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Abstract—DNS Water Torture attack is a type of DDoS attack
on authoritative DNS servers and/or open resolvers, whereby the
victim is bombarded with random non-existent domains (NXDs)
DNS requests, exhausting their entire resources. A famous
example of this attack was launched by Mirai botnet on Dyn
DNS architecture in 2016. Researchers have proposed solutions
to detect these attacks; however, they predominantly apply static
thresholds to the count of NXD responses. This method can result
in high false positives and needs to be customized to the traffic
pattern of victim DNS servers, making it practically challenging
for adoption at the source of potential attacks. This paper aims
to detect possibly infected hosts of a university campus network
that take part in this specific type of DNS-based attacks. Our
contributions are threefold: (1) We analyze 120 days’ worth
of DNS traffic collected from the border of a large university
campus network to draw insights into the characteristics of non-
existent domain (NXD) responses from incoming DNS packets.
We discuss how malicious NXDs differ from benign ones and
highlight two attack scenarios based on their requested domain
names; (2) We develop a method using multi-staged iForest
models to detect malicious internal hosts based on the attributes
of their DNS activity; (3) We evaluate the efficacy of our proposed
method by applying it to live DNS data streams in our university
campus network. We show how our models can detect infected
hosts that generate high-volume and low-volume distributed non-
existent DNS queries with more than 99% accuracy of correctly
classifying legitimate hosts.

Index Terms—DNS water torture attack, NXDs, DDoS

I. INTRODUCTION

Over the last two decades, there has been tremendous
growth in malicious activities exploiting DNS protocol as the
number of network devices grows daily. DNS is a mission-
critical service but open by design and rarely monitored by
the firewall compared to email, FTP, or HTTP. Attack on
DNS infrastructure of Dyn (providing DNS services to big
companies such as AirBnB, Spotify, and Twitter) caused by a
malware known as Mirai 2016 is a famous example to explain
water torture attack in which thousands of vulnerable IoT
devices took part in sending queries for random domains to the
companies whose DNS infrastructure is operated by Dyn [1].
According to the FBI, the attackers used random subdomain
attacks to target US-based state-level voter registration and
information website in 2020 [2].

DNS works in such a way that if a query is being
asked from the DNS authoritative name server or open
resolver, it is an obligation on them to answer it even if
the query is non-existent in their ecosystem. Non-existent

domains are of two types: (a) benign: popular search en-
gines and anti-viruses utilize random-looking domains to
convey a one-time signal to their servers known as disposable
domains (e.g., elb.amazonaws.com.cn, cloudfront.net,
and avts.mcafee.com). Benign domains may also con-
tain typo mistakes. For example, a user accidentally writes
“googel.com” instead of “google.com”; and (b) malicious:
launch a type of DDoS attack, DNS water torture attack
[3] also known as random subdomain attack by dynamically
generating random strings as the prefix of a victim domain.
The DNS Water Torture Attack is a type of DDoS attack on
DNS servers. This attack affects both authoritative servers and
open/recursive resolvers, but mainly it targets the former.

Cyber actors use bots (compromised devices) to send many
randomly generated domain names on their victim servers.
The queried domain names relate to the primary domain that
is governed by its authoritative name server to return the IP
address of that particular domain. During the attack, due to
the high number of requests, the victim authoritative servers
and/or the recursive resolvers may have slow response to
the queries being asked or potentially become unavailable.
Although the problem has been well understood over the last
decade, it is mostly dealt with from the perspective of the
victim server by identifying the malicious queries. We see
this as an opportunity to detect potentially infected hosts of
an enterprise that initiate non-existent queries to the outside
world. It is important for enterprises to implement certain
cyber hygiene practices that aid in boosting an organization’s
overall security posture as well as miniating their reputation
on the Internet community by preventing their internal hosts
from attacking others.

In this paper, we make the following three contributions: (1)
We analyze 120 days’ worth of DNS traffic collected from the
border of a large university campus network to draw insights
into the high volume of incoming Non-Existent Domains
(NXD) responses and to identify the difference between two
scenarios of water torture attack (attack on authoritative DNS
server and/or open resolver); (2) Based on the behavioral
attributes, we develop a multi-staged iForest model to classify
the internal hosts (those receiving benign NX responses versus
those taking part in water torture attack); and, (3) We evaluate
the efficacy of our proposed approach on live DNS data with
an accuracy of over 99% correctly classifying legitimate hosts.
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Fig. 1: Visual illustration of our data collection and various
entities identified.

II. RELATED WORK

DNS traffic has been analyzed to identify malicious network
activities [4]–[9]. Over the past decade, there has been an
increasing number of works [10]–[13] on detecting malicious
network activities mostly related to DNS exfiltration, DNS
tunneling, and C&C communications [14]–[18].

Identifying Malicious Queries: To resolve the NXD at-
tacks, specifically water torture attacks, researchers come up
with significant countermeasures such as rate limiting and IP
address blocking. However, it can severely affect the legiti-
mate users since the malicious queries can forward through
the open resolvers or ISP cache servers. Therefore, the IP
address of the cache server will be blocked, and the legitimate
users will not have access to the ISP cache server. Similarly, if
the volume of queries exceeds the limit set in rate-limiting, it
will block all queries, even from legitimate users. Researchers
[19], [20] have also examined domain names to detect the
malicious queries by focusing on NXD error responses only.
Kazato et al. [19] predicted whether a domain name included
random words via a score calculated by comparing bigrams
of domain names of malicious domains and those of benign
domain names.

Identifying Attack on DNS Servers: A group of re-
searchers [20], [21] have identified NXD attacks on DNS
servers by setting the threshold on the number of non-existent
domains. The approaches can be fruitful for heavy volume
attacks (such as bursty data) - moreover, choosing a threshold
value would be challenging. However, this approach does not
work efficiently for the lightweight and distributed NXDs,
bypassing the threshold-based security systems.

Researchers have proposed a range of countermeasures to
detect NXD attacks; however their proposed methods are too
simple (threshold-based) and hence fall short when it comes
to sophisticated attacks - with a different objective being the
detection of victim primary domains. Instead, we develop a
monitoring system at the source that can detect enterprise
hosts that generate high volumes of NXD attacks and low
and distributed NXD attacks.

III. ANALYZING TWO VARIANTS OF DNS RANDOM
SUBDOMAIN ATTACKS IN OUR CAMPUS NETWORK

In this section, we first analyze the prevalence of NX
domains in our campus network. We then look at the two
variants of water torture attack - the first case is when the
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Fig. 2: Timetrace of incoming NX DNS responses.

victim is an authoritative name server, and the second case is
when the victim is an open/recursive resolver. The study here
considers data collected over four months from 31st Oct 2019
to 28th Feb 2020.

Benign incoming responses: Before exploring the anatomy
of NXD attacks, we discuss the two possible cases of in-
coming benign NXDs responses in an enterprise network:
(i) Typing mistakes, and (ii) Disposable domains used by
antivirus tools (benign data exfiltration).

Illustration of Our Data Collection: Let us understand
the anatomy of water torture attack by taking a closer look
at our data from a day. As shown in Fig. 1, we show the
visual illustration of our data collection for the incoming
NX responses. As we collect the DNS data from the border
router, the identity of some of the internal hosts gets hid-
den behind the UNSW recursive resolvers (RRs) and NAT
gateways. Hence the scope of this work is limited to those
unhidden internal hosts receiving NXD responses. Out of 1.4
M incoming NXDs on this day, 700K responses were destined
to 393 hosts. The responses are sourced from either open
resolvers and/or authoritative name servers. In what follows,
we will highlight how internal enterprise hosts behave during
attack scenarios.

A. Attack Scenarios

This section discusses the attack scenarios i.e., attack on
the authoritative name server of the victim domain, and an
attack on the open resolver. We first plot in Fig. 2 the time
trace of incoming NXD responses in our dataset. Each data-
point in this plot represents the number of NXD responses
over a 6-hour window. We observe that the typical values of
the number of incoming NXDs are less than 500K domains.
These domains are mostly benign (either typos or disposable
domains). However, some spikes can be seen in the plot high-
lighting some abnormal activities. We further analyzed those
days with spikes in the count of incoming NXD responses
and found out the two different scenarios of NXD attacks as
described in the following subsection.

1) Attack on Authoritative DNS Servers: Analyzing the
spike on 8th January 2020, we found out that most of the
incoming NXD responses (350K) are destined to a regular
host. Interestingly, the host displays unexpected (suspicious)
behavior on 8th January 2020 i.e., we see no NXD activity
other than one massive spike within an hour on 8th January.
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Fig. 3: Zoomed-in time trace of the suspicious host during the
hour of interest (8th January 2020 1:30 - 2:30pm).

To better understand the behavior of that host in terms of
incoming NXD responses, let us zoom into the host activity
on a per-minute basis for those particular hours to see a
fine-grained pattern of NXD arrivals (whether spread across
hours uniformly or bursty). As shown in Fig. 3, we observe
that the number of NXD responses starts to grow linearly
at around 1:45pm, peaks at 26K and sharply becomes zero
at 2:15pm. Analyzing their query names revealed that they
all target a single primary domain name ahrtv.cn - this
highlights an attack on the corresponding authoritative name
server. Some FQDNs found in those queries contain random
subdomains e.g., “3guc.ahrtv.cn”, and some contain dic-
tionary words e.g., “disposal.ahrtv.cn” in the subdomain
part. In general, we found out that the volume of incoming
NXDs from water torture attack is significantly much greater
than disposable and benign NXD domains.In total, we found
350,695 NXD responses from “ahrtv.cn” out of which
350,581 responses use unique FQDNs (more than 99.99% of
FQDNs occurred just once, which is a very unusual behavior).

2) Attack on Open Resolvers: We found out another form
of NXD attacks in which an open resolver was the target.
After observing unusual spikes during the last week of Nov
2019 (shown in Fig. 2), we focused on 26th Nov 2019 to
better analyze the behavior of the involved host as well as
top queried FQDNs and primary domains. We found out
that an internal host of our campus made unusual queries to
Google’s public DNS resolver 8.8.8.8 - the query names were
“shu-Aspire-V3-572” and “mtrnlab5” and hence not fully
qualified since they did not conform to a standard structure.
We observed that the volume of those non-standard queries
goes to 400K NXDs per hour, highlighting a very abnormal
behavior by this internal host.

B. Drawback of Using a Threshold for NXDs Attack Detection

In this section, we discuss the drawback of using threshold-
based attack detection. The first point we want to make here
is that various hosts behave differently on a campus network.
Therefore, setting a threshold for hosts would be challenging,
given the variation in the attack profile. Fig. 4 illustrates
the count of incoming NXD responses during a day for
three representative infected hosts, at three time granularities:
hourly, minutely, and secondly. Let us first look at the hourly
count of incoming NXDs across these possibly infected hosts.
Fig. 4a depicts the time-trace for the infected H1. The behavior

of this host is bursty – only became active at around 1pm,
peaking at 250K incoming NXD responses during the day.
Comparing H1 with another infected host in Fig. 4b which
is super active during the whole day with 300K incoming
NXD responses on average. Based on the above two infected
hosts, one may choose a threshold of more than 200K NXD
responses per hour. However, for our third representative
infected host (shown in Fig. 4c), this threshold will not be
triggered and this infected host (H3) will go undetected. Also,
we test the thresholding method by changing the timescale to
a per-minute basis. Fig. 4d provides the time trace of infected
host 1 with incoming NXDs from 5K to 26K in a minute
and comparing it with infected host 2 which ranges from
4K to 8K per minute. We can set a threshold of incoming
NXDs to 5K (any hosts receiving more than 5K NXDs will
be flagged as malicious). The infected host 3 will pass from
this threshold criteria undetected as in Fig. 4f, we can see that
incoming NXDs of infected host 3 range from 100 to 700
NXDs. Similarly, in Figures 4g-4i, we compare the infected
hosts on a per-second basis where the infected host 1 and 2
have the peak value of 500 and 600 respectively, whereas the
infected host 3 has a peak incoming NXDs count of 70.

IV. MULTI-STAGED MACHINE LEARNING ARCHITECTURE

In this section, we present the overall architecture of our
method, and then we discuss the details of our multi-stage
machine learning algorithm.

A. System Design

Fig. 5 shows the structure of our detection system. An
incoming NXD DNS response triggers our system. First,
we start monitoring the behavior of the internal host which
receives the NXD response. We track the number of NXD
responses, timestamp of NXD responses, and FQDNs of
individual NXD responses. Upon receiving the NXD response
destined to the internal host, we start tracking all the responses
to that specific host to get the ratio of NXD responses versus
all the other response types. We have devised a new mech-
anism that uses cascaded machine learning-based models.
In stage-1, we use an iForest model to detect whether the
incoming NX response is exfiltrated or not (the exfiltrated
response represents the benign disposable domains generated
by antivirus tools). We design our system to detect volumetric
NXD attack as well as distributed NXD attack. We devised
two approaches i.e., fine-grained approach and coarse-grained
approach. We then process the attributes on a per-second basis
(fine-grained) and pass it to the stage 2 iForest model if the
model identified that host as benign, we pass it to our coarse-
grained model to detect the distributed NXD attack over time.
For that, we process the attributes per 30 seconds interval
(coarse-grained approach) and pass it to the iForest model to
classify the host as malicious or benign.

Our multi-staged ML is based on “Isolation Forest (iFor-
est)” [22]. In the first stage, we pass the FQDNs per host to
the model that we used to detect DNS exfiltration in [16],
[17]. However, our focus here is to detect the non-exfiltrated



(a) H1 targeting an authoritative server (hour). (b) H2 targeting a recursive server (hour). (c) H3 targeting an authoritative server (hour).

(d) H1 targeting an authoritative server (min). (e) H2 targeting a recursive server (min). (f) H3 targeting an authoritative server (min).

(g) H1 targeting an authoritative server (sec). (h) H2 targeting a recursive server (sec). (i) H3 targeting an authoritative server (sec).
Fig. 4: Time-trace of count of NXD responses for various infected hosts at various time granularity (per hour, per min and
per sec): (a,d,g) infected H1, (b,e,h) infected H2, and (c,f,i) infected H3.
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Fig. 5: Overview of our proposed scheme.

domains. The reason to choose non-exfiltrated domains is that
the water torture attack queries do not conform to the attributes
of exfiltrated domains. We have utilized our previously trained
ML model from [16], [17] to extract an attribute i.e., fraction
of non-exfiltrated domains. We extract eight attributes (from
the query name section of each incoming NX DNS response
packet) that collectively have strong predictive power in deter-
mining whether the query name is exfiltrated or not (output of
stage-1). The attributes include: (1) total count of characters in
FQDN, (2) total count of characters in sub-domain, (3) total
count of uppercase characters, (4) total count of numerical
characters, (5) entropy, (6) number of labels, (7) maximum
label length, and, (8) average label length. We compute the
fraction of non-exfiltrated domains for each internal host as

an attribute for our next stage ML-based model.
For the second stage, we train two iForest models: (a) one

is fine-grained for detecting volumetric water torture attacks
(in terms of volume of DNS requests), and (b) another is
coarse-grained for detecting distributed water torture attacks.
We consider the attributes discretely on a per-second basis
(fine-grained) for each host, feeding the iForest model. We
compute attributes discretely every 30 seconds for each host
for the coarse-grained model. By analyzing NXD traffic from
our campus network, we consider the following five attributes,
including: (1) ratio of NXD responses to other response
types, (2) average inter-arrival time between NXD responses,
(3) standard-deviation of inter-arrival time between NXD
responses, (4) fraction of non-exfiltrated domains, and (5)
average number of labels in query names of NXD responses,
for each internal host to infer by fine-grained and coarse-
grained iForest models (stage-2).

We will now explain the motivation behind choosing the
above attributes for our ML models. The ratio of NXD
response to other response types is the most important
attribute for us to distinguish a malicious host from a benign
one. To explain this, let us take a look at Fig. 6 that shows
the activity of all hosts of our campus network on a day. The
stackplot depicts that the number of No Error responses is
significantly higher than that of NXDs, with the peak value of
more than 100K responses in a minute. In contrast, the NXD
responses are less than 10K for overall hosts. We then plot in
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Fig. 6: Stack plot of number of incoming DNS responses in
our campus network over a day (26th Nov 2019).
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Fig. 7: Stack plot of number of incoming DNS responses of
a suspicious host over a day (26th Nov 2019).

Fig. 7 the number of DNS responses (per min) for a suspicious
host during that day. We can see that No Error responses
peaked at 2K per minute, whereas NXD responses (shown in
red) peaked at 6K. Therefore, the ratio of NXD to all the other
responses becomes much greater than 1 from 12pm till 3am.
We identify average and standard deviation inter-arrival
time between NXD responses as other two main attributes for
classification based on the analysis of benign and suspicious
host as discussed in §III where we showed that benign NXDs
are distributed in time and do not occur very often over a day
as opposed to malicious NXDs involved in a water torture
attack. Similarly, fraction of non-exfiltrated domains gives
the percentage of domains used other than disposable domains
and average number of labels of NXD responses captures
whether a domain is a disposable domain or a water torture
attack domain. We note that disposable domains are often long
and contain more than 5 or 6 subdomains whereas the random
NXD domains typically have one subdomain [23].

B. Model Training

In this subsection, we provide details of our ML model
training used in each stage.

Stage-1 Model: For the stage-1 model, we train an iForest
model with benign data from four days of our DNS dataset.
For ground truth of benign domains, we use Majestic Million
[24] that releases a free dataset of top 1M domains and updates
it on a daily basis. Majestic ranks sites by the number of
subnets linking to that site. For the benign training instances,
we only use top 10,000 primary domains. We also include
FQDNs for “sophosxl.net” domain which is not among the
top 10K Majestic dataset. More details of our stage-1 model
training and tuning can be found in [17].
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Fig. 8: CCDF of number of occurrences of NXDs per host.

TABLE I: Anomaly detection by fine-grained model.

Input Output Days 1-4 Days 5-7

Benign hosts
normal 99.6% 98.5%

anomalous 0.4% 1.5%

Remaining hosts
normal 94.1% 93.3%

anomalous 5.1% 6.7%

Stage-2 Model: To train the stage-2 model, we need a
dataset of benign NXDs that is quite challenging as there is no
public dataset from enterprise hosts. Therefore, we construct
our own dataset. To populate benign domains, we start with 4
days’ worth of NXD responses from our original DNS dataset.
Fig. 8 shows the CCDF of the total count of NXD responses
per host. Interestingly, more than 55% of hosts just receive one
NXD response. We believed these hosts accidentally mistyped
a domain name, resulting in an NXD response. Therefore,
we assumed those hosts to be benign. Also, if a host just
receives NXD responses for disposable domains (generated
by antivirus tools), we assume it as benign too (although the
host may or may not involve in other malicious activities, our
primary focus is on NXD attack). Note that this threshold
value can be configured by the network administrator based
on the requirement for their network.

To achieve our objective of detecting NXD attacks at two
levels of granularity (fine-grained and coarse-grained), we
train two iForest models at stage-2, the first model is trained
to detect the heavy volume of NXDs based on attributes
computed on a per-second basis. Similarly, the second model
is trained with attributes computer on a per 30-sec basis for
a distributed NXD attack.

V. PERFORMANCE EVALUATION

In this section, we evaluate the efficacy of our scheme by
cross-validating and testing the accuracy of the trained models
for benign instances and quantifying their performance on a
full campus traffic stream.

Performance of Fine-Grained Model: We evaluate the
performance of our fine-grained ML model. Table I shows that
benign hosts are classified as normal with an accuracy of more
than 98% for both training and testing with false-positive rates
of less than 2%. Our objective here is to detect anomalous
hosts when the models are applied to remaining hosts. We
find that 5.1% of the hosts are classified as anomalous.
Further analysis revealed that this model captures all the



TABLE II: Anomaly detection by coarse-grained model.

Input Output Days 1-4 Days 5-7

Benign hosts
normal 99.4% 98.1%

anomalous 0.6% 1.9%

Remaining hosts
normal 90.6% 90.1%

anomalous 9.4% 9.9%

heavy volume NXD attacks with some false positives. Some
of the hosts classified as malicious are NAT gateways and
recursive resolvers due to their heavy activity of receiving
NXD responses (actual end hosts are hidden behind NAT
gateways and resolvers, and hence, the detection of those
actual end hosts in this case is beyond the scope of this work).

Performance of Coarse-Grained Model: We next evaluate
our coarse-grained model, which was trained by the iForest
algorithm. Table II summarizes the results. It can be seen that
trained internal hosts are correctly classified as benign with
an accuracy of more than 99% during validation. Similarly,
the benign hosts are correctly classified as benign with an
accuracy of 98% with a false-positive rate of less than 2%.
These results are similar to those of the fine-grained model.
However, our intent of using a coarse-grained model was
to detect distributed NX attacks. We can see here for the
remaining hosts, the number of hosts classified as normal is
decreased drastically to 90%, whereas the anomalous hosts
are nearly 10%. When we analyzed the hosts classified as
anomalous, we found out that some hosts were taking part in
water torture attack with a very low volume of NXDs, but the
requests were distributed in time.

Discussion: To better understand these findings, we have
further analyzed hosts that are detected as anomalous in
“remaining hosts” category. First, we look at the anomalous
hosts for our fine-grained model. In total, we have 45 unique
anomalous hosts. By analyzing these IP addresses, we found
(by reverse lookup) that 8 of them are NAT gateways (the ac-
tual number of hosts are hidden behind these NAT gateways).
Other 37 are all regular end hosts coming from 5 different
subnets of size /24 of our university campus. Interestingly, out
of these five subnets, 18 are from the same subnet, indicating
that this particular subnet might be infected by malware.

Comparing these results with those of our coarse-grained
model, we found that the anomalous hosts increased to 87,
which shows that it also flagged hosts involved in distributed
random subdomain attacks. Performing reverse lookup re-
vealed that 11 of these 87 anomalous hosts are indeed NAT
gateways, while remaining (76) are regular end-hosts sitting
on 9 different subnets of size /24. Of those 76 hosts, 26 fall
under a subnet during the entire week. Upon investigation, we
found the subnet is the same that our fine-grained model flags.
This shows some hosts are possibly involved in high volume
random subdomain attack while other involved in distributed
low-volume random subdomain attacks.

VI. CONCLUSION

Enterprise networks are a potential target of cyber-attackers,
specifically those exploiting DNS to perform various attacks.

We have developed a multi-stage machine learning-based
solution to detect NXD attacks. First, by analyzing incoming
NXD responses from DNS traffic of our campus network,
we highlighted two types of random subdomain attacks on
authoritative DNS servers and open resolvers. We developed
a method using multi-staged iForest models that analyze host
behavioral attributes to identify malicious internal hosts taking
part in water torture attacks. Lastly, we evaluated the efficacy
of our proposed approach on live DNS data from the network
border of a large campus.
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