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Abstract
Internet Service Providers (ISPs) bear the brunt of being the first
port of call for poor video streaming experience. ISPs can bene-
fit from knowing the user’s device type (e.g., Android, iOS) and
software agent (e.g., native app, Chrome) to troubleshoot platform-
specific issues, plan capacity and create custom bundles. Unfortu-
nately, encryption and NAT have limited ISPs’ visibility into user
platforms across video streaming providers. We develop a method-
ology to identify user platforms for video streams from four popular
providers, namely YouTube, Netflix, Disney, and Amazon, by ana-
lyzing network traffic in real-time. First, we study the anatomy of
the connection establishment process to show how TCP/QUIC and
TLS handshakes vary across user platforms. We then develop a clas-
sification pipeline that uses 62 attributes extracted from the hand-
shake messages to determine the user device and software agent
of video flows with over 96% accuracy. Our method is evaluated
and deployed in a large campus network (mimicking a residential
broadband network) serving users including dormitory residents.
Analysis of 100+ million video streams over a four-month period
reveals insights into the mix of user platforms across the video
providers, variations in bandwidth consumption across operating
systems and browsers, and differences in peak hours of usage.

CCS Concepts
• Networks → Network measurement; Network monitoring;
• Information systems→ Multimedia streaming; • Computing
methodologies→ Machine learning approaches.
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1 Introduction
Broadband Internet Service Providers (ISPs) are often the first to
be blamed by users experiencing video freeze or grainy resolution,
even when the issue is unrelated to the network. In many instances,
the issues arise from the user platform – choppy video playback
on Pixel devices in 2020 was attributed to Android 11 Beta issues
[69]; the YouTube app threw up errors on iOS devices in late 2022
[35]; a software update to Roku devices in 2021 caused intermittent
video freeze [50]; and Hulu deliberately lowered resolution on PC
browsers in order to force users to download their proprietary app
[13, 66]. ISPs, who bear the brunt of customer support calls, can
hugely benefit by knowing the user platform, namely device type
(iOS or Android smartphone or tablet, Windows or Mac PC, smart
TV, Xbox or PlayStation console) and software agent (native app
versus a specific browser such as Chrome, Firefox, Safari or Edge) on
which a household user is having a poor video streaming experience.
This will allow their customer care staff to rapidly filter out known
platform-specific issues, prioritize handling of support tickets based
on platform prevalence, and issue preemptive advisories to users,
all of which can substantially reduce support costs.

Visibility into the user platform has other benefits as well for
ISPs. The same video watched via a content provider’s app may
consume significantly higher bandwidth than when watched on a
web browser, and these differences can amplify across operating
systems [7, 26]. Given that video streaming dominates network
traffic, ISP bandwidth provisioning and management models need
to account for user device type and software agent heterogeneity,
which vary widely from one content provider (e.g., YouTube) to
another (e.g., Netflix). Further, user platform visibility also enables
ISPs to perform better customer segmentation (e.g., fans who stream
live sports via set-top boxes), allowing them to create innovative
custom bundles and to run effective up-sell/cross-sell marketing
campaigns. Collectively, these initiatives can give an ISP significant
competitive advantage, helping reduce costs as well as generate
new revenues.

Deducing the user platform associated with a streaming session
is unfortunately non-trivial for the ISP. Much of the traffic to/from
the home today is generally on a single IPv4 address, which is
shared among all household devices via network address translation
(NAT). While IPv6 may eventually overcome this issue, deployment
is immature in many ISPs globally, and is unlikely to displace IPv4
anytime soon. Further, deducing the software agent, such as a
browser versus a native app, will require a different technique
irrespective of whether the traffic is IPv6 or IPv4, since client-server
interactions are predominantly carried within encrypted SSL/TLS
sessions today.
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Much attention has been given to classifying application streams,
such as web browsing [47, 63], video streaming [19, 41], video con-
ferencing [42], online gaming [36], cloud gaming [33] and meta-
verse [34], but less to identifying the client platform (OS and soft-
ware agent) associated with each application stream. OS finger-
printing is done in [20, 57], but not coupled with the software agent
– native apps are often optimized differently than browsers for
streaming video [62]. Prior works have leveraged distinguishable
patterns of TCP-based handshake fields across device firmware
[14, 28] and application types [6, 52], with cipher suites shown
to vary from one OS to another [22], and certain TLS handshake
fields being unique to certain browsers [6]. Unlike prior studies that
have a broad focus, our study focuses exclusively on video streams,
which constitute over 60% of Internet traffic. We dive deep into
the differences across OSes, browsers, content providers, and their
native apps. Further, we consider the presence of QUIC, which is
increasingly being used by video content providers – measurements
in tier-1 ISPs indicate that QUIC accounts for nearly 30% of traffic in
EMEA and 16% in North America [21]. Our methods are therefore
more comprehensive in giving ISPs visibility into both device type
and software agent for every video stream in their network.

Our first contribution (§3) comprehensively studies the commu-
nication process involved in the establishment of a video streaming
session across 30 user platforms, i.e., combinations of device types
and software agents. The device types comprise mobiles, laptops,
tablets, PCs and smart TVs running iOS, Android, Windows, ma-
cOS, Android TV, etc. For software agents, we consider native
apps developed by streaming video providers and browsers such as
Chrome, Firefox, Safari and Edge. By collecting and analyzing over
10,000 video flows in our lab from the four major providers, namely
YouTube, Netflix, Amazon Prime Video and Disney+, we highlight
the variations in their TCP/QUIC and TLS handshake parameters
across the 30 user platforms.

For our second contribution (§4), we develop amachine learning-
based pipeline to classify the user platform of a video streaming
flow. We systematically extract 62 attributes from the initial connec-
tion establishment phase of the TCP or QUIC video flow; we then
train machine learning models that use different algorithms, hyper-
parameters and attribute subsets grouped by their computational
cost. We demonstrate that our ML models achieve an accuracy of
above 96% in our lab datasets, outperforming prior methods across
every video provider considered.

Our third contribution (§5) is the implementation and deploy-
ment of our system in a university campus serving tens of thousands
of users and a characterization of the video streaming traffic ob-
served across 4 months – over 100 million video flows spanning
400k hours of watch time. Our data reveals that mobile devices are
more commonly used for YouTube, while PCs/laptops predominate
for the other (subscription-based) video services. The latter also
seem to demand higher bandwidth, with Amazon Prime Video be-
ing the most demanding, especially on Mac PCs that consume 50%
more on average than even smart TVs. We believe that our system
and the insights collected may be of help for network operators
seeking to link video streaming services to capacity planning, user
experience troubleshooting and user segmentation. In the spirit of
reproducibility and to foster discussion in the research community,
we make publicly available the code and training data at [70].

2 Related Work
OS/application classification: Classifying operating systems and
applications has received considerable attention [9, 15, 46, 48]. Prior
works that purely use common network and transport layer signa-
tures to classify OS and application have been rendered inaccurate
with the growth of complexity in user platforms [2, 8, 32, 73]. There-
fore, recent research works leverage certain fields in TLS Clien-
tHello (CHLO) messages to classify device OSes and application
types [29, 72], as such information is directly related to client-side
firmware and software configurations for their encryption prefer-
ences. For example, M. Husak et al. [22] used cipher suites from TLS
CHLO messages to classify web browsers. M. Lastovicka et al. [28]
used machine learning models to classify operating systems using
7 features (e.g., server name and TLS version) extracted from TLS
CHLO messages. B. Anderson et al. [5] jointly considered current
and past TLS CHLO characteristics of a certain device for high-
confidence detection of device OS versions. Other works combined
TLS CHLO fields with flow statistics (e.g., packet size distribution)
to classify OS and/or application types [14, 25, 44, 58, 68]. Com-
pared to prior research, our work focuses on the classification of
user platforms (including both device types and software agents),
instead of traffic (i.e., application type) classification which in our
case is based on TLS SNI matching – our ML models are activated
once the video streaming application is detected. Specifically, we
consider per-video streaming flow using TCP/QUIC and TLS hand-
shake fields, without relying on aggregated statistics per device
IP which can be rendered ineffective in residential networks with
NAT in place. Instead of cherry-picking certain header fields, we
evaluate 62 attributes that cover all available handshake fields of
a video flow that can vary across user platforms, many of which
(particularly for QUIC) are not considered in prior works. Later in
§4.3.4, we empirically demonstrate the superior performance of our
method over prior techniques.

Fingerprinting handshake fields: A group of prior research
works developed tools to measure variations of (TLS) handshake
fields that can exist in different device types (e.g., client or server),
applications (e.g., browsers or social media apps), and vulnerable
firmware and software configurations. For such purposes, JA3 [4]
has been developed as a popular tool for fingerprinting TLS CHLO
fields from a network device, which has been extended to include
server-side fingerprinting in JA3S [3]. A. Razaghpanah et al. [52] de-
veloped a tool for extracting certain TLS CHLO fields from network
traffic from Android devices, which are useful in identifying those
with security vulnerabilities or misconfigurations. B. Anderson et
al. [6] proposed a system that extracts TLS CHLO messages from
standard operational environment devices in an enterprise network
as an effective monitoring measure for the running processes on
each host and their TLS configurations. M. Sosnowski et al. [61]
evaluated five popular server-side TLS fingerprinting methods and
developed an active server TLS scanner. Prior works only focused
on certain handshake fields in TCP-based TLS flows. In this paper,
we develop a system that automatically extracts and formalizes all
available handshake fields from not only TCP-based TLS but also
QUIC-based TLS for video flows.
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Figure 1: Experimental setup for video streaming traffic trace
collection.

Traffic analysis of streaming video services: There is a large
body of prior researchworks that analyze network traffic for stream-
ing video services to provide visibility into the usage and user ex-
perience of video sessions for network operators. Machine learning
algorithms that consume statistical attributes extracted from video
flows such as packet inter-arrival times, downstream/upstream
packet rates and throughput are extensively used by these works.
Their prediction objectives include detecting video flows [12, 19],
classifying content providers [10, 37], modeling video adaptation
behaviors [43, 71], and inferring the status of streaming experience
such as resolution, stall, and startup delay [1, 11, 18, 67]. An im-
portant aspect that has not been well captured by prior works is
identifying user platforms of video flows, which can influence the
observed streaming behavior and the user experience [30]. In this
paper, we develop a lightweight method focused on responsively
characterizing user platforms for each streaming video flow us-
ing only handshake messages prior to the delivery of actual video
content.

3 Handshake Characteristics of Video
Streaming Sessions

In this section, we describe our experimental setup for capturing
traffic traces (§3.1), then systematically study the communication
process involved in establishing video streaming sessions using
a variety of device types and software agents (§3.2), and finally
identify the handshake fields that take on different values across
user platforms and video content providers (§3.3).

3.1 Experimental Setup and Dataset
In Fig. 1, we show our experimental framework to collect traffic
trace files (i.e., PCAPs) for video streaming sessions from the four
major video content providers, namely YouTube, Netflix, Amazon
Prime Video and Disney+. The setup consists of 3 mobile devices
(iPhone, iPad, Android phone) running iOS and Android operating
systems, 2 Windows desktop PCs, 2 macOS MacBooks, 2 smart TVs
(including one with a built-in Android TV system and the other
one connected to an Android TV set-top box), and a PlayStation
gaming console. Having a variety of different devices expedites
data collection with multiple users streaming videos concurrently.

Table 1: Number of video flows per content provider, i.e.,
YouTube (YT), Netflix (NF), Amazon Prime Video (AP) or Dis-
ney+ (DN) captured for each combination of device type and
software agent in our collected traffic traces. A user platform
not supported by the content provider is marked as —.

Number of video flows
Device OS Type Software Agent

YT NF DN AP
Chrome 411 202 199 215
Edge 406 208 200 200
Firefox 466 207 204 195

Windows

Native app — 204 211 186
Safari 200 204 200 201
Chrome 407 213 202 208
Edge 402 204 202 210

PC

Firefox 467 212 202 199
macOS

Native app — — — 200
Chrome 107 — — —
Samsung Internet 103 — — —Android
Native app 100 102 106 111
Safari 203 — — —
Chrome 213 — — —

Mobile

iOS
Native app 203 215 306 372

Android TV Native app 200 116 107 113
TV

PlayStation Native app 105 100 100 103

These devices connect via Wi-Fi to the access gateway for Internet
access, from which we collect PCAP files using the Wireshark tool.

We capture traffic traces containing more than 100 video sessions
for each of the 30 user platforms in our lab, comprising various
device types and software agents. Our dataset contains 17 unique
types of user platforms as we have redundancy for some OS types
such as 2Windows and 2macOS. Each session is composed of one or
multiple video flows, for a total of nearly 10,000 flows. We show the
detailed composition of our dataset in Table 1. Some of the devices
run the same OS, thus are considered as being the same from a user
platform perspective. For example, both iPhone and iPad in our
setup are using iOS, and so are captured under a single (Mobile, iOS)
category in Table 1. The duration of each session was at least one
minute, sufficient to capture all the handshake messages exchanged
between the user device and the server of the respective provider.
Note that we are not interested in capturing packets containing
any video content payload. The devices were running the most
recent versions of operating systems, browsers and apps. Some
browsers, e.g., Chrome, Firefox and Edge on Windows/Mac PCs,
allow users to configure the transport layer protocol as either QUIC
or TCP, which can impact the connection establishment messages
exchanged. Our dataset encompasses all these different scenarios
and has comprehensive coverage across all different configuration
options. Our dataset is available on our university cloud storage
platform and can be shared upon request, as detailed in [70].

3.2 Anatomy of Video Streaming Sessions
We now discuss the typical communication process involved in
establishing a video streaming session between a client device and
a streaming server.
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Figure 2: Anatomy of network communication for a video
streaming session.

3.2.1 Communication process. A streaming video session essen-
tially consists of two sequential stages, i.e., initialization and play-
back. The initialization stage, comprising connection setup hand-
shake exchanges, alongside sharing of relevant metadata informa-
tion, has received little attention from the community; later we will
show its importance in characterizing user platforms. The playback
stage on the other hand, comprising streaming of the video itself,
has been extensively studied for detecting video traffic streams,
quantifying QoE, and so on, as summarized in §2.

A flow diagram depicting the two stages is shown in Fig. 2(a).
In the initialization stage, the client device interacts with a man-
agement server specifying the service request, user configurations
and connection parameters such as the device type, software agent
used and supported network protocols; step 1○ in Fig. 2(a). Then, in
step 2○, the management server responds with the streaming infor-
mation (e.g., URLs of the content servers and video/audio formats)
along with control parameters (e.g., media player configurations)
to be adapted by the software agent. In step 3○, the actual video
playback process starts after the client requests video and audio
data from the content server located using the URL information
acquired in the previous step. This request also specifies video qual-
ity metrics such as resolution which can be adjusted at any time
during the playback process, either manually or dynamically by
the client-side player depending on the network conditions and
playback quality. In step 4○, the video and audio data are streamed
to the client. The software agent on it may periodically send play-
back status information to a management server, as indicated in 5○,
to help the content provider keep track of service usage, session
status, video quality and the like.

Steps 1○ to 4○ exist in all video streaming traces we have col-
lected across the different providers, whereas step 5○ is only ob-
served in certain video sessions such as on macOS devices watching
YouTube on a Chrome browser.

3.2.2 Anatomy of network communication. From the perspective
of network communication, the above steps are carried by HTTPS
flows over either TCP or QUIC as the transport layer protocol. To
illustrate the detailed communication process, Fig. 2(b) shows an

example of a YouTube session operated from an iPhone using Safari
browser. Video sessions on other device types, software agents and
content providers share a similar anatomy, omitted for brevity. The
steps circled in Fig. 2(b) correspond to those shown in Fig. 2(a).

The initial client request flow, i.e., step 1○, is always sent via a
single HTTPS flow to a management server, typically youtube.com,
netflix.com, primevideo.com, disneyplus.com for the four content
providers, respectively. For YouTube, the flow is either carried by
TCP or QUIC depending on the client configuration, whereas the
other three providers, i.e., Netflix, Amazon and Disney+ use only
TCP. In step 2○, the management server sends streaming informa-
tion and player configuration to the client on the same HTTPS flow.
However, if the client is configured to pre-load video metadata on a
menu page, rather than requesting it dynamically from the server,
then this information could be carried over multiple subsequent
HTTPS flows.

During the video playback stages, steps 3○ and 4○, the client
fetches the video from a content server (e.g., googlevideo.com for
YouTube) using one or more HTTPS flows over either TCP or QUIC.
We have observed three scenarios in this process. One, in which
playback is delivered by a single HTTPS flow containing both
video and audio data. Two, in which playback is delivered over
multiple concurrent HTTPS flows carrying video and audio. Three,
in which multiple HTTPS flows are activated in different time slots,
each delivering chunks of video and audio data. For example, in
some YouTube sessions we have collected, there are flows that send
several chunks of video and audio data in the first few seconds
(e.g., 3 seconds) and then go idle while the remaining video and
audio data is streamed by another flow. Since client information
and playback data are all encrypted by TLS, network operators only
have visibility into the TCP/QUIC and TLS handshake messages,
as visually shown in the blue region in Fig. 2(b), and volumetric
information of the payloads.

Next, we show that handshake messages carried by the first few
(< 5) connection establishment packets contain fields that are strong
indicators to characterize user platforms.

3.3 Handshake Characteristics Across User
Platforms

The flows that stream video content are first initialized by a series
of handshake messages. By analyzing the trace files, we find that
information within these handshake messages is highly correlated
with the OS, software agent and the provider of video content. In
the following, we systematically discuss these properties.

3.3.1 Handshake fields and their categorization. A video flow deliv-
ered by HTTPS has two handshake processes: one for the transport
layer protocol (i.e., TCP or QUIC) and the other for TLS encryption,
both of which occur prior to the encrypted video content being
streamed.

Transport layer handshake. Both TCP and QUIC require a hand-
shake process to establish connections. A TCP three-way handshake
contains TCP header flags and options, such as window size, se-
lective acknowledgment and max segment size, which are set by
the user device and the software agent. We ignore most of the TCP
flags in handshake messages such as SYN, ACK, RST and FIN as
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Figure 3: Number of unique values (left blue in log scale) and number of user platforms with different value distributions (right
purple in linear scale) for each handshake field in YouTube flows over QUIC.

they do not differ across user platforms. Exceptions are TCP CWR
and ECE, which are related to congestion control policies used by
the device OS or software agent [16].

QUIC is designed to reduce the connection setup latency over-
head and so its handshake via the first flow packet (i.e., QUIC Initial
packet) is integrated with the TLS handshake, as discussed below.
In addition, we find that the time-to-live field and packet size in the
IP header of the Initial packet are often correlated with the device
type, as reported by [60].

TLS handshake. TLS handshake consists of a ClientHello fol-
lowed by a ServerHello and subsequent encryption negotiations,
and is executed right after the TCP three-way handshake or along
with the first QUIC flow packet. The ClientHello contains cus-
tomized information provided by the user device and is highly cor-
related with the device type and software agent that plays the video.
We decompose the TLS handshake fields into three categories.

The first category is calledmandatory fields. These fields al-
ways appear in the ClientHello of streaming video flows regardless
of the underlying transport layer protocol (TCP or QUIC) and the
specifications of user devices, OSes and software agents. These in-
clude handshake length, TLS version, cipher suites and compression
methods.

The second category is optional extensions. These fields only
appear in video flows as defined by the logic embedded in a de-
vice OS and software agent. In our dataset, a given user platform
typically uses unique combinations of optional extensions, each
set to a specific value. For example, Firefox browsers running on
Windows andmacOS PCs typically set the value of record_size_limit
extension to 16385, whereas other user platforms do not use this
extension.

In addition to the above categories, there are parameters in
the ClientHello that are specifically available for video flows over
QUIC. These parameters are contained in the collection quic_-
transport_parameters with extension code 57 [23, 65], which are set

for specific QUIC preferences in connection establishment of certain
user platforms. For example, Firefox browsers on Windows desktop
PCs use the parameter grease_quic_bit to indicate its deprecation
of certain flag bits in QUIC headers [64].

3.3.2 Handshake fields across user platforms. We now analyze the
distribution of values contained in the fields of various TCP/QUIC
and TLS handshake messages. The aim is to demonstrate the simi-
larities and differences in the values contained within these fields
across user platforms, which will form the basis of our machine
learning model. We note that some fields are not numerical but
categorical or lists, such as the mandatory fields tls_version and
cipher_suites in TLS CHLO and supported_groups, signature_algo-
rithms in TLS optional extensions. To simplify the analysis, we
convert the values contained in such fields to integers by a 1:1 map-
ping between the values contained in the fields to a unique number.
For instance, in our dataset, the field compress_certificate takes 2 val-
ues when carried over QUIC, i.e., zlib and brotli, which are uniquely
mapped as 1 and 2 for the purposes of our analysis. Therefore, a
video flow containing zlib as the value for compress_certificate is
represented as 1 in our dataset. If a field does not appear in a flow,
a value of 0 is assigned to it.

For each handshake field in YouTube QUIC video flows, we
show the number of unique values as a blue bar in Fig. 3 (in log
scale), while the number of user platforms having a unique value
distribution compared to their counterparts for this particular field
is shown as a purple bar (in linear scale). There are 7 fields that
only have one unique value regardless of user platforms. These are
highlighted as red labels in Fig. 3. Apparently, those fields are useless
in differentiating user platforms for YouTube QUIC video flows.
However, four of these fields, i.e., ec_point_formats, ALPN, session_-
ticket and psk_key_exchange_modes take different values across user
platforms for TCP flows, thus, can serve as useful indicators for
TCP scenarios. We provide two heatmaps as Appendix B Fig. 12(a)
and Fig. 12(b) to show the median values of all handshake fields in
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Figure 4: Packet processing pipeline for classification of video streaming user platforms.

both TCP and QUIC YouTube video flows respectively, rather than
just their counts.

As detailed in Appendix B, similar conclusions on value distri-
butions of handshake fields can be reached for other three video
providers we have studied in this work, which are not explicitly
discussed here for simplicity. In the next section, aiming for bet-
ter classification performance, we systematically evaluate the im-
portance of formalized attributes extracted from those handshake
fields.

4 Classifying User Platforms for Video Streams
in Real-Time

In this section, we first develop a classification pipeline (§4.1), then
identify the fields that are relevant for classification purposes (§4.2),
and finally evaluate the efficacy of three machine learning algo-
rithms to achieve our desired objectives (§4.3).

4.1 Packet Processing Pipeline
We develop a generalized packet processing pipeline to classify user
platforms for each streaming video flow and apply it to the four
providers considered in this paper. The schematic of the pipeline is
shown in Fig. 4.

The pipeline first takes raw packet streams as input, and parses
them to identify video flows that belong to the four providers using
port numbers and service names extracted from unencrypted packet
headers (HDR) and ClientHello (CHLO) SNIs. These packets are
further split into handshake packets for classification and payload
packets for telemetry, e.g., to obtain session duration, volume and
throughput. This forms the preprocessing stage.

Next, each handshake packet is processed to extract attributes
that can be readily fed into three machine learning classifiers that
predict the composite user platform, device type and software agent
for the respective streaming service provider. Therefore, in our later
implementation that analyzes four video streaming providers, we
have twelve classifiers (i.e., three classifiers per provider) in total.
The code for extracting handshake attributes from Client Hello
packets is made publicly available at [70]. In the small minority of
cases where the confidence (i.e., probability of the predicted class)
in predicting the composite user platform is < 80%, we consider
predicting the device type (i.e., OS) and software agent (i.e., native
app or specific browser) individually, to have high confidence in

classifying either of them accurately, so that at least partial informa-
tion related to the user platform can be predicted confidently. The
predicted user platform for each video flow can then be correlated
using flow metadata and timestamps with real-time telemetry for
further insight analysis. If none of the classifiers can produce an
inference result with > 80% confidence, we reject the classification
and determine the video flow to be from an unknown user platform.
Further classifying the unknown user platform requires respective
ground-truth training data to be collected, thus, is not within the
scope of this paper.

4.2 Attributes Derived from Handshake Fields
We identify 62 fields of interest, of which 20 are numerical, 31 cat-
egorical, and 11 of type list. The detailed specifications of these
attributes, applicable to both QUIC and TCP video flows, are pro-
vided in Table 2.

4.2.1 Creating attributes from fields contained in handshake mes-
sages. For the purpose of feeding the fields of interest into our
machine learning models, we seek to first convert them into numer-
ical attributes. We begin by considering those that are inherently
numerical, such as handshake_length and extensions_length, for
which no transformation is needed.

Fields that are categorical take values from a finite set of elements.
For example, compress_certificate can take one of zlib and brotli. We
assign a unique positive integer to them, i.e., 1 and 2 respectively,
and transform this field into a numerical attribute. We assign 0 to
categorical fields that are not present in a flow.

Fields that are lists can in turn include many categorical fields.
For example, cipher_suites contains multiple cipher suites from a
finite list supported by a client. The order of the categorical items
in the field indicates the client’s preference. Therefore, to preserve
the information provided by the choice of items and their order in
a list-type field, we use a fixed-length vector (i.e., by encoding the
list as separate positional attributes) to indicate the placement of
each item, with zero-padding for non-existing items. This simplified
representation can be readily processed by the classifiers.

For 17 fields such as grease_quic_bit, they do not have any associ-
ated value. However, whether they are present or not differs across
device types and software agents. Therefore, we assign 1 for their
presence in a video flow and 0 otherwise. Also, for 7 fields such as
initial_source_connection_id in QUIC, the values they contain are
not useful since they are randomly chosen [24], but the length of
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Table 2: Handshake fields of video flows and formalized attributes.
Handshake field Transport protocol Category Attribute label Attribute type Attribute cost
init_packet_size TCP, QUIC transport layer 𝑡1 numerical low
ttl TCP, QUIC transport layer 𝑡2 numerical low
tcp_cwr TCP transport layer 𝑡3 presence low
tcp_ece TCP transport layer 𝑡4 presence low
tcp_urg TCP transport layer 𝑡5 presence low
tcp_ack TCP transport layer 𝑡6 presence low
tcp_psh TCP transport layer 𝑡7 presence low
tcp_rst TCP transport layer 𝑡8 presence low
tcp_syn TCP transport layer 𝑡9 presence low
tcp_fin TCP transport layer 𝑡10 presence low
tcp_window_size TCP transport layer 𝑡11 numerical low
tcp_mss TCP transport layer 𝑡12 numerical low
tcp_window_scale TCP transport layer 𝑡13 numerical low
tcp_sack_permitted TCP transport layer 𝑡14 presence low
handshake_length TCP, QUIC mandatory fields 𝑚1 numerical low
tls_version TCP, QUIC mandatory fields 𝑚2 categorical medium
cipher_suites TCP, QUIC mandatory fields 𝑚3 list high
compression_methods TCP, QUIC mandatory fields 𝑚4 length low
extensions_length TCP, QUIC mandatory fields 𝑚5 numerical low
tls_extensions TCP, QUIC optional extensions 𝑜1 list high
server_name TCP, QUIC optional extensions 𝑜2 length low
status_request TCP, QUIC optional extensions 𝑜3 categorical medium
supported_groups TCP, QUIC optional extensions 𝑜4 list high
ec_point_formats TCP, QUIC optional extensions 𝑜5 categorical medium
signature_algorithms TCP, QUIC optional extensions 𝑜6 list high
application_layer_protocol_negotiation TCP, QUIC optional extensions 𝑜7 list high
signed_certificate_timestamp TCP, QUIC optional extensions 𝑜8 length low
padding TCP, QUIC optional extensions 𝑜9 length low
encrypt_then_mac TCP, QUIC optional extensions 𝑜10 presence low
extended_master_secret TCP, QUIC optional extensions 𝑜11 presence low
compress_certificate TCP, QUIC optional extensions 𝑜12 categorical medium
record_size_limit TCP, QUIC optional extensions 𝑜13 numerical low
delegated_credentials TCP, QUIC optional extensions 𝑜14 list high
session_ticket TCP, QUIC optional extensions 𝑜15 length low
pre_shared_key TCP, QUIC optional extensions 𝑜16 presence low
early_data TCP, QUIC optional extensions 𝑜17 length low
supported_versions TCP, QUIC optional extensions 𝑜18 list high
psk_key_exchange_modes TCP, QUIC optional extensions 𝑜19 categorical medium
post_handshake_auth TCP, QUIC optional extensions 𝑜20 presence low
key_share TCP, QUIC optional extensions 𝑜21 list high
application_settings TCP, QUIC optional extensions 𝑜22 list high
renegotiation_info TCP, QUIC optional extensions 𝑜23 presence low
quic_parameters QUIC QUIC parameters 𝑞1 list high
max_idle_timeout QUIC QUIC parameters 𝑞2 numerical low
max_udp_payload_size QUIC QUIC parameters 𝑞3 numerical low
initial_max_data QUIC QUIC parameters 𝑞4 numerical low
initial_max_stream_data_bidi_local QUIC QUIC parameters 𝑞5 numerical low
initial_max_stream_data_bidi_remote QUIC QUIC parameters 𝑞6 numerical low
initial_max_stream_data_uni QUIC QUIC parameters 𝑞7 numerical low
initial_max_streams_bidi QUIC QUIC parameters 𝑞8 numerical low
initial_max_streams_uni QUIC QUIC parameters 𝑞9 numerical low
max_ack_delay QUIC QUIC parameters 𝑞10 numerical low
disable_active_migration QUIC QUIC parameters 𝑞11 presence low
active_connection_id_limit QUIC QUIC parameters 𝑞12 numerical low
initial_source_connection_id QUIC QUIC parameters 𝑞13 length low
max_datagram_frame_size QUIC QUIC parameters 𝑞14 numerical low
grease_quic_bit QUIC QUIC parameters 𝑞15 presence low
initial_rtt QUIC QUIC parameters 𝑞16 presence low
google_connection_options QUIC QUIC parameters 𝑞17 categorical medium
user_agent QUIC QUIC parameters 𝑞18 categorical medium
google_version QUIC QUIC parameters 𝑞19 categorical medium
version_information QUIC QUIC parameters 𝑞20 categorical medium

the values, in terms of the number of bytes they contain, could be
helpful, and hence we treat them as length-based attributes.

We note that converting each field to its corresponding attribute
(i.e., the green box in Fig. 4) can come with different levels of pro-
cessing steps that can require different levels of computational costs,

especially when deployed for high-speed broadband networks in
real time. In our real-time packet processing pipeline as shown in
Fig. 4, numerical fields are directly taken from handshake packets
as input attributes. Length-based and presence-based attributes are
also directly taken from their corresponding header fields without
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Figure 5: Attribute importance in different classification objectives including user platforms, only device types, or only software
agents for YouTube (a) QUIC and (b) TCP flows. The level of preprocessing required (annotated by low-, medium- or high-cost)
and classification objectives are represented by different colors and patterns, respectively.

additional processing. These attributes can hence be considered
low-cost. Attributes that are converted from categorical fields each
requires an additional value mapping process after packet parsing,
which is typically done through basic dictionary lookup operations.
Albeit small in terms of time consumption (e.g., several microsec-
onds), there is an additional processing step involved, hence these
attributes are considered medium-cost. A list-type field can con-
tain multiple (categorical) items, each requiring an additional value
mapping process to convert the entire list-type field into one at-
tribute in the form of an array of numerical values. For example,
the list-type field cipher_suites often has over ten cipher_suite items.
To convert one such field into its corresponding attribute (i.e.,𝑚3)
as an array of numerical values, the system needs to loop through
every single item in the list, resulting in a total of over ten addi-
tional value mapping processes required. Therefore, such attributes
are considered high-cost. As we will show next, using attributes
with higher preprocessing costs in classification tasks does not
necessarily increase the overall predictive capability.

4.2.2 Importance of attributes. As discussed in §3.3, the attributes
derived from the handshake fields are not all equally important in
predicting user platforms. We now systematically benchmark the
importance of each attribute using the information gain metric [51].
It is indeed the mutual information between an attribute and the
prediction target, which is calculated as the sum of the entropies of
the attribute and the predicted class deduced by their joint entropy
[27, 56]. Therefore, attributes of the highest importance have infor-
mation gain close to 1 and an irrelevant attribute has information
gain 0. In our analysis, the information gains are computed for both
TCP and QUIC video flows for each of the four video providers,
with prediction objectives being user platform, device type, and
software agent. We now discuss the relative importance of the at-
tributes using YouTube video flows over QUIC as a representative
example.

Fig. 5(a) shows the importance (i.e., normalized information gain)
of attributes for YouTube over QUIC flows. Each bar is color-coded
by its level of preprocessing required and pattern-coded by its
prediction objective. Attributes are denoted by their ordered labels,
and a full mapping between labels and attribute names is provided
in Table 2.

To elicit the relative importance of attributes in satisfying our
prediction objectives, we empirically define two thresholds, 0.2 and

0.1, and rate the importance of attributes as high, medium or low if
their information gain value is > 0.2, between 0.1 and 0.2 or < 0.1,
respectively. We can see that 17 attributes including 𝑡1, 𝑚1, 𝑚3,
𝑜1, 𝑜3, 𝑜4, 𝑜6, 𝑜8, 𝑜12, 𝑜18, 𝑜21, 𝑞2, 𝑞4, 𝑞5, 𝑞12, 𝑞17 and 𝑞20 have high
importance for all three prediction objectives, i.e., user platform,
only device type, and only software agent. Eleven attributes, i.e.,𝑚2,
𝑚4, 𝑜2, 𝑜5, 𝑜7, 𝑜10, 𝑜15, 𝑜17, 𝑜19, 𝑜20 and 𝑞18, have information gain
< 0.1 for all three prediction objectives, implying their effectiveness
is limited.

Other attributes have at least one high or medium score, and one
medium or low score. For instance, 𝑡2 has a normalized importance
score of 1 (high) for device type but 0.18 (medium) for software
agent. This is not surprising since certain handshake fields (e.g.,
time-to-live) are highly dependent on device types while others
(e.g., version information) exhibit strong variations across software
agents; see §3.3. In addition, as shown in Fig. 5(b), an attribute
with low importance for QUIC video flows may have medium or
high importance for TCP flows. An example is 𝑜15, which has a
value near 0 for QUIC but over 0.1 for TCP. These observations
indicate that a select combination of attributes with medium to
high importance can also serve as useful predictors.

Finally, we highlight that even though certain types of attributes
require only zero orminimal preprocessing steps, such as the numer-
ical fields in handshake messages, relying solely on them does not
necessarily compromise prediction accuracy. For instance, out of 43
numerical and length-/presence-based (i.e., low-cost) attributes, 3
(i.e., 𝑡1, 𝑡2, 𝑜8) have high importance for both QUIC and TCP video
flows. On the other hand, 4 out of 9 categorical (i.e., medium-cost)
and 1 out of 10 list-type (i.e., high-cost) attributes have low impor-
tance. In production environments, switches might not have the
necessary computational resources to execute the entire packet
processing and classification pipeline in real-time. Under these cir-
cumstances, one can (carefully) select only those attributes requir-
ing minimal preprocessing to achieve a certain acceptable degree
of prediction accuracy. This trade-off between the cost of prepro-
cessing attributes and the accuracy of predicting user platforms is
discussed next.

4.3 Classification Models
We now present our machine learning models to predict user plat-
forms for the four video content providers. Note that at the time of
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Figure 6: Hyperparameter tuning of random forest models
for YouTube over QUIC (a). The model’s classification accu-
racy to classify user platform is shown in (b), only device
type is depicted in (c), and only software agent is presented
in (d).

this writing, only YouTube supports QUIC while the others support
only TCP.

4.3.1 Model training, tuning and selection. We consider three pop-
ular machine learning algorithms for our classification tasks, i.e.,
random forest (decision tree-based), MLP (neural network), and
KNN (clustering-based), and tune their hyperparameters accord-
ingly. For random forest, these parameters include maximum tree
depth, number of trees, and number of attributes. MLP models are
tuned for the number of hidden layers, number of perceptrons per
layer and activation functions. KNN classifiers are tuned for the
number of neighbors, weight functions and leaf size.

We trained each of these algorithms on the dataset collected
from our experimental setup shown in Fig. 1. To recall, it consists
of attributes extracted from traces spanning about 10,000 video
flows across 30 user platforms. The performance of each of the
models was evaluated in terms of the overall accuracy using 10-
fold cross-validation. Our evaluation shows that the random forest
model outperforms both the MLP and KNN classifiers, not only
for YouTube but for all other providers and user platforms as well.
For example, in classifying the user platform for YouTube flows
over QUIC, the random forest model achieves an overall accuracy
of 96.4%, while the MLP and KNN models achieve an accuracy of
65.1% and 69.1%, respectively. This observation is consistent with
prior research that shows decision tree-based models are better
suited for network traffic classification problems [54]. We therefore
selected the random forest model for real-time deployment and
evaluation in our campus network.

Fig. 6(a) depicts how we select the best random forest model. Out
of the 62 attributes overall, only 50 are applicable to QUIC. Further,
the figure shows the overall classification accuracy when tuning
the number of attributes (vertical axis) and the maximum tree depth

Table 3: Model performance in open-set evaluation for three
classification objectives, namely user platform, device type
only and software agent only.

Provider Objective Accuracy
User platform 98.7%/94.5%
Device type 99.1%/98.4%YouTube

(TCP/QUIC) Software agent 96.6%/95.4%
User platform 91.2%
Device type 92.4%Netflix

(TCP) Software agent 90.6%
User platform 90.9%
Device type 91.6%Disney

(TCP) Software agent 88.6%
User platform 88.2%
Device type 89.4%Amazon

(TCP) Software agent 87.9%

(horizontal axis). The highest test accuracy of 96.4% was attained
when the two hyperparameters were set to 34 and 20, respectively.
We use this selection of hyperparameters as our best-performing
random forest model.

For the above model, we show its classification accuracy per
prediction class (i.e., confusion matrix) in Fig. 6(b). It is clear that
5 out of 12 prediction classes are with 100% accuracy, including
all browser types on Windows PC, as well as Chrome and native
YouTube application on Android phone. Misclassified instances
are observed within two groups, i.e., iOS and macOS devices. For
example, native YouTube app on iOS has a small chance (i.e., ≤ 4%)
of being misclassified as native app on Android. For the iOS native
app instances, their device types (i.e., iOS) are classified with 96%
accuracy, while their software agents (i.e., native app) might be
misclassified as Chrome or Safari with a slim chance of less than
6%.

Delving deeper into the fields for (iOS, Safari) and (iOS, Chrome)
platforms, see columns 10 and 11 in Fig. 12(a), we note that a vast
majority of them take on similar values. Only a small number of
attributes, e.g., handshake_length, extensions_length have different
values. Moreover, Chrome has started to randomize TLS extension
orders since version 110 [17]. These variations in attribute values
explain why we see a small fraction of misclassifications in these
user platforms.

We also observe that those misclassified instances are with low
confidence, i.e., less than 50%, while the correctly classified ones
are with high confidence, i.e., over 80%. The performance of our
random forest models in classifying only the device type and the
software agent for YouTube QUIC is depicted in Fig 6(c) and 6(d).
We note that their accuracy in identifying the device type is high,
≥ 97% for all device types, while it can predict all software agents
with ≥ 91% accuracy. The marginal decline in the accuracy of the
latter is due to the reasons explained above. Nonetheless, the overall
results demonstrate that our random forest classifiers offer high
prediction accuracy with high confidence.

4.3.2 Open-set evaluation. Relying solely on the accuracy reported
by 10-fold validation can result in over-fitting, which can mask the
true accuracy of a classifier. To overcome this problem, we further
evaluate the performance of our random forest model on a dataset
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Table 4: Median classification confidence of correct and in-
correct instances in the open-set evaluation for all four
providers and three classification objectives.

Provider Objective
Med. conf.
(correct)

Med. conf.
(incorrect)

User platform 98.5%/91.4% 86.5%/54.4%
Device type 89.6%/91.8% 46.7%/57.5%YouTube

(TCP/QUIC) Software agent 98.2%/90.9% 89.3%/52.7%
User platform 88.7% 53.9%
Device type 99.3% 60.0%Netflix

(TCP) Software agent 91.0% 59.1%
User platform 91.5% 67.6%
Device type 98.2% 83.5%Disney

(TCP) Software agent 91.6% 67.6%
User platform 89.1% 60.6%
Device type 99.4% 50.0%Amazon

(TCP) Software agent 91.3% 64.3%

collected by one of the authors from their home network. While the
devices in the home are the same as those in our experimental setup,
the OS versions as well as those of the software agents are different.
These variations could impact the values of the different attributes.
The aim of this exercise therefore is to validate the accuracy of the
model, trained on the lab trace data, in predicting the user platforms
seen in a different environment, i.e., the home.

This dataset contains over 2000 video flows spread evenly across
all user platforms. We note from Table 3 that the results are com-
parable to the ones reported earlier, confirming the high efficacy
of the classifier. User platforms are classified with > 94% accuracy
for YouTube, > 91% for Netflix, > 90% for Disney+ and > 88% for
Amazon Prime Video. Additionally, as shown in Table 4, the ma-
jority of correctly classified instances are of very high confidence
(i.e., > 88%) whereas incorrect classifications tend to be of low con-
fidence (i.e., < 70%). Exceptions are also observed in minor cases
for certain types of classes due to their similar networking and
kernel suites to the misclassified classes. For example, video flows
from Apple’s mobile iOS devices sometimes behave very similarly
to Apple’s desktop macOS devices, thus, can be misclassified with
high confidence.

4.3.3 Models with a subset of attributes. We have discussed in
§4.2.2 that not all attributes are equally important from the per-
spective of information gain, especially list attributes which require
high costs for preprocessing. An ISP carrying very high data rates,
e.g., multi-hundreds of Gbps, may require servers with significant
computational capability to deploy the end-to-end classification
pipeline in real-time. In the absence of such resources, one may
choose to discard the use of high-cost low-importance attributes to
reduce the processing load with negligible impact on classification
accuracy, as described next.

We train random forest models with three subsets of attributes.
Each subset excludes attributes that are deemed to be of low im-
portance (i.e., < 0.1 information gain). Additionally, the first subset
excludes only high-cost low-importance attributes, the second sub-
set excludes both high- and medium-cost attributes that are of low
importance, and the third subset excludes all attributes that are of
low importance.

Table 5: Accuracy of models for YouTube QUIC video flows
with three subsets of attributes. Each subset excludes low-
importance attributes associated with high cost; high and
medium cost; high, medium and low cost.

Excluded low-imp. attributes Objective Accuracy
User platform 93.3%
Device type 97.2%High cost
Software agent 94.6%
User platform 93.0%
Device type 97.2%High +medium cost
Software agent 92.8%
User platform 92.8%
Device type 97.1%High +medium + low cost
Software agent 92.9%

The overall accuracy of the random forest classifier for YouTube
QUIC flows is reported in Table 5. Compared with the accuracy
of the model that uses the full (i.e., 50) attribute set, we observe a
slight reduction (≈ 3%) across the three scenarios considered here.
For example, the accuracy for classifying user platforms of QUIC
YouTube flows is 96.4% with the full attribute set. This drops to
93.3%, 93.0% and 92.8%, with each subset, respectively. The perfor-
mance is similar when predicting only the device type or software
agent.

Thus, in scenarios with constrained computational resources,
one can safely ignore attributes with low information gain requiring
varying degrees of processing costs, to deploy the end-to-end user
platform classification pipeline in real-time. In our campus-wide
deployment, our server has sufficient computational resources to
handle real-time traffic streams at 20 Gbps peak rate and process
the observed maximum of over 1000 concurrent video flows from
considered content providers. Thus, we use classifiers trained with
the full attribute set to achieve the highest possible accuracy.

4.3.4 Benchmarking against state-of-the-art. Now, we benchmark
our method with six state-of-the-art techniques spanning the last
five years of literature in user platform identification using the
ground-truth dataset discussed in §3.1. Three qualitative aspects,
as specified in the second to fourth columns of Table 6, including
inference objective, covered protocol and inference granularity are
compared to demonstrate the superior visibility our method can
provide. Our method outperforms all alternatives.

Two out of the six prior techniques [40, 55] require collecting
statistics of all flows from a candidate host, and thus cannot be used
to identify user platforms of individual video flows from clients
behind NAT. The other four techniques [6, 14, 28, 53], either directly
offer flow-level granularity, or have a subset of articulated attributes
from individual flows, and thus can be adapted for flow-level identi-
fication as specified in the fifth column of Table 6. First of all, since
all six prior techniques are designed only for TLS over TCP flows,
a generic adaptation has to be made for all prior works to handle
video flows over QUIC, including identifying and decrypting QUIC
Initial packets and extracting handshake attributes from TLS CHLO
messages over QUIC. In addition, to make the four techniques ap-
plicable for user platform identification, the required adaptations
specific to each prior work are listed in the fifth column of Table 6
such as extracting fine-grained flow-level telemetry, constructing
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Table 6: Benchmarking the classification accuracy of our user platform identification method against state-of-the-art after
necessary methodological adaptations.

Accuracy after adaptationWork Objective Protocol Granularity Required specific adaptations YT (QUIC) YT (TCP) NF (TCP) DN (TCP) AP (TCP)
Ours Dev. type + Soft. agent TLS/QUIC flow — 94.5% 98.7% 91.2% 90.9% 88.2%
[6] Dev. type + Soft. agent TLS flow feature construct.; classi. process 90.1% 97.5% 84.0% 82.8% 80.3%
[14] Dev. type TLS host flow granularity; inference object. 94.0% 96.8% 86.0% 80.1% 84.1%
[28] Dev. type TLS host flow granularity; inference object. 68.1% 95.1% 82.7% 83.1% 79.0%
[55] Dev. type + Soft. agent non-TLS host not adaptable — — — — —
[53] Soft. agent TLS flow inference objective 11.3% 51.0% 53.4% 56.5% 38.1%
[40] Soft. agent TLS host not adaptable — — — — —

features from collected statistics, expanding inference objective,
developing classification pipeline and models. For example, the
method in [6] combines TLS handshake fields to generate string-
based fingerprints of applications. Therefore, for benchmarking
purposes, we adapt this method by constructing usable features
from their fingerprint strings and developing a classification pro-
cess. Also, the works in [14] and [28] classify device types with
IP-level attributes. Thus, their attributes are adapted to be extracted
for individual video flows and used to classify not only device types
but also software agents.

The quantitative accuracy of our method in comparison to other
prior techniques (after necessary adaptations) is reported in the last
five columns of Table 6. We can clearly observe that our method
outperforms other techniques in all five classification scenarios, i.e.,
different providers and their supported protocols. Noting that the
three techniques [6, 14, 28] that can achieve overall 80% accuracy
require significant adaptations from constructing flow-level teleme-
try to articulating attributes and developing classification models,
whereas the technique in [53] uses attributes extracted from flow
metadata (e.g., length) and only one TLS field “TLS_message_type”
which becomes unavailable/encrypted in QUIC, and thus has only
11.3% accuracy for YouTube flows over QUIC and less than 60% for
other scenarios.

5 Characterizing User Platforms in a Campus
Network

To showcase the usability of our system for residential broadband
network operators, in §5.1, we report on the deployment of our user
platform classification pipeline on a commodity server and use it
to analyze traffic between our university campus network (mimick-
ing a residential broadband network) and the Internet in real time.
Then in §5.2, we discuss insights obtained from our deployment
over a four-month period, demonstrating how video streaming con-
sumption patterns vary across user platforms and providers. Last,
in §5.3, we conclude discussing insights collected as well as general
considerations from our deployment that might be of interest to
ISPs’ network operation teams interested in video streaming traffic
analytics.

5.1 Prototype and Campus Deployment
We implement our packet processing pipeline, shown in Fig. 4, as a
virtual network function (VNF) system. DPDK [31] and NFF-Go [45]
packet processing frameworks are used for the packet Preprocessing
stage in Fig 4, which parses input packet streams and handles the
handshake and data packets of video flows. The handshake attribute

generator and video telemetry modules are developed using Golang
while the classifier banks use Python scikit-learn library [49]. The
video session telemetry, along with user platform labels, is stored
in a PostgreSQL database for analysis.

The system runs on a commodity blade server configured with an
8-core Intel Xeon E5-2620 CPU and 64 GB DDR4 RAM. The server
receives a copy of the traffic from our university network border
router that is connected to the Internet. The traffic is delivered to
two 10 Gbps network interfaces on our server for inbound and
outbound traffic, respectively. We have obtained ethical clearance
from our university ethics board as detailed in Appendix A.

As an additional sanity check of the classification methodology,
we played over 1000 video sessions using all available user plat-
forms in our university lab, which were captured by our system.
The classification accuracy of those ground-truth video sessions
is similar to our open-set evaluation. Almost all misclassified in-
stances (which are less than 4% of streams) were with relatively
low confidence, i.e., < 50%.

5.2 Insights from the Deployment
Our university campus network serves staff, students, visitors, and
over 10 residential dormitories. Over the four months from July
7th 2023, 00:00 to November 9th 2023, 23:59, our system collected
telemetry statistics, i.e., duration, volume and throughput, of every
video flow from the four providers, and tagged each of them by
their user platforms. Over 100 million streaming video flows were
collected with a total of 400k hours of watch time. For reliability
of our insights, we exclude about 20% of the sessions with low
classification confidence that may be due to unknown types of user
platforms not in our training dataset. We now analyze how different
user platforms impact usage patterns from the point of view of
watch time (§5.2.1), bandwidth demand (§5.2.2), and temporal usage
patterns (§5.2.3).

5.2.1 Video watch time across user platforms. Taking our four-
month deployment as an example, we start by examining how the
level of engagement, measured in terms of total watch time, varies
by device type across the four video content providers. This is
shown in Fig. 7. Not surprisingly, across our entire campus demo-
graphic, YouTube, where content is mostly free, dominates engage-
ment with an average daily total watch time of 2000 hours. It is fol-
lowed by subscription-based providers such as Netflix, Disney+, and
Amazon Prime Video. Furthermore, the majority of subscription-
based videos are watched on PCs (Windows/Mac) rather than on
mobile devices. In contrast, up to 40% of YouTube engagement oc-
curs on mobile devices (iOS/Android). These insights enable ISPs
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Figure 7: Video watch time for the four video content
providers across device types.
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Figure 8: Video watch time for the four video content
providers across software agents on each device type.

to prioritize the troubleshooting of issues, such as they can expect
more support calls relating to PCs than mobiles for Netflix, and the
converse for YouTube.

Fig. 8 shows the breakdown of software agents per video provider.
Chrome browser on Windows PCs is the most popular software
agent used to watch YouTube, clocking up 677 hours, as shown in
Fig. 8(a). In addition, amongst mobiles, iOS is preferred with over
90% of watch time on its YouTube native app. The other devices use
a relatively diverse set of software agents, as shown in the figure.

The watch time profiles for Netflix, Disney+ and Amazon are
provided in Fig. 8(b), 8(c) and 8(d), respectively. While Safari on
Mac PCs is popular for viewing Netflix and Amazon, the native
Disney+ app on iOS dominates engagement of mobile users by over
90%.

5.2.2 Bandwidth demand. As video streaming are bandwidth de-
manding, in Fig. 9, we show the distribution of bandwidth consump-
tion, as box plots indicating the median and the quartiles to either
side of the median, for the four video streaming providers across
different device types. It is apparent that the bandwidth demand im-
posed by subscription-based videos is higher than that of YouTube
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Figure 9: Bandwidth demand for the four video providers
across device types.
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Figure 10: Bandwidth demand for the four video providers
across software agents on each device type.

as the interquartile range for these providers is 3 to 9 Mbps higher.
Notably, videos streamed from Amazon Prime Video to Mac PCs
demand the highest median bandwidth (of 5.7 Mbps), which is 50%
higher compared to smart TVs.

The impact of software agents on bandwidth for the different
video providers is plotted in Figures 10(a)-(d). Android mobiles,
iOS mobiles and TVs only support native Amazon Prime Video
apps and as shown in Figures 10(a), consume less bandwidth (me-
dian < 3 Mbps) than their PC counterparts. All browsers on Win-
dows/Mac PCs exhibit higher median bandwidth and interquartile
range spread for Amazon compared to native mobile apps. In ad-
dition, Mac PCs generally require higher median throughput than
Windows PCs. Interestingly, Netflix streamed to PCs on browsers
(excluding Safari) consumes lower median bandwidth (< 2 Mbps),
which might suggest lower resolution supported via browsers than
the native app.

5.2.3 Temporal usage patterns. As traffic demand changes over
time, in Fig. 11, we depict the median traffic volume during each
hour of the day consumed byAmazon, Disney+, Netflix and YouTube
videos on PCs and mobile devices. Overall, Amazon and Disney+
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exhibit fairly similar daily usage patterns with a 4-hour peak period
from about 7 pm to 11 pm. Also, mobile usage for Amazon is low
compared to Disney+.

Comparing YouTube and Netflix, we see that the former has a
long and sustained peak window from about 4 pm to midnight
while the latter has a shorter peak, i.e., between 8 pm to 10 pm. In
terms of mobile usage, YouTube dominates with relatively steady
hourly peak usage in the range of 17 to 20 GB from about 4 pm to
midnight.

5.3 Discussion on Insights and Considerations
For network operation teams interested in video streaming, visibil-
ity into engagement patterns across user platforms can equip them
with knowledge of their customer segments and preferences, as
well as the ability to identify customer issues pertinent to popular
content providers and/or certain firmware/software. Second, band-
width capacity planning is a key ongoing activity for ISPs as they
strive to meet the ever-increasing demands for service quality assur-
ance from their customers. Given the significant load imposed by
video streaming, fine-grained insights into the bandwidth demand
of popular streaming service users, broken down by device types
and software agents, may help ISPs improve the fidelity of their
bandwidth forecasting models. In addition, temporal usage patterns
of video streaming services can also provide valuable information
to ISPs. For example, by knowing when peak usage occurs and
for what kind of content, ISPs can proactively allocate adequate
bandwidth to ensure high levels of service assurance. Conversely,
during off-peak periods, bandwidth can be allocated differently to
save costs. Alternatively, traffic management policies can be im-
plemented that prioritize video streaming during peak hours and
other types of traffic during off-peak hours.

We acknowledge that our study focused particularly on four
popular content providers and thirty user platforms to demonstrate
the efficacy of our method. While it is a necessary engineering ex-
tension to continuously collect comprehensive datasets and retrain
models, the methodology itself is readily extensible to incorporate
other streaming services, emerging user platforms, and changes
in behaviors over time. Therefore, in practical deployment for a
broadband network, two key deployment considerations arise.

First, for deployments in different broadband networks, the op-
erators can have various video streaming services of interest. For
example, a deployment in Asia-Pacific region may require the sys-
tem to be able to measure streaming video sessions from regionally
popular providers such as Bilibili and Hotstar. Therefore, the de-
ployment team would have to collect ground-truth data of video
streaming flows for each video provider to be included. Similarly,
new popular user platforms for video streaming may emerge. For
example, broadband ISPs are interested in understanding the stream-
ing videos watched on Apple Vision Pro after it was released in
February 2024, which requires the collection of ground-truth data
to augment the classifiers.

Second, although our four-month deployment did not exhibit
any observable drop in prediction confidence from our classifiers
over time, it is acknowledged that the overall prediction accuracy
and confidence will decline over a longer deployment period due
to evolving traffic characteristics of video streaming services and
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Figure 11: Temporal data usage patterns for the four content
providers across PCs and mobile devices.

(firmware/software) updates of user platforms, which is known as
“concept drift”. Therefore, in practice, the deployment team will
have to periodically retrain the under-performing classifiers with
updated ground-truth training data to adapt to these changes.While
developing a continuous re-training process is not within the scope
of this paper, we acknowledge that there are established techniques
to detect and mitigate concept drifts [38, 39, 59].

6 Conclusion
Our work discussed in this paper provides network operators with
fine-grained visibility into user platforms of streaming video flows
over both TCP and QUIC. We first systematically understand the
network communication anatomy of streaming video sessions and
categorize handshake fields of video flows that can vary across OSes,
browsers and provider-native applications. Following our observa-
tion on the variations of handshake fields across user platforms, we
developed and evaluated a pipeline that processes network packet
streams to classify user platforms of streaming video flows using
well-trained machine learning models on formalized attributes from
handshake fields of video flows, achieving over 96% accuracy. We
then prototype our system on a commodity server and deploy it in
a large university campus network that mimics a residential broad-
band network for a four-month period. The usage patterns from
over 100 million video flows across various user platforms accessing
four major content providers, namely YouTube, Netflix, Amazon
Prime Video and Disney+ are discussed. Our method provides ISPs
with valuable insights to better understand their customer segments,
provision bandwidth, and troubleshoot video streaming issues per-
tinent to device firmware, OS, or software for customer experience
and satisfaction.
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A Ethics
We have obtained ethical clearance from our university ethics board
(UNSW Human Research Ethics Advisory Panel approval number
HC211007) that allows us to analyze campus traffic for streaming
video flows without being privy to user identities such as ID num-
bers and names. In our campus deployment, insights into video
streaming user platforms were reported in an aggregated manner,
preserving anonymity rather than identifying specific users. In
our analysis, no attempt was made to associate video streaming
sessions with personal identities.

B Handshake Field Values of Video Flows
In this section, we show the distribution of handshake field values
across all user platforms for all four considered streaming services
(i.e., YouTube, Netflix, Disney and Amazon).

In Fig. 12(a), we show a heatmap where each cell, corresponding
to a user platform (indicated at the bottom of the figure), is a two
tuple (x, y); x is the median value of the field, shown via labels
on the left-hand side of the figure, and y is the number of distinct
values that field takes as seen in our dataset. The heatmap is based
on YouTube over QUIC flows across 12 user platforms. We consider
this example for illustrative purposes.

The median field values are normalized between 0 and 1. The x-
axis shows 12 combinations of user platforms and the y-axis depicts
the important fields obtained from different categories, as explained
above.

As shown in Fig. 3, there are 7 fields whose median values are all
the same (consistently either 0 or 1) across user platforms. These
are highlighted as red labels in the figure and include tls_version,
compression_methods, server_name, ec_point_formats, ALPN, ses-
sion_ticket and psk_key_exchange_modes. This means they are not
useful in differentiating user platforms for YouTube video flows
over QUIC. However, as shown in green in Fig. 12(b), 4 of these
fields, i.e., ec_point_formats, ALPN, session_ticket and psk_key_-
exchange_modes take different values across user platforms for
YouTube video flows over TCP, meaning they can serve as useful
indicators in identifying specific user platforms.

For the other three platforms (i.e., Netflix, Disney and Amazon)
which delivers video flows over TCP only, we show the overall
number of unique field values and number of user platforms with
different value distributions for each handshake field in Fig. 13,
using a similar layout as Fig. 3. For most handshake fields, the value
distributions either vary significantly across user platforms (e.g.,
cipher_suites) or remain consistently stable across user platforms
(e.g., compression_methods), regardless of the video provider. There
are also exceptions such as tcp_syn where six unique value distribu-
tions are observed across Disney+ user platforms, whereas the value
distribution of this field remains consistent across user platforms
for Netflix and Amazon. Such instances suggest that the indicative
power of a certain handshake fields may vary for different video
providers.
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(a) Handshake field values of YouTube flows over QUIC across 12 user platforms.
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(b) Handshake field values of YouTube flows over TCP across 14 user platforms.

Figure 12: Median (normalized) and number of unique values
shown as (x, y) taken by fields in handshake messages for
YouTube flows.
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(a) Handshake field value distribution of Netflix flows.
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(b) Handshake field value distribution of Disney+ flows.
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(c) Handshake field value distribution of Amazon Prime Video flows.

Figure 13: Number of unique values (left blue) and number
of user platforms with different value distributions (right
purple) for each handshake field in Netflix, Disney+ and
Amazon Prime Video flows over TCP.

C Attribute Importance
In Fig. 14, we show the importance of attributes (defined in Table 2)
in predicting user platforms for Netflix, Disney and Amazon Prime
video flows over TCP. The attributes are color- and pattern-coded
by their computational costs and prediction objectives.

We highlight that the importance (i.e., normalized information
gain) of a certain attribute can differ across video providers. For
example, 𝑜19 has very low importance (around 0) for all classifica-
tion objectives related to Netflix and Amazon. However, it is highly
useful for classifying user platforms for Disney, especially device
types, where it has an importance score of nearly 0.6. Additionally,

even for attributes that are indeed of high importance across all
video providers, the specific classification objectives they are useful
for can differ. For instance, 𝑡9 is of high importance for classifying
device types for Disney, whereas its importance for Netflix and
Amazon is medium and low, respectively. Instead, it proves to be
highly useful in classifying the software agent for those other two
video providers.
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dev. type, lowall, low
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(a) Attribute importance for classifying Netflix user platforms.

dev. type, high soft. agent, high
soft. agent, medium
soft. agent, low

dev. type, medium
dev. type, lowall, low
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(b) Attribute importance for classifying Disney+ user platforms.
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(c) Attribute importance for classifying Amazon Prime Video user platforms.

Figure 14: Importance of different attributes in classifying
user platforms of (a) Netflix, (b) Disney and (c) Amazon TCP
video flows.
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