
Know Thy Lag: In-Network Game Detection
and Latency Measurement

Sharat Chandra Madanapalli, Hassan Habibi Gharakheili, and Vijay Sivaraman

UNSW Sydney, Australia
{sharat.madanapalli,h.habibi,vijay}@unsw.edu.au

Abstract. Online gaming generated $178 billion globally in 2020, with the pop-
ular shooter, action-adventure, role-playing, and sporting titles commanding hun-
dreds of millions of players worldwide. Most online games require only a few
hundred Kbps of bandwidth, but are very sensitive to latency. Internet Service
Providers (ISPs) keen to reduce “lag” by tuning their peering relationships and
routing paths to game servers are hamstrung by lack of visibility on: (a) gam-
ing patterns, which can change day-to-day as games rise and fall in popularity;
and (b) locations of gaming servers, which can change from hour-to-hour across
countries and cloud providers depending on player locations and matchmaking.
In this paper, we develop methods that give ISPs visibility into online gaming ac-
tivity and associated server latency. Our first contribution analyzes packet traces
of ten popular games and develops a method to automatically generate signatures
and accurately detect game sessions by extracting key attributes from network
traffic. Field deployment in a university campus identifies 31k game sessions
representing 9,000 gaming hours over a month. As our second contribution, we
perform BGP route and Geo lookups, coupled with active ICMP and TCP la-
tency measurements, to map the AS-path and latency to the 4,500+ game servers
identified. We show that the game servers span 31 Autonomous Systems, dis-
tributed across 14 countries and 165 routing prefixes, and routing decisions can
significantly impact latencies for gamers in the same city. Our study gives ISPs
much-needed visibility so they can optimize their peering relationships and rout-
ing paths to better serve their gaming customers.

1 Introduction

Online gaming is experiencing explosive growth: 2.9 billion players collectively con-
tributed $178 billion to global revenues in 2020, representing a 23% growth over the
year before [2]. Popular online games like Fortnite, Call-of-Duty, League of Legends
and Counter-Strike account for hundreds of millions of online players. Interestingly,
most of these games are free-to-play, and generate their whopping revenues from in-
game purchases (in-game currency, emotes, skins, stickers, weapons, backblings, battle
passes, and other such trinkets). Game publishers and platforms are therefore strongly
motivated to give gamers the best possible experience to keep them engaged, and thus
deploy their game servers on cloud platforms across multiple countries in an effort to
minimize network latency for users.

Network latency (aka “lag”) is indeed one of the largest sources of frustration for
online gamers. A typical shooting game requires no more than a few hundred kbps of

2 S.C. Madanapalli et al.

bandwidth, so a higher speed broadband connection does not by itself have a mate-
rial impact on gaming experience. By contrast, a 100 ms higher latency can severely
handicap the gamer [20], since their gunshots will be slower to take effect, and their
movements lag behind others in the game. A whole industry of “game acceleration”
is dedicated to address the latency issue, ranging from gaming VPNs/overlays (e.g.,
WTFast [6] and ExitLag [1]) to gaming CDNs (e.g., SubSpace [5]); indeed, one inno-
vative eSport hosting company (OneQode [4]) has even gone to the extent of locating its
servers in the island of Guam to provide equidistant latency to several Asian countries.

Internet Service Providers (ISPs), who have hitherto marketed their broadband of-
fering based purely on speed, are now realizing that they are blind to latency. This is
hurting their bottom line, since gamers are vocal in online forums comparing gaming
latencies across ISPs, and quick to churn to get any latency advantage. With new game
titles and seasons launching every week, and their popularity waxing and waning faster
than the phases of the moon, ISPs are struggling to stay ahead to keep gamers happy,
and consequently bearing reputational and financial damage.

ISPs have almost no tools today to give them visibility into gaming latencies. Tra-
ditional Deep Packet Inspection (DPI) appliances target a wide range of applications
spanning streaming, social media, and downloads, and have evolved to largely rely on
hostnames found in DNS records and/or the TLS security certificates of a TCP connec-
tion. Tracking modern games requires specialized machinery that can track UDP flows
with no associated DNS or SNI signaling by matching on multiple flow attributes in a
stateful manner. Further, different game developers and publishers use different cloud
operators in various countries to host their game servers, and use dynamic algorithms
for game server selection depending on the availability of players and match making.
These factors have made it very challenging for ISPs to get visibility into game play
behaviors, limiting their ability to tune their networks to improve gaming latencies.

In this paper we develop a method to detect games, measure gaming latencies, and
relate them to routing paths. Our first contribution in §2 analyzes ten popular games
spanning genres, developers, and distributors. We identify key game-specific attributes
from network traffic to automatically construct game signatures, and consolidate these
into an efficient classification model that can identify gaming sessions with 99% ac-
curacy within first few packets from commencement. Deployment of our classifier in
a University network over a month identified 31k game sessions spanning 9,000 gam-
ing hours, and we highlight interesting patterns of game popularity and engagement in
terms of session lengths.

Our second contribution in §3 uses the servers identified using our classifier from
the previous contribution to measure game servers location and latencies. We perform
BGP route and Geo lookups, coupled with active ICMP and TCP latency measure-
ments, to map the AS-path and latency to the 4,500+ game servers identified. We illus-
trate the spread of game servers across 31 ASes, 14 countries, and 165 routing prefixes,
and the resulting impact on latency for each game title. We further show that different
ISPs serving gamers in the same city can offer radically different gaming latency, in-
fluenced by their peering relationships and path selection preferences. Our study gives
ISPs much-needed visibility into gaming behaviors and game server locations so they
better optimize their networks to improve gaming latencies.

Know Thy Lag: In-Network Game Detection and Latency Measurement 3

Table 1: List of games.
Game Genre Developer Distributor/Publisher

Fortinite Shooter Epic Games Epic Games
Call of Duty: Modern Warfare (CoD:MW) Shooter Infinity Ward Blizzard Entertainment
World of Warcraft (WoW) RTS Blizzard Entertainment Blizzard Entertainment
League of Legends (LoL) MOBA Riot Games Riot Games
Counter Strike: Global Offensive (CS:GO) Shooter Valve Corp. Steam
FIFA 20/21 Sports Electronic Arts Origin
Rocket League Sports Psyonix Steam
Hearthstone Card game Blizzard Entertainment Blizzard Entertainment
Escape From Tarkov Shooter Survival Battlestate Games Battlestate Games
Genshin Impact Action RPG miHoYo miHoYo

2 Game Detection

In this section, we begin by illustrating the network behavior of a representative online
game (§2.1), followed by developing: (i) a method to automatically generate signatures
of gaming flows (§2.2), and (ii) a deterministic classifier that combines the signatures
to passively detect games using in-network attributes (§2.3).

We first collected and analyzed hundreds of pcap traces by playing ten popular
online games (shown in Table 1) that represent a good mix across genres (e.g., Shoot-
ing, Strategy, Sport), multiplayer modes (e.g., Battle-Royale, Co-Operative, Player-vs-
Player), and developers/distributors. These traces (labeled lab data1) were collected by
playing games on a desktop computer in our university research lab. Next, we collected
over 1000 hours of game-play packet traces selected from a full mirror (both inbound
and outbound) of our university campus Internet traffic (on a 10 Gbps interface) to
our data collection system from the campus border router (outside of the firewall), and
we obtained appropriate ethics clearances2 for this study. Selected pcaps (labeled field
data) were recorded by filtering the IP address of the game servers (to which our lab
computer connected while playing). This helped us collect all game-play traffic to those
“known” servers when someone on our campus played any game.

2.1 Anatomy of Multiplayer Games

Let us start with an illustrative example from a popular online game. Fortnite is a third
person shooter (TPS) game developed by Epic Games which has risen in popularity
with a game mode called Battle Royale wherein 100 players fight each other to be the
last one standing. Fortnite is played by over 350 million players around the world [3]. In
what follows, we outline the anatomy of a Fortnite game session by manually analyzing
a packet capture (pcap) trace from our labeled lab data.

Gamer Interaction: A gamer first logs in to the Epic Games launcher and starts
the Fortnite game client. The game starts in a lobby where users have access to their
social network, collectibles, player stats, and game settings. When the user decides to

1 Our labeled lab data will be publicly released when this paper is accepted and de-anonymized.
2 Ethical approval (HC16712) obtained from UNSW Human Research Ethics Advisory Panel

4 S.C. Madanapalli et al.

play, the client contacts Fortnite’s matchmaking server that groups players waiting in
a queue and assigns a server on which the online game runs. Subsequently, the match
starts, and its duration depends on how long the player lasts in the battle royale – the
last one/team standing wins among 100 players. After the game, the user returns to the
lobby area, where they may choose to start another game.

Network Behavior: From the pcap trace, we observe that the client communicates
with various service endpoints (which can be identified by their unique domain name)
for joining the lobby, matchmaking and social networking (as shown in Table 3 in Ap-
pendix A). These communications occur over encrypted TLS connections and consti-
tute “foreplay” before game-play begins. Once the game starts, the actual game-play
traffic is exchanged over a UDP stream between the client and a game server (which is
usually different from the foreplay endpoints). However, the IP address of the gaming
server is not resolved by DNS lookup – we, therefore, believe the server IP address is
exchanged over the encrypted connection during the matchmaking process. The lack of
the server identity/name (common across other game titles) makes the game-flow de-
tection challenging. We note that the game server and other servers may or may not be
co-located – e.g., the game server may be very close to the user, but the matchmaking
server could be operating from a different cloud in a different country.

The Fortnite game-play stream (identified using a five-tuple: SrcIP, DstIP, SrcPort,
DstPort and Protocol) has a packet rate of 30-40 pkt/sec upstream and about 30 pkt/sec
downstream throughout the game – fluctuations depend on player actions. However,
this profile of flow rate (as used in some prior works to classify applications [12]) is
insufficient to detect the game since we observed a similar pattern in other games. That
being said, the UDP stream has some idiosyncratic characteristics: it connects to port
9017 on the server in our example trace; it starts with a few packets of payload size
of 29 bytes; the first upstream packet contains 28 trailing 0x00s; etc. These features,
albeit simple, seem to be unique to Fortnite. The other competitive games we analyzed
displayed similar patterns of user activity and interaction including contacting various
services and having idiosyncratic patterns in the first few packets. We next describe
methods to analyze multiple gaming flows to extract such signatures automatically.

2.2 Signature Generation

As briefly mentioned above, game-play servers typically lack DNS records, and the
flow rate profile is quite similar across games. Therefore, identifying the game-play
flows (among a mix of traffic) becomes challenging and requires us to inspect packets
of flows for patterns. While signatures can be generated manually by playing the game
to collect packet traces, we develop a method to automatically extract signatures from
a collection of flows associated with game servers captured in our field dataset.

Dataset: From the lab and field packet traces (described above), we obtained over
20,000 labeled flows, with each game at least having 500 flows. We filtered and cleaned
the field traces to remove non-game-play flows using simple heuristics such as flow du-
ration (games typically tend to last for more than two minutes at the very least) and pro-
tocols (excluding ICMP traffic). A flow record in our dataset contains: (i) game name,
(ii) transport-layer protocol (UDP/TCP), (iii) server-side port number – e.g., 9017 for

Know Thy Lag: In-Network Game Detection and Latency Measurement 5

the Fortnite example considered in §2.1, (iv) packet size (in bytes) arrays of upstream
and downstream directions each for five intial packets – e.g., up:[29,29,50,314,78] and
down:[29,29,116,114,114], and (v) payload byte (in hex strings) arrays of upstream and
downstream directions each for five initial packets – e.g., [“17aabb...”,“28a004...”].
We note that while client-side port numbers can be useful, they are often obfuscated due
to the presence of NAT and hence are not considered in this study. Further, we extract
packet-level attributes from just the first five upstream and five downstream packets as
they are enough to capture game-specific handshakes.

To extract game signatures from our dataset, we focused on extracting specific pat-
terns, which could be a static value (consistent across all flows of a game title) or a range
of dynamic values. To illustrate, Fortnite3 comes with the following specific signatures:
the server UDP port number is a dynamic value between 9000 and 9100; 1st upstream
and downstream packets have a static size of 29 bytes (u 0 len = d 0 len = 29)4;
second to tenth byte of 1st upstream packet are 0x00. (u 0 b 1 = ... = u 0 b 9 =0x00)5

Static Signatures: We extract static signatures from protocol, packet size and pay-
load byte content specific to each game title by checking if an attribute has the same
value for more than α fraction of the flows. If so, the attribute and its value are added to
that specific game’s signature (e.g., “u 0 len = 29” or “u 0 b 9 =0x00”). Note that if α
is set to a small value (say, 0.5), the game’s signature becomes richer (containing more
attributes to match) and more specific to that game. A rich signature demands more
stringent requirements from a flow (i.e., higher chance of rejecting a flow (resulting in
false-negatives) with minor deviation from expected attributes). Setting α to a value
close to 1 makes the signature fairly generic, which would imply a chance of overlap
with other games (resulting in false positives). We empirically tuned it at 0.90 to strike
a balance and detect the games accurately. In addition, we use another parameter k to
specify the depth of packet payload (in number of bytes) to be analyzed. We found that
most of the static payload byte values can be captured by looking at just the first 10
bytes of each packet, meaning k = 10.

Dynamic Signatures: We extract dynamic signatures for server-side port numbers
as they often do not have a fixed value but lie in a specific range of possible values
(configured by their developers). Since we collected a rich set of flows in the field
dataset, we use the min and max of the port numbers to identify an expected range. We
further expand the range by rounding the min and max to the nearest 100 to capture those
port numbers that might have missed out in our traces. Doing so gives us a signature
like port = [9000− 9100] for Fortnite.

Thus, we obtain the static and dynamic signatures of each game title from a set of
game flows along with parameters k and α as input. Note that signatures may overlap
across games. For example, u 0 len is 29 for both games Fortnite and Call of Duty
Modern Warfare (CoD:MW), shown in Fig. 9. Therefore, we need a model that can
classify flows based on the attributes of packets as they arrive.

3 A snippet of our signatures for three representative games is shown in Fig. 9 (in Appendix C)
4 “d 0 len”: first letter denotes the direction (“d” for downstream and “u” for upstream), second

letter (“0”) denotes the packet index, and third letter (“len”) denotes the packet size.
5 “u 0 b 9”: the letters “u” and “0” are same as above while third letter (“b”) denotes byte, and

fourth letter (“9”) denotes the byte index.

6 S.C. Madanapalli et al.

protocol:port
TCP: 3724 [“WoW”, “Hearthstone”]

UDP:9017 [“Fortnite”]

UDP:30012 [“CoD:MW”, “FIFA”]

29 [“Fortnite”, “CoD:MW”]

39 [“FIFA”]

52 [“WoW”]

* [“Hearthstone”]

0x81 [“FIFA”]

0x57 [“WoW”]

* [“Fornite”, “LoL”, “Rocket League”]

First level of Hash table

u_0_len

u_0_b_1

d_0_len

d_0_b_3

d_1_<attr>

u_1_<attr>

….Arrival tim
e

more
pkts

...

Predicted output

initialize: {All games}

{“WoW”, “Hearthstone”}

∩

{“WoW”, “Hearthstone”}

∩

{“WoW”}

∩

✅ Game detected: “WoW”

1st pkt
down

1st pkt
up

Second level of Hash tableInput

Fig. 1: The structure of our classifier, illustrating a progressive classification of a flow.

2.3 Game Classifier

We employ a two-level hash table (Fig. 1) that is constructed by combining all the game
signatures extracted above, enabling us to rapidly detect game-play flows (and dismiss
undesired traffic). The first level contains the packet attributes (e.g., u 0 len, u 0 b 0) as
keys. The second level contains the possible values of the attribute as key, and possible
game titles that have the same value as the entry of the hash table.

Flow of Events: Given the pre-populated hash table, we demonstrate our classifica-
tion algorithm for an illustrative example in Fig. 1. We initialize the predicted output by
the set of all possible games in our dataset (shown on the right side). For each incoming
packet of a given flow (shown on the left side), the attributes are extracted and looked
up in the hash table. For each attribute, a set of possible game classes may be inferred.
For an illustrative WoW (World of Warcraft) flow, upon arrival of the first packet, the
protocol and port are identified as TCP:3724. Looking them up in the hash table fol-
lowed by intersection with {all games} gives us the set {‘‘WoW’’, ‘‘Hearthstone’’}
as output. We then proceed by looking up the packet size of 52 bytes. While 52 only
yields WoW in our hash table, keep in mind that Hearthstone corresponds to a wildcard
(* : indicating that attribute values were not static) meaning that the size of the first up-
stream packet in Hearthstone can be anything (including 52) and hence no change in the
output game set. Upon extracting the second byte of the first upstream packet (u 0 b 1)
we narrow it down to WoW. When the set of games reduces to one game, we declare
it as classified. Thus, the classifier rapidly eliminated other possibilities and detected
a WoW game-play flow by analyzing the protocol, port, packet size, and the first few
bytes of the upload packet. Note that packets’ inter-arrival time in a game-play flow is
in the order of milliseconds, giving sufficient room for hash table lookups (in the order
of microseconds) in between packets.

We intentionally employ an algorithmic model rather than a machine learning model
since the latter requires all the input attributes to be collected, stored and processed in
memory to make a classification decision, which is more expensive in memory and
compute. Our classifier model detects the game or rejects non-gaming flows progres-
sively on a per-packet basis, without necessarily requiring the attributes of all ten initial
packets. Whenever the possible games reduce to an empty set, we do not process pack-
ets of that flow further by classifying it as a non-gaming flow. This helps us quickly

Know Thy Lag: In-Network Game Detection and Latency Measurement 7

eliminate flows (often on the first packet) that do not form a part of our game set which
is being searched for. For example, none of the games use HTTP(S), so a majority of
the traffic using TCP:80 or TCP:443 is eliminated straight away and is never detected
as a game. This avoids unnecessary per-flow state maintenance (no state is maintained
for flows rejected on the first packet) and helps our detection method scale.

2.4 Evaluation

Our model (signatures and algorithm described above) achieves an overall accuracy of
99.6% (with a precision of 100% and a false negative rate of 0.36%) when it is applied
to our field dataset. We found that flows of nine game titles receive a perfect accuracy
100%, while 4.5% of WoW flows are not detected as a game flow. Note that our game-
specific signatures are generated based on traffic patterns found in α = 0.90 fraction of
labeled game flows; hence a minority of flows that do not conform to those signatures
will not be detected as gaming flows. Our model may miss some game flows but indeed
detects games correctly and confidently. We observe that the model is able to detect all
games in our dataset within the first two packets (first upload and first download) as the
signatures across the ten games are fairly unique, resulting in a rapid detection.

2.5 Field Deployment and Insights

The game detection system was deployed in our university campus network (with users
from offices and student dormitories) during the month of Sep 2021 to obtain insights
into the game playing patterns, as well as to determine corresponding gaming servers
that clients connect to and their latency (discussed in §3) from our campus. Our classi-
fier (loaded with the signatures) is implemented as a DPDK [14] application running on
a server which receives campus traffic mirror from optical taps (observed total traffic
peak: 8Gbps). To reduce the rate of false positives in the wild i.e., not detect non-gaming
traffic as games, we made our algorithm more conservative to analyze all attributes of
the initial ten packets of each flow before classifying the flow. Also, we monitored the
activity of the flow for the first minute of its lifetime, ensuring packet rates match the
expected rate of gaming flows (typically less than 100 pkts/sec).

During the deployment, the system detected over 31k game-play sessions, consti-
tuting nearly 9000 hours worth of game-play across the ten titles. We found that the top
three games by the number of gaming sessions were CoD:MW (9545), Fortnite (7930),
and League of Legends (6290). Interestingly, LoL dominated by the total number of
gaming hours – LoL was played for 2611 hours, followed by CoD:MW for 1575 hours
and Fortnite for 1562 hours. This highlights the games with which gamers generally
engage most.

Fig. 2 shows the dynamics of daily game-play hours across the ten titles. Unfortu-
nately there was a power outage in our lab on 14 Sep, causing data to be missed for that
day. We make a couple of observations: (a) there is a slight decreasing trend of daily
gaming hours during this period (more gaming hours in the first half than the second
half) due to academic term starting on 13-Sep following a study break; and (b) gaming
hours fluctuate across game titles – as an example, Genshin Impact (shown in orange)
was more popular early in September (≈ 87 hours daily), but then trended down to less
than half that (≈ 37 hours daily) towards the end of the month; Fortnite (shown in blue)

8 S.C. Madanapalli et al.

04-Sep-2021 11-Sep-2021 18-Sep-2021 25-Sep-2021
0

100

200

300

400

Ga
m

ep
la

y
Ho

ur
s

League of Legends
Fortnite

CoD: Modern Warfare
Genshin Impact

CS:GO
Hearthstone

World of Warcraft
FIFA

Escape From Tarkov
Rocket League

Fig. 2: Dynamics of daily game-play hours across ten titles during field trial.

was played for 475 hours in the third week when Chapter 2 Season 8 was released, but
this dropped to 325 hours in the fourth week once the excitement wore off – such ebb
and flow is the norm in gaming [17], requiring ISPs to have constant visibility so they
can tune their networks accordingly.

CS:GO

League of Le
gends FIFA

Genshin Impact
Fortnite

CoD: Modern Warfare

Hearthstone

Escape Fro
m Tarkov

Rocke
t Le

ague

World of Warcra
ft

Games

0

20

40

60

80

M
in

ut
es

 p
er

 se
ss

io
n

Fig. 3: Distribution of game-play session duration across the ten titles.

Fig. 3 shows the distribution of game-play session duration across the ten titles. We
observe a few patterns of user engagement with various games: Several CS:GO, Gen-
shin Impact, and WoW gamers spend more than an hour in each gaming session, with
CS:GO being the most engaging game with median duration of 32 minutes. Rocket
League is played for a relatively fixed duration of 10 minutes. Further, the impact of
game modes is pronounced in games like CoD:MW with three bumps on its corre-
sponding curve, highlighting three clusters of game modes, namely 5v5, GroundWar,
and BattleRoyale offered by this game title.

Lastly, we analyzed short game flows (with duration less than 2 min), which can
indicate game abandonment. While only 3.5% of the flows with local servers (within
the source country) were short, it quadruples to more than 12% when the game is played
on remote servers. Though correlation should not be interpreted as causation, it does
indicate that gamers tend to abandon games more often when the latency to the server
is high. The next section draws insights into game server locations and latencies.

Table 2: Summary of detected game-play sessions in our field trial.
Game Session # Game Hour # Game Server # IP Prefix # AS # Country

31673 8956 4523 165 31 14

Know Thy Lag: In-Network Game Detection and Latency Measurement 9

CoD: Modern Warfare

Fortnite

League of Legends

Genshin Impact

CS:GO

Hearthstone

Escape From Tarkov

World of Warcraft

FIFA

Rocket League

AU

JP

US

CN
TW
SG
KR
DE
BH
ID
HK
ZA
NL
IN

0-100 ms (82.3%)

100-200 ms (13.1%)

200-300 ms (3.6%)

300-400 ms (0.9%)

400+ ms (0.1%)

Fig. 4: Sankey diagram depicting game sessions, countries, and latency bands.

3 Mapping Game Server Locations and Latencies

Having measured gaming behaviors in the University campus over a one-month period,
we now shift focus to the game servers, including their location and latency. This covers
over 31k gaming sessions played against 4,500 unique game servers, spread across 14
countries and 165 routing prefixes and 31 ASes, as shown in Table 2.

3.1 Methods and Tools

We employed an IP Geolocation service [11] to tag the location of every server IP
address. We also used the online Looking Glass tool exposed by the University’s ISP,
that offers ping, traceroute, and BGP queries to obtain routing prefix (i.e., the subnet
of the server IP address) and its AS path. Furthermore, we estimated the latency (we will
use latency interchangeably with round-trip-time or RTT) by actively pinging the game
servers ourselves. Since only 26% of the servers responded to ICMP pings, we used
two additional tools – HPing3 [18] was used to perform TCP ping using SYN packets to
servers of TCP-based games (WoW and Hearthstone), and fping [19] to ping the entire
subnet of the game server (since the entire prefix is housed in the same AS), yielding
min, average, and max RTT to all servers in the subnet that respond. To corroborate
the validity of (subnet) fping, we compared its average value to (endpoint) ping where
available, and found the mean absolute percentage error (MAPE) to be less than 3%.

3.2 Mapping Game Servers from the University

A high level view of sessions of each of the ten game titles as they map to servers in
various countries and at different latency bands is shown in Fig. 4. Most countries map
to a single latency band (needless to say Australia (AU) is the home country), though
some countries (like US) map to multiple latency bands, due to disparities in routing
paths to multiple ASes in the same country, or to different subnets within the same AS.
Specifically, 82.3% of the game-play sessions connected to servers within Australia
with fairly low latency of 2-20ms, 13.1% of the sessions experienced 100-200ms, 3.6%
had 200-300ms, and 1% had latency of 300+ ms.

Our measurements clearly reveal that game providers often use multiple CDNs
(each identified by a unique AS number) to host their game servers – for example,

10 S.C. Madanapalli et al.

Genshin Impact

Hearthstone

League of Le
gends

CoD: Modern Warfare

World of Warcra
ft

CS:GO

Rocke
t Le

ague FIFA

Escape Fro
m Tarkov

Fortnite

Game

0

100

200

300

400

RT
T

(m
s)

Fig. 5: Latency distribution of game servers from the campus field trial.

while Fortnite largely connects to Amazon cloud locally, some sessions connected to
Google cloud in another country. There are several reasons why a gamer’s session may
be hosted at a server with high latency: (a) no nearer server availability; (b) there may
not be enough local players available, and the player is therefore matched with players
in other geographies; or (c) the player deciding to team with friends in another country,
and the server is chosen in proximity to the majority of players.

To get a better understanding of gaming latency per title, we plot in Fig. 5 the
latency distribution across the ten games. Fortnite and Escape from Tarkov predomi-
nantly use local servers (50ms or lower); League of Legends and CoD:MW use only
a small number of local servers; while Hearthstone and Genshin Impact do not have
any servers operational in the local country (the closest ones being 100+ ms away). It
is also interesting to see that servers are clustered for some games (e.g., Hearthstone,
Genshin Impact, WoW), highlighting servers co-located in the same CDN. Curiously,
though WoW and Hearthstone are from the same publisher (and share the AS owned by
Blizzard), only WoW uses local in-country servers.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P1
0

P1
1

P1
2

P1
3

P1
4

P1
5

P1
6

P1
7

P1
8

P1
9

P2
0

P2
1

P2
2

Routing IP Prefixes

0

100

200

300

RT
T

(m
s)

Country
AU JP US CN TW KR DE HK

Fig. 6: Latency per IP prefix of the League of Legends servers.

To highlight the deeper dynamics of latency, we focus on League of Legends (LoL)
and show in Fig. 6 the distribution of latency across various server prefixes, color-coded
by their country of residence. The game connected to 293 servers located in 8 countries
spanning 22 routing prefixes. We observe that it has only one routing prefix locally
(P1) that offers a very low latency of under 5ms. Across other prefixes, we make a
couple of observations. First, prefixes (P3, P4, P9) and (P13, P15), while located in
China, belong to two different ASes and hence give very different latencies. In fact,
P13 is geographically closer to P3 but the latter is one AS hop away while P13 is 3
AS hops away, leading to a latency differential of about 100ms. Second, prefixes (P5,
P6, P16) belong to the same AS and are located in USA. They are all one AS away

Know Thy Lag: In-Network Game Detection and Latency Measurement 11

B C H
'Genshin Impact' Server Location

0

100

200

300

400

RT
T

(m
s)

ISPs
I II III IV V

F J H L
'CS:GO' Server Location

Fig. 7: Measured latency across ISPs to popular external (outside country) game server
subnets of Genshin Impact (left) and CS:GO (right).

from the source but P16 has a 120ms higher latency, illustrating that routing paths can
vary for different subnets even under the same AS (in this case owned by Riot Games,
the publisher of LoL). Further, counter-intuitively, prefix P16 is geographically closer
to sources than P5 and P6. This analysis can help ISPs identify game server locations
and routing prefixes so they can tune their peering relationships and path selections to
improve latency for their gamers.

3.3 Comparing Gaming Latencies from Multiple ISPs
To better illustrate the impact of peering relationships and routing paths on latency, we
performed active latency measurements (using an automated script) from several volun-
teers’ home broadband connections in our local city to the game servers discovered in
§2. The volunteers were spread across four residential ISPs (numbered II-V, with ISP-
I representing the University), and we found that the average latency to game servers
outside the country varied significantly across these ISPs, as illustrated in Fig. 7 for two
representative games namely Genshin Impact and CS:GO.

Genshin Impact has no local servers, and a majority of its servers are in country
B. It can be seen that ISP-III offers the lowest latency of 119ms while the latency is
much higher (at around 198ms) with ISP-V. Country C serves the next higher number
of sessions of Genshin Impact, and in this case ISPs II-V provide a latency of around
200ms, while the University’s ISP-I has 300+ ms latency. For country H, ISP II pro-
vides the highest latency at 322ms. Overall, a Genshin Impact gamer would get a better
experience if they were with ISP-III. However, any ISP with this visibility into game
server locations is able to optimise their routing paths to improve the gamer experience.

The difference across ISPs for CS:GO is even more stark, as shown in the right side
of Fig. 7. In this case ISP-V offers a significantly worse latency to CS:GO servers in
countries F and L. Given that CS:GO is a tournament-grade first-person shooting game,
the latency handicap induced by ISP-V will be unacceptable to gamers, and likely to
lead to complaints and churn. The situation is very avoidable – indeed we have reached
out to this ISP, urging them to look into their peering relationships and routing path
selections to address this issue.

4 Related Work
Signature Generation & Classification: Automatic signature extraction methods were
first proposed a decade ago in the context of malware detection [16]. Work in [22] gen-

12 S.C. Madanapalli et al.

erates regular expressions from the payloads of un-encrypted protocols to detect appli-
cation types. Bitcoding [13] proposes generating bit-level signatures for network appli-
cations by identifying bit positions that do not change in value. In a recent work [21],
authors identify smart home devices and their events using signatures based on packet
sizes and directions. Our methods build upon the prior work to generate signatures spe-
cific to online games. Our signature extraction is similar to [13]. However, it is faster
since it looks for constant bytes in the payload instead of bits. Further, our algorithm
incorporates port values in addition to byte patterns.

Gaming Applications: Several aspects of gaming applications have been studied
in the past, including the impact of device-level attributes such as frame rates, and
network-level parameters such as latency and loss across different games. The authors
of [7] were among the first to analyze the effect of network parameters like delay, jitters,
and packet loss on the game Unreal Tournament using real players. Subsequently, work
in [10] analyzed multiple games using real players and [8] used bots to remove the skill
bias of players. A common approach taken in these studies was to artificially induce
delay/jitters/packet losses and observe the change in experience using MOS, win rates,
game scores, etc. The authors in [9] studied the impact of latency on different player
actions in games that have varying precision and deadline requirements. Their recent
work [15] surveys the impact of different latencies on different game genres and users,
concluding that gamers indeed feel the impact of high latency, especially in competitive
multiplayer games. Work in [20] shows that latency is a more contributing factor than
screen refresh rates in gamer performance. All prior works collectively highlight that
reducing latency to gaming servers improves gaming performance and experience.

5 Conclusion and Future Work
The gaming industry is experiencing explosive growth, and ISPs are keen to offer a
better gaming experience to their subscribers. However, they are hamstrung by the lack
of visibility into gaming patterns, servers, and latencies. We collected and analyzed
packet traces from ten popular games across various genres, extracted packet attributes,
and developed a deterministic model to identify games based on automatically gener-
ated game-specific signatures. We deployed our system on live traffic of a university
network, and over a 1-month period detected 31K game sessions to gain insights into
game popularity and gaming engagement. We then related game latencies to routing
paths by performing BGP/Geo lookups and active latency measurements to the 4500+
game servers identified. We illustrated how the spread of games servers across ASes and
countries impacts latency. Finally, we showed that ISPs serving gamers in the same city
have varying latencies to these game servers, influenced by their peering relationships.
While this paper studied ten popular games, we plan to evaluate the efficacy of the pro-
posed method on a wider set of games. If conflicts arise amongst games, the classifier
may require richer signatures extracted from more packets and/or deeper payload con-
tents of individual packets. Another avenue for future work is analysis of public peering
datasets to offer low-latency peering recommendations within cost budgets to ISPs.

Acknowledgements We thank our reviewers and specifically our shephard, Anub-
havnidhi Abhashkumar, for providing valuable feedback to improve our paper.

Know Thy Lag: In-Network Game Detection and Latency Measurement 13

References

1. Exitlag (Oct 2021), https://www.exitlag.com/en/
2. Global Games Market to Generate $175.8 Billion in 2021 (2021), https://newzoo.c

om/insights/articles/global-games-market-to-generate-175-8-b
illion-in-2021-despite-a-slight-decline-the-market-is-on-tra
ck-to-surpass-200-billion-in-2023/

3. Here’s how many people play Fortnite (2021), https://www.gamesradar.com/au/
how-many-people-play-fortnite/

4. Oneqode: The gaming infrastructure company (Oct 2021), https://www.oneqode.co
m/

5. Subspace: Dedicated network for real-time applications (Oct 2021), https://subspace
.com/

6. Wtfast (Oct 2021), https://www.wtfast.com/en/
7. Beigbeder, T., Coughlan, R., Lusher, C., Plunkett, J., Agu, E., Claypool, M.: The effects of

loss and latency on user performance in unreal tournament 2003. In: Proc. ACM SIGCOMM
NetGames. pp. 144–151. Portland, Oregon, US (2004)

8. Bredel, M., Fidler, M.: A Measurement Study Regarding Quality of Service and Its Impact on
Multiplayer Online Games. In: Proc. IEEE NETGAMES Workshop. pp. 1–6. IEEE, Taipei,
Taiwan (2010)

9. Claypool, M., Claypool, K.: Latency can kill: Precision and deadline in online games. In:
Proc. ACM MMSys. p. 215–222. Phoenix, Arizona, USA (Feb 2010)

10. Dick, M., Wellnitz, O., Wolf, L.: Analysis of factors affecting players’ performance and per-
ception in multiplayer games. In: Proc. ACM SIGCOMM NetGames. pp. 1–7. Hawthorne,
NY, USA (2005)

11. Dowling, B.: The Trusted Source for IP Address Data (2021), https://ipinfo.io/
12. Habibi Gharakheili, H., Lyu, M., Wang, Y., Kumar, H., Sivaraman, V.: iTeleScope: Soft-

warized Network Middle-box for Real-Time Video Telemetry and Classification. IEEE
Transactions on Network and Service Management 16(3), 1071–1085 (2019)

13. Hubballi, N., Swarnkar, M.: BitCoding: Network Traffic Classification Through Encoded Bit
Level Signatures. IEEE/ACM Transactions on Networking 26(5), 2334–2346 (2018)

14. Intel: Data plane development kit (dpdk) (2021), https://www.dpdk.org/
15. Jiang, C., Kundu, A., Liu, S., Salay, R., Xu, X., Claypool, M.: A survey of player opinions

of network latency in online games (2020), https://ftp.cs.wpi.edu/pub/techr
eports/pdf/20-02.pdf

16. Kaur, S., Singh, M.: Automatic attack signature generation systems: A review. IEEE Security
& Privacy 11(6), 54–61 (2013)

17. Quwaider, M., Alabed, A., Duwairi, R.: The impact of video games on the players behaviors:
A survey. Proc. of 10th International Conference ANT 151, 575–582 (2019)

18. Sanfilippo, S.: Active network security tool (2021), http://www.hping.org/
19. Schweikert, D.: fping homepage, https://fping.org/
20. Spjut, J., Boudaoud, B., Binaee, K., Kim, J., Majercik, A., McGuire, M., Luebke, D., Kim,

J.: Latency of 30 Ms Benefits First Person Targeting Tasks More Than Refresh Rate Above
60 Hz. In: Proc. ACM SIGGRAPH Asia 2019 Technical Briefs. p. 110–113. Brisbane, QLD,
Australia (2019)

21. Trimananda, R., Varmarken, J., Markopoulou, A., Demsky, B.: Packet-level signatures for
smart home devices. In: Proc. NDSS. San Diego, California (2020)

22. Wang, Y., Xiang, Y., Zhou, W., Yu, S.: Generating regular expression signatures for network
traffic classification in trusted network management. Journal of Network and Computer Ap-
plications 35(3), 992–1000 (2012)

https://www.exitlag.com/en/
https://newzoo.com/insights/articles/global-games-market-to-generate-175-8-billion-in-2021-despite-a-slight-decline-the-market-is-on-track-to-surpass-200-billion-in-2023/
https://newzoo.com/insights/articles/global-games-market-to-generate-175-8-billion-in-2021-despite-a-slight-decline-the-market-is-on-track-to-surpass-200-billion-in-2023/
https://newzoo.com/insights/articles/global-games-market-to-generate-175-8-billion-in-2021-despite-a-slight-decline-the-market-is-on-track-to-surpass-200-billion-in-2023/
https://newzoo.com/insights/articles/global-games-market-to-generate-175-8-billion-in-2021-despite-a-slight-decline-the-market-is-on-track-to-surpass-200-billion-in-2023/
https://www.gamesradar.com/au/how-many-people-play-fortnite/
https://www.gamesradar.com/au/how-many-people-play-fortnite/
https://www.oneqode.com/
https://www.oneqode.com/
https://subspace.com/
https://subspace.com/
https://www.wtfast.com/en/
https://ipinfo.io/
https://www.dpdk.org/
https://ftp.cs.wpi.edu/pub/techreports/pdf/20-02.pdf
https://ftp.cs.wpi.edu/pub/techreports/pdf/20-02.pdf
http://www.hping.org/
https://fping.org/

14 S.C. Madanapalli et al.

A Fortnite Services

Table 3: Fortnite Services, their name prefixes (suffix=ol.epicgames.com) and purpose.
Service Domain Name Prefix Purpose

Launcher launcher-public-service-prod06 Epic games launcher for login
Waiting Room fortnitewaitingroom-public-service-prod The user decides the game mode
Party party-service-prod Lobby area to invite friends to play
Social Network friends-public-service-prod In-game social network
Matchmaking fortnite-matchmaking-public-service Creates matches among waiting players
Anti-cheat hydra.anticheat.com Third-party anti-cheat service
Data reporting data-router Anonymous stats reporting

B Fortnite Game Signature Generation

Game Protocol Server Port Up Pkt sizes Down Pkt sizes Up Payloads Down Payloads

Fortnite 17 9017 [29, 29, 45, 62, 80] [29,29, 45, 62, 80] [0x170000, …] [0xd7bf45e8, …]

Fortnite 17 9002 [29, 29, 35, 43, 51] [29,29, 45, 62, 80] [0x170000, …] [0x570000c0, …]

Fortnite 17 9035 [29, 29, 37, 89, 74] [29,29, 45, 62, 80] [0x170000, …] [0x07e86474, …]

Fortnite 17 9067 [29, 29, 41, 39, 72] [29,29, 45, 62, 80] [0x160000, …] [0xf0c476e6, …]

Fig. 8: An illustrative example of signature generation using Fortnite traffic traces

As shown in Fig. 8 above, each row corresponds to attributes extracted from the first
few packets of Fortnite gaming flows from our dataset. The attributes include protocol,
transport layer port numbers, packet sizes and payload bytes. In one flow (identified by
the standard five-tuple), protocol and server port remain the same but the packet sizes
and content vary as more packets arrive. For this illustration, the table shows 5 packet
sizes in each direction and (stripped) payload content of the first packet.

Some attribute values (shown in red) are fixed/constant across all the flows (called
static signatures) and other (shown in green) fall within a close range of values (called
dynamic signatures). These signatures are same across the flows implying that they can
detect a Fortnite game session. Using the static and dynamic signatures, a signature
JSON is built as shown in the next section which is then used as an input to the game
classifier algorithmic model.

C Example Game Signatures

Fig. 9 shows example signatures generated from our dataset. We can see that while all
attributes have a key and a value, only ports has a range since it is a dynamic signature.
We note that the complexity of signatures varies: some are primarily based on packet
size (Rocket League) while others require payload bytes too (Fortnite and Call of Duty
MW); some are based on attributes of first two packets (Fortnite and Rocket League)
while others require more data (Call of Duty MW). These signatures need to be com-
bined to predict the actual game being played as they may have some common attributes

Know Thy Lag: In-Network Game Detection and Latency Measurement 15

“Fortnite”: {
“protocol": 17,
“ports": [9000,9100],
“u_0_len": 29,
“d_0_len”: 29,
“u_0_b_0”: 0x00,
“u_0_b_1”: 0x00,
“u_0_b_2”: 0x00,
…

},

“Call of Duty MW”: {
“protocol": 17,
“ports": [30000,45000],
“u_0_len": 29,
“u_0_b_0": “0x0d",
“d_0_len": 29,
“d_1_len": 29,
“d_2_len”: 116,
“d_3_len”, 114,
…

}

“Rocket League”: {
“protocol": 17,
“ports": [7700,8800],
“u_0_len": 80,
“d_0_len": 48,
“u_1_len": 48,

}

Fig. 9: Signature of three representative game titles

for e.g., both Fortnite and Call of Duty MW have the first upload packet length as 29
and thus require further inspection to classify the game. The classifier model takes into
account all attributes and looks at the minimum number of packets to rapidly detect the
game.

	Know Thy Lag: In-Network Game Detection and Latency Measurement

