of time needed for
evacuation. We, therefore, estimate an upper-bound value
Te + 2(Te − Ts) for the reoccupation time (Tr, i.e., time at
which building is back to its normal operation). Recall that
Te− Ts is time required to evacuate. We can obtain the exact
reoccupation time if the building occupancy at Tr is equal to
occupancy at Ts. Note that we use the upper-bound estimate
if the exact Tr is not obtained.

In Table VII, we show the loss of productivity for all
evacuations (drills and emergencies) in our representative
buildings computed in “MAN-DAYS”. It is important to note
that total loss of productivity would be proportional to building
size and frequency of events. For planned evacuations, the
largest building F21, results in the largest loss and the smallest
building C22 results in the smallest loss. It is also evident that
several emergencies in F21 results in significant losses.

V. RELATED WORK

Estimating occupancy, specifically based on WiFi activity,
has received considerable attention in the literature. They can
broadly be classified as follows.

Occupancy estimation based on WiFi signal strength:
Using WiFi received signal strength between a pair of station-
ary transmitter/receiver antennas, [8] developed a framework
to count the total number of people walking in an area. The
experimental results showed that the proposed approach has
good accuracy. Other techniques that use only WiFi received
signals to track motion and detect occupancy behind walls
and inside buildings are proposed in [9]–[11]. The advantage
of these approaches is that they do not rely on users carrying
their WiFi enabled devices, such as smartphones or laptops,
to determine occupancy.

Occupancy inference using WiFi connection informa-
tion: A practical system for accurate occupancy estimation
based on commodity WiFi infrastructure is developed in [12].
The work captures the MAC addresses of users’ WiFi de-
vices as they communicate with the APs, which is analyzed
to estimate occupancy. By analyzing WiFi signatures from
mobile phones carried by users, ARIEL [13] presents a system
that is able to identify the room a mobile phone (or user)
is in with over 95% accuracy. Linear regression and support
vector machine based techniques are applied to the received
signal strength at WiFi APs to estimate occupancy in [14].
Using a combination of number of WiFi devices, electrical
energy demand and water consumption, [3] showed 48%
improvement in accuracy for occupancy estimation compared
to using only WiFi data. Similarly, [15] propose mechanisms to
infer occupancy in a building by combining information from
WiFi APs, badge access and other auxiliary data sources such
as calendar schedules and instant messaging clients. While all
of the above works make important contributions, they do not
apply occupancy estimates to tackle broader problems, such as
reducing building energy consumption or evaluating building
evacuation in an emergency.

WiFi for energy management in buildings: There is
an emerging body of work that specifically uses WiFi-based
occupancy information to reduce the energy consumption of
buildings, in particular, of that consumed by its heating,
ventilation and air conditioning (HVAC) systems. We provide
a brief overview of some closely related work next. The work
in [16] showed the potential of using existing IT infrastructure
in buildings, including WiFi APs, to lower the building energy
demand. Occupancy is implicitly obtained by tracking MAC
and IP addresses at these APs, which in turn can be used to
direct HVAC and lighting to only the occupied zones, thus
saving energy. A practical system, which infers occupancy
using WiFi and uses it to control the HVAC of a commercial
building leading to 18% reduction in energy consumption
was demonstrated by Sentinel in [17]. Learning the spatial
occupancy patterns enabled by mobile WiFi connection logs
and using that information to drive HVAC scheduling is
shown to reduce the energy consumption of a number of



buildings spanning a large campus by over 30% in [4]. None
of the above studies evaluate the efficacy of using WiFi to
understand the nuances associated with emergency evacuation
in buildings. Our work fills this important gap in the literature.

Building Evacuation: We now briefly review related work
on building evacuation, which are largely based on model-
ing and simulations, but has not studied the role that WiFi
can play in this domain. Network flow based modeling and
optimization techniques are developed in [18]–[21] to study
various problems associated with building evacuation such as
how long it takes for occupants to be evacuated, where are
bottlenecks likely to occur and so on. While the treatment is
comprehensive, applying the techniques to different types of
building is onerous and time consuming, since it requires de-
tailed knowledge of the building layout, floor plans, emergency
exits and stairway information, which may even not be readily
available from facility managers. Geographic Information Sys-
tem (GIS), agent-based and IoT-based data driven techniques
are being used to simulate building evacuation plans in the case
of an emergency, however these systems do not use WiFi data
and are yet to find application in the context of buildings in
a real-world setting [22]–[26]. Recently, virtual reality based
approaches are being considered to evaluate the efficacy of
evacuation drills, but the research is still in its infancy [27].
A summary of modeling research in the context of evacuation
in high-rise buildings is available in [28].

VI. CONCLUSION

Evaluating building evacuations are largely manual, cumber-
some, and error-prone. In this paper, we developed a system-
atic method to automatically detect and evaluate evacuation
events using building WiFi trace data. Collection of campus-
wide WiFi data over a period of six months, allowed us to
examine the anatomy of building evacuations across multiple
representative buildings with different number of levels, exit
layouts and occupant types. Having understood the evacuation
anatomy, we then developed a novel filtering-based method
to automatically detect evacuation events from WiFi data.
Using our method we detected 29 unplanned evacuations
and evaluated the efficacy of our automatic detection by
corroborating them against documented records where avail-
able. Lastly, we deduced measures namely speed, number of
evacuees and typicality to quantitatively compare planned and
unplanned evacuations and further estimated the productivity
loss arising from evacuation events across our campus. Our
findings showed that during emergencies occupants evacuate
building slower compared to drills while number of evacuees
vary depending on factors such as type and composition of
occupants of the building and the nature of the emergency.
Our work has shown the advantage of using building WiFi
data for systematic and accurate evaluation of evacuations at
scale, compared to current manual methods.
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