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Abstract—Internet Service Providers (ISPs) often perform net-
work traffic classification (NTC) to dimension network band-
width, forecast future demand, assure the quality of experience
to users, and protect against network attacks. With the rapid
growth in data rates and traffic encryption, classification has
to increasingly rely on stochastic behavioral patterns inferred
using deep learning (DL) techniques. The two key challenges
arising pertain to (a) high-speed and fine-grained feature
extraction, and (b) efficient learning of behavioural traffic pat-
terns by DL models. To overcome these challenges, we propose
a novel network behaviour representation called FlowPrint that
extracts per-flow time-series byte and packet-length patterns,
agnostic to packet content. FlowPrint extraction is real-time,
fine-grained, and amenable for implementation at Terabit
speeds in modern P4-programmable switches. We then develop
FlowFormers, which use attention-based Transformer encoders
to enhance FlowPrint representation and thereby outperform
conventional DL models on NTC tasks such as application type
and provider classification. Lastly, we implement and evaluate
FlowPrint and FlowFormers on live university network traffic,
and show that a 95% f1-score is achieved to classify popular
application types within the first 10 seconds, going up to 97%
within the first 30 seconds and achieve a 95+% f1-score to
identify providers within video and conferencing streams.

1. Introduction

Network traffic classification (NTC) is widely used by
network operators for tasks including network dimensioning,
capacity planning and forecasting, Quality of Experience
(QoE) assurance, and network security monitoring. How-
ever, traditional classification methods based on deep packet
inspection (DPI) are starting to fail as network traffic gets
increasingly encrypted. Many web applications now use
HTTPS (i.e. HTTP with TLS encryption) and browsers like
Google Chrome now use HTTPS by default [1]. Applica-
tions like video streaming (live/on-demand) have migrated to
use protocols like DASH and HLS on top of HTTPS. Non-
HTTP applications which are predominately UDP-based
real-time applications like Conferencing and Gameplay also
use various encryption protocols like AES and Wireguard to
protect the privacy of their users. With emerging protocols
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like TLS 1.3 encrypting server names, and HTTP/2 and
QUIC enforcing encryption by default, NTC is bound to
get even more challenging.

In recent years researchers have proposed to use Ma-
chine Learning (ML) and Deep Learning (DL) based models
to perform various NTC tasks such as IoT device classifi-
cation, network security, and service/application classifica-
tion, ranging from coarse grain application type (e.g. video
streaming, conferencing, downloads, gaming) to specific
application providers (e.g. Netflix, YouTube, Zoom, Skype,
Fortnite). However, many of these existing approaches train
ML/DL models on byte sequences from the first few packets
of the flow. While the approach of feeding in raw bytes to a
DL model is appealing due to automatic feature extraction
capabilities, it usually ends up learning patterns such as
protocol headers in un-encrypted applications and server
name in TLS based applications. Such models have failed
to perform well in the absence of such attributes [2], for
example in TLS 1.3 that encrypts the entire handshake
thereby obfuscating the server name.

Our work takes an alternative approach by building a
time-series behavioural profile (a.k.a. traffic shape) of the
network flow, and using that to classify network traffic at
both application type and provider level. Our first contri-
bution §3 develops a method to extract flow traffic shape
attributes (aka FlowPrint) at high-speed and in real-time.
FlowPrint’s data representation format keeps track of packet
and byte counts in different packet-length bins without
capturing any raw byte sequences, and provides a richer set
of attributes than the simplistic byte and packet counting
approach in our prior work [3]. It also operates in real-
time, unlike other approaches e.g. [4] that perform post-
facto analysis on packet captures. We show that FlowPrint
is amenable for implementation in modern programmable
hardware switches operating at multi-Terabit scale, and is
hence suitable for deployment in large Tier-1 ISP networks.

Our second (and most significant) contribution §4
proposes FlowFormers: DL architectures that introduce
attention-based transformer encoder [5] to the traditional
Convolutional Neural Network (CNN) and Long Short Term
Memory (LSTM) networks. Transformer encoder greatly
improves the performance as it allows the models to give
attention to the relevant parts of the input vector in context of
the NTC task. In other words, transformer encoder enhances
our FlowPrint data prior to being fed to CNN and LSTM.



In our final contribution §5, we evaluate both Flow-
Print and FlowFormers on a real-world dataset obtained
from our university campus traffic. We evaluate the data
representation and the models on NTC tasks identifying (1)
Application type (e.g. Video vs. Conferencing vs. Download
etc.), (2) Video provider (e.g Netflix vs. YouTube vs. Disney
etc.) and (3) Conferencing provider (Zoom vs. MS Teams vs.
Discord etc.). We show that using FlowPrint collected just
for the first 10 seconds of a flow yields a 95+% f1 score
to identify 5 types of applications. We further show that
applying transformers increases the accuracy of both CNNs
and LSTMs consistently across all the tasks. We demonstrate
that the use of a transformer encoder together with LSTM
(TE-LSTM) performs the NTC tasks with f1 scores 97.15%,
95.68% and 94.92% respectively.

2. Related Work

Network Traffic Classification (NTC) has been exten-
sively studied by many researchers since a long time. Recent
prior work for encrypted NTC using DL can be categorized
into packet-based, flow content-based and flow time-series-
based. Work in [6] and [7] classifies applications using
1-D CNNs and Stacked Auto Encoders (SAE) on byte
sequences extracted using packet headers and/or payloads.
Flow content-based approaches use RNN/LSTM models in
addition to CNN and SAE with features collected over mul-
tiple packets within a flow like session bytes (concatenated
packet payloads) [2], [8] packet inter-arrival times [9], and
packet lengths to identify internet apps.

Most of the prior work in packet-based and flow content-
based categories was evaluated using a public dataset [10]
which contains many un-encrypted protocols such as SMTP,
POP3 (email label) and SFTP and FTP (file transfer label)
which are easily distinguishable using just the packet head-
ers and/or first few payload bytes. Further, to classify en-
crypted applications/services based on HTTPS, DL-models
often fit to features in TLS handhake such as cipher info
and server name indication field (SNI) (e.g. youtube.com)
without which the model accuracy drops significantly [2].
Thus, such approaches are either outdated, due to the in-
creasing use of encryption or are susceptible to failure with
upcoming protocols like TLS 1.3 wherein even the hand-
shake is completely encrypted. Our work doesn’t consider
packet payloads as input but instead relies on flow’s traffic
shape and behaviour characteristics which are robust even
with TLS 1.3 encrypted traffic.

Flow time-series-based approaches [3], [4], [11], [12],
[13] rely purely on time-series features such as packet/PDU
(protocol data unit) lengths [12], [13], [11] of a flow over
time, inter-arrival times [11] and/or statistical features like
transfer rates (bps/pps), burstiness, idle-time etc. derived
from downstream bps [3]. The works [11] and [13] tackle
IoT device classification and website fingerprinting tasks
which are different in nature to application type and provider
classification tasks that our work tackles. The scope of
our prior work [3] was limited to Video vs. Download
classification i.e. only two out of the 5 application types

we tackle in this work. Authors in [4] use all of the above
features i.e. time-series packet lengths, IATs along with
TLS handshake bytes (excluding SNI and cipher info) and
summarized flow statistics. While [4] comes the closest to
our work, it’s dataset contains only TLS/QUIC-based flows
and it relies on statistical flow information which is only
available at the end of the flow. In other words, it performs
a post-hoc classification of the flow whereas we aim to
perform real-time classification of the flow (within the first
few seconds). Further, in addition to TLS and QUIC we also
classify encrypted Conferencing and Gaming traffic from
providers like Zoom, Skype, CS:GO, Call of Duty etc.

Our work is also a time-series-based approach which
aims at popular NTC tasks which are based on flow’s
behaviour profile: application type and/or provider identi-
fication. We propose a new input format (FlowPrint) con-
sisting of time-series counters to capture the traffic shape
that is agnostic to protocol specific information often found
easily in headers, handshakes or certificates. While it can
be used with CNN/LSTM-based models, we additionally
develop transformer-based model architectures which use
attention mechanism to pick intricate traffic shape patterns
from FlowPrint and outperform traditional DL models. To
the best of our knowledge, our work is the first to propose
the use of a transformer-based DL models in the context of
NTC to identify internet applications/services.

3. FlowPrint

FlowPrint is a data format built using counters to
capture the traffic shape and behavioural profile of net-
work flows. The data captured in FlowPrint doesn’t include
header/payload contents of packets and hence is protocol-
agnostic and doesn’t rely on clear-text indicators like SNI. It
aims to support wide range NTC tasks which rely on activity
profile such as application type identification (e.g. Video vs.
Conferencing vs. Download), application service detection
(e.g. Netflix, Zoom etc.), Device Identification (IoT sensors,
smart gadgets etc.) etc. FlowPrint has been designed to be
implementable not just in software, but also in modern P4
programmable network switches like Intel Tofino [14] that
operates at several terabit per sec.

FlowPrint consists of four 2-D arrays: upPackets, down-
Packets, upBytes and downBytes. Each array consists of two
dimensions: (length bins, time slots). As shown in Fig. 1, an
incoming packet is placed into appropriate bin i based on its
length. A list of packet length boundaries (PLB) creates b
discrete length bins (on the y-axis). On the x-axis, the packet
is placed into the time slot j in which it arrives relative
to the flow start – duration of the time slot is an input
parameter called interval. Assuming its an upload packet,
the cell (i,j) in upPackets array is incremented by 1 and the
cell (i,j) in upBytes array incremented by the payload length
of the packet (refer to Fig. 1). Thus, cell (i,j) of upPackets
would contain the sum of all packets that arrive in time slot
j with lengths between PLB[i-1] and PLB[i]. The process
remains similar in the other direction – down arrays are
shown stacked in dark shade.
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Figure 1: FlowPrint Datastructure and Algorithm
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Figure 2: FlowPrint Examples (only Bytes shown)

The choice of interval and PLB determines FlowPrint’s
granularity and size. One may choose to have a small inter-
val say 100ms and have 3 packet length boundaries or a large
interval say 1 sec have 15 packet length bounds (in steps of
100Bytes). Such a choice needs to be made depending on
the NTC task and compute/memory resources. We explore
some of the trade-offs of FlowPrint configurations in §5.3.

Fig. 2 shows FlowPrint examples collected in our
dataset. They show normalized upBytes and downBytes of
3 application types: Video, Conferencing and Large Down-
load. The parameters used for the example are: interval =
1sec and PLB = [0, 1250, 1500] – intuitively these length
boundaries attempt to form 3 logical bins: ACKs, MTU-
sized packets and packets in between. One can observe
that FlowPrint clearly demarcates the behavioural profile of
the flows. The video flow on top shows periodic activity
– there are media requests going in the up direction with
payload length between 0 and 1250 and correspondingly
media segments are being sent by the server using MTU-
sized packets that fall in the bin (1250,1500]. Conferencing
on the other hand is continuously active in the mid-bin
(0,1250) in both upload and download direction with down
being more active due to video transfer as opposed to
audio transfer in the upload. A large download transferred
typically using HTTP-chunked encoding involves the client
requesting chunks of the file to the server which responds
continuously with MTU-sized packets (in highest bin) until
file downloads. Thus, this example illustrates the ability
of FlowPrint to capture the traffic shape that can create
markedly different patterns to identify application types.

We note that by a flow, we mean a set of packets iden-
tified using a flow key constructed out of packet headers.
Often, a 5-tuple consisting of srcip, dstip, srcport, dstport
and protocol is used to form a flow key to identify network
flows at the transport level i.e. TCP connections and UDP
streams. While our work also uses 5-tuple flow key, Flow-
Print is not inherently constrained by it. One may even use a
2-tuple (srcip and dstip) to construct a flow key to identify
all the traffic between a server and a client as a flow.

FlowPrint is amenable to implementation in high-speed
P4 programmable switches [14]. A flow can be identified
using its flow key as match in a table, and sets of 4 registers
can keep a track of up/down byte and packet counters. A
controller can periodically poll the registers to get time-

series of the counters at the defined interval. Once classified,
the registers can be reused for a new flow.

FlowPrint fundamentally consists of four 2-D arrays.
However, it can be extended by deriving two additional
arrays: upPacketLength and downPacketLength by dividing
the Bytes arrays by the Packets arrays in each direction. For
instance, the upPacketLength[i,j] will contain the average
packet lengths of packets which arrived in time slot j and are
in the length bin i. These arrays can give precise time-series
packet length measurements across the length bins. It is
specifically useful to identify providers (e.g. Netflix, Disney)
within a particular application type (video) as the overall
shape remains very similar. In summary, the FlowPrint data
structure has six 2-D arrays – collected over two directions
and three counter types (packets, bytes, lengths) with each
array of dimensions (numbins, time slots).

4. Transformer-based Classification
In the section, we develop transformer-based DL models

which efficiently learn features from FlowPrint to perform
NTC tasks. We first explain the specific NTC tasks we
consider in our work and our dataset. We then provide a
background on 1-D CNN and LSTM models which are
commonly used DL model architectures for NTC tasks. We
also explain the process to convert the FlowPrint arrays
into suitable input formats for these models. Finally, we
present a brief overview of transformer encoder and develop
FlowFormer models by introducing transformer encoders to
the CNN and LSTM architectures.

4.1. Objective & Dataset

In our work, we tackle two specific NTC tasks: (a)
Application Type Classification: Identify the type of an
application (e.g. Video vs. Conference vs. Download etc.)
and (b) Application Provider Classification: Identify the
provider of the application/service (e.g. Netflix vs. YouTube
or Zoom vs. Microsoft Teams etc.). These tasks are typically
performed today in the industry using traditional DPI solu-
tions but however rely on information like DNS, SNI or
IP-block/AS based mapping. Due to increasing encryption
adoption these solutions may no longer work and hence we
instead take an alternative approach focusing on using traffic
behavioral profile captured by FlowPrint.



Table 1: Classification Dataset

Task # Flows per class Classes

Application Type 40,000 Video, Live Video, Gameplay,
Conferencing and Downloads

Video Provider 30,000 Netflix, YouTube, DisneyPlus
and PrimeVideo

Conference Provider 40,000 Zoom, Microsoft Teams,
Whatsapp and Discord

Application Type Classification: The task identifies 5
common application types: Video streaming, Live video
streaming, Conferencing, Gameplay and Downloads. An
ML model will be trained to classify a flow into one of these
5 classes. Each type contains flows from different providers
to make it diverse and not limited to provider-specific
patterns. For instance, the Gameplay class has examples
from the top 10 games active in our university network.
For large downloads, while one may consider traffic from
different sources, we chose Gaming Downloads/Updates
from providers like Steam, Origin, Xbox and Playstation
since they tend to be consistently large in size as opposed
to downloads from other providers like Dropbox etc. which
may contain smaller, say PDF, files. We note that Live video
(video broadcasted live for example on platforms like Twitch
etc.) has been intentionally separated from video on-demand
to create a challenging task for the models.

Application Provider Classification: This task identi-
fies the provider within each type of application. We choose
two popular types: Video streaming and Conferencing (and
correspondingly train separate models). The objective is to
detect the provider serving that content type. For Video,
we detect if it is one of Netflix, YouTube, DisneyPlus or
PrimeVideo (top providers used in our university). For con-
ferencing, we detect if it is one of Zoom, Microsoft Teams,
WhatsApp or Discord – two popular video conferencing
platforms and two popular audio conferencing platforms.

Dataset: To perform the tasks above, we need a labelled
FlowPrint dataset. We obtained the labels from a third-party
commercial DPI which associates both application type and
provider to each flow being collected. So, every data record
is a three tuple < FlowPrint, Type, Provider >. The
FlowPrint arrays are recorded for 30 seconds at an interval
of 0.5sec and with 3 bins (PLB = [0, 1250, 1500]). The
data is filtered, pre-processed and labelled appropriately per
task before feeding it to ML models. For instance, for
the application type classification task, we filter the top
providers of each class and just associate the type as the final
label. So, Video class, for example, has records from top
providers (e.g. Netflix, Disney etc.) but just with the label
“Video” after the pre-processing. Table 1 shows number of
flows (approx.) that have been used for each task.

4.2. Vanilla DL Models

We now present a brief overview of CNN and LSTM
models extensively used for NTC tasks and how FlowPrint
can be fed into each model. DL models, as opposed to

traditional ML models, are suitable since they automatically
extract task-specific features from FlowPrint.

4.2.1. 1D CNN. CNNs are widely used in the domain of
computer vision to perform tasks like image classification,
object detection, segmentation and since recently are also
being used in time-series classification tasks. Traditional
CNNs (2-D CNNs) are inspired from visual circuitry in
brains wherein a series of filters (also called as kernels)
stride over an channeled (RGB) image along both height and
width collecting patterns of interest for the task. However, 1-
D CNN (where filters stride over 1 dimension of image) have
been shown to be more effective for time-series classification
objectives such as NTC tasks. Further, CNN’s fast execu-
tion speed and spatial invariance makes them particularly
suitable for NTC tasks [8].

FlowPrint needs no further processing to pass as an input
to CNN (we omit 1-D for brevity) as it can be viewed as a
colored image. Just as a regular image has height, width and
3 color channels (RGB), FlowPrint has bins (height), time
slots (width) and, direction and counter types together form-
ing six channels – upPackets,downPackets, upBytes, down-
Bytes, upPacketLengths and downPacketLengths. Thus,
FlowPrint is equivalent to a 6 channeled image of shape
(numbins, timesteps, 6).

The CNN architecture (shown in Fig. 3-top) used in our
work has 4 sub-modules each using a particular kernel size
to perform multiple sequential convolutions on the Flow-
Print image. The 4 kernel sizes used in our work are 3,5,7
and 9 along the timeslot axis i.e. their field of view includes
all bins, all channels and timeslots equal to their kernel size.
Using multiple sequential convolutions helps build features
in a hierarchical way, summarizing to the most important
features at the last convolutional layer. We use 8 layers
as we found that results show marginal improvements on
increasing the number of layers any further. The output from
last layer of each module is flattened to a 32-dimensional
vector using a dense layer, which is concatenated with the
outputs of other modules. The concatenated output (32x4) is
then passed to linear MLP (2 dense layers with 100 and 80
neurons) and then a softmax layer that outputs a probability
distribution over the classes of the NTC task.

4.2.2. LSTM. LSTM is type of Recurrent neural network
(RNN) widely used in tasks such as time series classi-
fication, sequence generation etc since they are designed
to extract time-dependent features out of the raw input.
LSTM processes a given sequence one time step at a time
while remembering context from previous time steps by
using hidden states and cell state that effectively mimic
the concept of memory. After processing the entire input, it
produces a condensed vector consisting of features extracted
to perform the given task. Due to this, LSTMs have been
used to perform NTC tasks [4], [9] in addition to CNNs.

Our FlowPrint arrays need to be reshaped to be fed into
an LSTM model. We convert FlowPrint into a time-series
vector X = [X0, X1, X2, ...XT ] where each Xt is a 3∗2∗ b
dimensional vector consisting of values collected in time
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Figure 3: CNN (top) and LSTM (bottom) architectures.
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slot t, from 3 counters types (i.e. bytes, packets and packet
lengths) collected in 2 directions (i.e up and down) and for
b packet length bins i.e. all counters collected in time t.

The architecture used in our work (shown in Fig. 3
bottom) has one LSTM layer (of 80 neurons) which sequen-
tially processes the input X while keeping a hidden state
h(t) and a cell state c(t) (cell state omitted in the figure).
At each time step t, the LSTM is fed Xt, and h(t− 1) and
c(t− 1) from previous time steps, to produce new h(t) and
c(t). The final hidden state h(T ) is then fed to a linear MLP
and a softmax layer to generate a probability distribution
over the classification labels.

4.3. FlowFormers

In order to improve the performance of CNN and
LSTM based models on NTC tasks, we propose the use
of Transformer Encoders on the input prior to feeding it
into the vanilla model architectures. We first present a brief
overview of Transformers, with a particular focus on its
encoder which uses attention mechanism to enhance input
features. We then develop two models by extending previous
DL models using Transformer Encoders: TE-CNN and TE-
LSTM respectively. We refer to TE-CNN and TE-LSTM
as FlowFormers as they enhance FlowPrint features using
Transformers to perform the NTC tasks.

Overview. Transformers [5] have become very popular
in the field of NLP to perform tasks like text classification,
text summarization, translation etc. A Transformer model
has two parts an encoder and a decoder. The encoder extracts
features from an input sequence and the decoder decodes
according to the objective. For example, in task of German
to English translation, the encoder will extract features from
the German sentence and the decoder will decode them
to generate the translated English sentence. For tasks like
sentence classification only the feature extraction is required
so the decoder part of the transformer is not used. Trans-
former encoder Models like BERT [15] are very effective
in text classification tasks. Drawing inspiration from them,
we develop a transformer encoder suited for NTC tasks.

Self-Attention. Transformer was able to outperform
prior approaches in NLP due to one key innovation: Self-

Attention. Prior to this, in NLP tasks, typically each word
in a sentence was represented using a encoding vector
independent of the context in which the word was used.
For example, the word “Apple” was assigned same vector
while it can refer to a fruit or the company depending on
the context. A transformer encoder, on the other hand, uses
a self attention mechanism in which other words in the
sentence are considered to enhance the encoding of a par-
ticular word. For example while encoding this sentence, “As
soon as the monkey sat on the branch it broke.” Attention
mechanism helps the transformer encoder to associate “it”
with the branch, which is otherwise a non-trivial task.

Concretely, self attention works by assigning an impor-
tance score to all input vectors for each output vector. The
encoder takes in a sequence X0, X1, ...XT where each Xt

is a k dimensional input vector representing t-th word in the
sentence. It outputs a sequence Z0, Z1, ...ZT where each Zt

is the enhanced encoding of the t-th word. For each Zt, it
learns the importance score ct (0 <= ct <= 1) to give to
each input Xt, and then constructs Zt as follows:

Zt =

T∑
t=0

ct.Xt, where

T∑
t=0

ct = 1

This is just an intuitive overview of attention, the exact
implementation details are described in [5].

Transformers for NTC. Similar to enhancing a word
encoding, transformers can be used to enhance the time-
series counters collected in FlowPrint. We implement this
idea by developing an architecture for FlowFormers (shown
in Fig. 4). FlowFormers TE-CNN and TE-LSTM are CNN
and LSTM extended with Transformer Encoders. FlowPrint
is first encoded by a Transformer Encoder before being fed
into the CNN and LSTM architectures. In our work, we use
4 stacked transform encoders each with 6 attention heads.
Each transformer encoder is designed exactly as in [5] with
the dimensions of key, value and query set at 64.

The input format to the transformer encoder model is
time-series vector X exactly similar to the input of LSTM
(§4.2.2). The input is passed through multiple stacked en-
coders which enhance the input with attention at each level.
We empirically found that using 4 stacked encoders gives



us the best results. The output of the final encoder is the
enhanced vector Z exactly of the same dimensions as X .
Now, instead of using raw FlowPrint X as input, we use
enhanced version Z as an input to both models.

For TE-LSTM, the vector Z is directly fed into the
LSTM model with no modification. For TE-CNN however,
the vector Z is first converted into a 6-channel image
(essentially, the reverse of the process of converting 6-
channel image into input X described in §4.2.2). The image
formatted input is then fed into the CNN model. We would
like to highlight that since the input X and output Z are of
exact same dimensions, the transformer encoder component
is “pluggable” into the existing architectures requiring no
modification to them.

Like most DL-models, the learning process even with
transformer encoders is end-to-end i.e. all the model pa-
rameters including attention weights are learned by using
stochastic gradient descent (SGD) and reducing the error of
classification. Intuitively, in the case of TE-CNN, the CNN
architecture updates the encoder weights to be more suitable
to extract features using visual filters while in case of TE-
LSTM, the LSTM updates the encoder weights to pick
out time-series features. Irrespective of the vanilla model
architecture used on top, transformer encoder is capable of
enhancing the input such that it is amenable to how vanilla
model works. This in turn makes the entire model (TE +
vanilla model) learn and perform better compared to just the
vanilla model architectures across the range of NTC tasks
as shown in the evaluations next.

5. Training and Evaluation

Having explained the architectures of our DL-models,
we now describe the training process followed by an eval-
uation of both FlowPrint and the models. As described
in §4.1, we train our models for 2 tasks: (a) application
type classification, (b) provider detection for video and
conference application types. The dataset contains FlowPrint
arrays labelled with both type and provider collected with
the configuration mentioned in §4.1.

In addition to evaluating prediction performance of the
models on the tasks above, we also evaluate the impact
of parameters of FlowPrint. In particular, we evaluate the
models’ performance in various binning configurations and
also with FlowPrint collected for a smaller duration i.e.
10sec and 20sec. For all these configurations, the training
process remains the same as explained next.

5.1. Training

For each NTC task, the data is divided into train,
validation and testing tests in the ratios 60%, 15% and
25% respectively. The data contains approximately equal
examples from each class (for each task). All the DL models
are trained for 15 epochs where in each epoch the entire
dataset is fed to the model in batches of 64 at a time. Cross-
entropy loss is calculated for each batch and then model
parameters are learned through back-propagation using the

Table 2: Dataset split for type classification

App Type Set-A Providers Set-B Providers

Video Netflix, Youtube,
Disney AmazonPrime, Facebook

Conferencing MS teams, Zoom,
Discord Skype, Whatsapp , Hangout

Gameplay Genshin Impact,LoL,
CoD,WOW, CS:GO,

CoD: Black Ops Cold War,
Fortnite, Overwatch,
Halo Reach, Battlefront II,
Hearthstone

Downloads Steam , XboxLive Playstation, Oculus, Origin
Live Video Twitch , Seven Live ——————————-

standard Adam optimizer with an empirically tuned learning
rate of 1e-4. After each epoch, the model is tested on the
validation data and if the results on the validation data begin
to drop, the training process is halted. This makes sure that
the model is not over-fitting to the data it is being trained
on, commonly known as early stopping in DL literature.
These training parameters (and models’ hyper-parameters)
can be tuned specifically to perform slightly better. However,
our aim in this work is to evaluate efficacies of different
model architectures on FlowPrint as opposed to investigating
specific tuning parameters for the models for each task.
Hence, we keep the training process simple and consistent
across all models and tasks to perform a fair comparison.

5.2. Model Evaluation

We evaluate the vanilla models (CNN and LSTM)
and FlowFormers (TE-CNN and TE-LSTM) on application
type classification and provider classification tasks using
FlowPrint input configured with 3 bins (0,1250,1500) and
collected for 30 seconds (at 0.5 sec interval i.e. 60 time
slots). We consider the commonly used metric f1-score (
harmonic mean of precision and recall) as a measure of
model performance across the tasks.

5.2.1. Type Classification. For application type classifica-
tion task, we consider the following labels: Video, Live
Video, Conferencing, Gameplay, Download. We divide the
dataset into 2 mutually exclusive sets based on application
providers: set A and B (as shown in Table 2). We train the
model on 75% data (60% train and 15% validation) of set
A, and perform two evaluations: 1) test on 25% of data in
set A and 2) On all the data in set B. We note that the class
“Live Video” has been excluded in this set as it contained
only two providers.

The evaluation on set A (shown in Fig. 5-top), compares
weighted and per-class f1 scores of both vanilla models
(CNN, LSTM) and FlowFormers (TE-CNN and TE-LSTM).
Firstly, all models have a weighted average f1-score of at
least 92% indicating the effectiveness of FlowPrint to cap-
ture the traffic shape and distinguish application types. Sec-
ondly, FlowFormers consistently outperform vanilla models
(by 2-6%) showing the impact of transformer encoders.

The evaluation on set B (shown in Fig. 5-bottom) tests
the ability of models to learn provider-agnostic patterns to
detect the application type since they were never shown ex-
amples from set B’s providers. While the performance drops
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Figure 5: Type Classification.
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Figure 6: Provider Classification.

across models as expected, we observe that FlowFormers
outperform vanilla models by a huge margin (6-11%). This
clearly depicts that FlowFormers can generalize better than
vanilla DL models due to attention-based encoders enhanc-
ing the FlowPrint input.

5.2.2. Provider Classification. For application provider
classification, we aim to classify top providers amongst
2 application types: Video and Conferencing, i.e. classify
amongst Netflix, YouTube, Disney and AmazonPrime for
Video and Microsoft Teams, Zoom, Discord and WhatsApp
for Conferencing. This task is inherently more challenging
since all the providers belong to the same application type
and hence largely have the same traffic shape. The models
need to pick up on intricate patterns and dependencies such
as packet length distribution and periodicity (in the case of
video) to be able to classify amongst the providers.

For video provider classification (shown in Fig. 6-top),
we observe that FlowFormers evidently perform better that
the vanilla models with a 12% gain in the weighted average
(e.g. TE-LSTM vs LSTM). We believe TE-LSTM outper-
forms other models since it can better pick up the periodic
patterns (transfer of media followed by no activity shown
in 2) that exist in the video applications. For instance, we
observe (in our dataset) that YouTube transfers media every
2-5 seconds, whereas Netflix transfers it every 16 seconds.
Transformers enrich FlowPrint by learning to augment this
information and thus improving the classification accuracies.

Similarly in conference provider classification (shown in
Fig. 6-bottom), FlowFormers outperform the vanilla models
by 7% on an average (TE-CNN vs. CNN). We note that
for this task, TE-CNN performs slightly better than TE-
LSTM since this task predominantly relies on packet length
distributions which tend to be different for the providers
of conferencing applications rather than periodic patterns
observed in video applications.

To summarize, FlowFormers are able to learn complex
patterns beyond just the traffic shape, to outperform vanilla
models in the challenging tasks of video provider and con-
ference provider classification.

5.3. FlowPrint Evaluation

We now evaluate the performance of FlowPrint by vary-
ing number of bins and length of data. We show that Flow-
Print’s binning is a key factor that increases the performance
across models, especially in the challenging task of provider
classification.

5.3.1. Bin analysis. In previous evaluations, each FlowPrint
sample had 3 bins (PLB = [0, 1250, 1500]). Now, we eval-
uate the impact of reducing bins to 2 (PLB = [1250, 1500])
and 1 (PLB = [1500]) on the performance of the models.
We note that to reduce to 2 bins we have two choices, either
(a) merge bin 2 and bin 3 or (b) merge bin 1 and bin 2 in
the original 3 bin configuration. We chose to merge bin 1
and bin 2, since that was giving a better performance. So,
in other words, the 2-bin configuration tracks the counters
in less-than-MTU (0 <= pkt.len <= 1250) and close-
to-MTU bins (>= 1250). We additionally note that 1 bin,
essentially means that there is no binning at all i.e. FlowPrint
with 1 bin tracks the total byte and packet counts of the flow
without any packet length based separation.

We re-train and evaluate every model on each of the 3
bin configurations for the tasks Application Type Classifi-
cation and Video Provider Classification (weighted average
f1 scores shown in Fig. 7). We observe that the f1 scores
across the models and tasks generally improve with more
bins. However, the performance improvement also depends
on the task complexity. For type classification task, the
models improve by less than 2% per addition of a band
(the difference is further insignificant for FlowFormers).
For video provider classification however, the performance
increment is evidently drastic since the task is more chal-
lenging and requires fine grained data with binning. On the
other hand, Conference Provider Classification (not shown
in the figure), has little to no impact on f1 scores by reducing
bands as almost all packets exchanged within the one bin
(0 <= pkt.len <= 1250).

Thus, the configuration of FlowPrint can be decided
depending upon the NTC task at hand. Higher number of
bins would imply higher memory footprint which is espe-
cially expensive in programmable switches which have very
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Figure 7: FlowPrint Bin Results.
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Figure 8: FlowPrint Time Results.

limited memory. So, this evaluation helps to navigate the bin
vs. memory tradeoff to configure FlowPrint parameters and
achieve a particular target accuracy for an NTC task.

5.3.2. Time Period Analysis. We now evaluate the impact
of the time period for which FlowPrint is collected on each
task. We re-train and evaluate FlowFormers (vanilla models
omitted for brevity) on FlowPrint collected for 10sec, 20sec
and 30sec (the max configuration). The Fig. 8 shows the
weighted average f1-score of TE-LSTM (top) and TE-CNN
across the tasks (x-axis). We note that both models are able
to classify application types with about 95 % f1 score with
just 10 seconds of data while going up to 97% with 30
seconds. Similarly, the conferencing provider classification
results do not vary by much with increasing time as a
conference call tends to exhibit similar behaviour over the
given time range. However, for video provider classification
task, we can observe a significant gain by using FlowPrint
collected for a longer duration. This is due to the periodic
nature of the flows which repeats at a longer interval (e.g.
16 seconds for Netflix).

Thus, the parameters of FlowPrint i.e. numbins, time
duration, interval etc. can be configured depending upon
the NTC task, the available compute/memory resources and
required performance in terms of classification speed and
overall accuracy.

6. Conclusion

With diverse applications being used on the internet,
Network Traffic Classification is becoming important but
increasingly challenging due to encryption. Existing ap-
proaches either rely on non-encrypted content of traffic
or perform post-facto classification of flows. Our work
has developed methods for accurately classifying traffic
in real-time and at scale by using only the behavioural
patterns agnostic to flow content. To this end, we design
FlowPrint, a data-structure to efficiently capture traffic be-
haviour that is amenable to implementation in high-speed
programmable switches. We further propose the use of
transformer-encoders (FlowFormers) to outperform existing

DL models. Our evaluations show that the combination of
FlowPrint and FlowFormers can classify application type
and providers at scale with high accuracies and in real-time.
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