
FastFlow: Early Yet Robust Network Flow Classification using
the Minimal Number of Time-Series Packets
RUSHI JAYESHKUMAR BABARIA, University of New South Wales, Australia
MINZHAO LYU, University of New South Wales, Australia
GUSTAVO BATISTA, University of New South Wales, Australia
VIJAY SIVARAMAN, University of New South Wales, Australia

Network traffic classification is of great importance for network operators in their daily routines, such as
analyzing the usage patterns of multimedia applications and optimizing network configurations. Internet
service providers (ISPs) that operate high-speed links expect network flow classifiers to accurately classify
flows early, using the minimal number of necessary initial packets per flow. These classifiers must also be
robust to packet sequence disorders (drops and retransmissions) in candidate flows and capable of detecting
unseen flow types that are not within the existing classification scope, which are not well achieved by existing
methods. In this paper, we develop FastFlow, a time-series flow classification method that accurately classifies
network flows as one of the known types or the unknown type, which dynamically selects the minimal number
of packets to balance accuracy and efficiency. Toward the objectives, we first develop a flow representation
process that converts packet streams at both per-packet and per-slot granularity for precise packet statistics
with robustness to packet sequence disorders. Second, we develop a sequential decision-based classification
model that leverages LSTM architecture trained with reinforcement learning. Our model makes dynamic
decisions on the minimal number of time-series data points per flow for the confident classification as one of
the known flow types or an unknown one. We evaluated our method on public datasets and demonstrated its
superior performance in early and accurate flow classification. Deployment insights on the classification of
over 22.9 million flows across seven application types and 33 content providers in a campus network over one
week are discussed, showing that FastFlow requires an average of only 8.37 packets and 0.5 seconds to classify
the application type of a flow with over 91% accuracy and over 96% accuracy for the content providers.

CCS Concepts: • Networks→ Network measurement; Network monitoring; • Computing methodolo-
gies→Machine learning approaches.

Additional Key Words and Phrases: network traffic analysis; flow classification; reinforcement learning

ACM Reference Format:
Rushi Jayeshkumar Babaria, Minzhao Lyu, Gustavo Batista, and Vijay Sivaraman. 2025. FastFlow: Early Yet
Robust Network Flow Classification using the Minimal Number of Time-Series Packets. Proc. ACM Meas. Anal.
Comput. Syst. 9, 2, Article 23 (June 2025), 27 pages. https://doi.org/10.1145/3727115

1 Introduction
Network operators that offer Internet access services to broadband and mobile clients, or man-
age network infrastructure for large enterprises and campuses, are eager to gain visibility into
the bandwidth demand by different applications, such as video streaming, online gaming, and
Corresponding author: Minzhao Lyu (minzhao.lyu@unsw.edu.au).
Authors’ Contact Information: Rushi Jayeshkumar Babaria, University of New South Wales, Sydney, NSW, Australia;
Minzhao Lyu, University of New South Wales, Sydney, NSW, Australia; Gustavo Batista, University of New South Wales,
Sydney, NSW, Australia; Vijay Sivaraman, University of New South Wales, Sydney, NSW, Australia.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2476-1249/2025/6-ART23
https://doi.org/10.1145/3727115

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

https://doi.org/10.1145/3727115
https://doi.org/10.1145/3727115

23:2 Rushi Jayeshkumar Babaria, Minzhao Lyu, Gustavo Batista, and Vijay Sivaraman

conferencing, and their service providers (e.g., YouTube and Netflix for video streaming), along
with the associated experience received by the end-users, for the following major business and
operational reasons. First, knowing which network services and providers are becoming popular in
their deployment geography can directly impact the business planning of a network operator, such
as creating selective bundles and premium subscription plans that have the potential to increase
its profit margin. Second, having visibility into the experience associated with each application
session facilitates proactive network troubleshooting to increase customer satisfaction and reduce
potential revenue loss. Third, providing contextual labels for network flows through a network can
serve as signals for dynamic performance optimization techniques, such as prioritizing network
flows of latency-sensitive applications like video conferencing via low-latency 5G slices, and using
network APIs for video streaming flows to guarantee sufficient bandwidth allocations.
Internet service providers (ISPs) deploy classifiers that categorize network flows into their

application types for usage accounting and subsequent user experience measurement [12, 13, 30,
33, 53]. For practical deployment at large networks that can serve hundreds of thousands of users
using diversified applications supported by millions of concurrent network flows, flow classifiers
are expected to not only provide accurate flow labels that are of interest to network operators but
also produce classification results for each flow at the earliest possible time, ideally by just seeing
the initially arrived packets of a flow. This approach spares computing resources to classify more
flows in the queue and quickly enables subsequent monitoring tasks (e.g., inference on application
user experience [12, 33]) that take the flow classification results as a prerequisite.
Network traffic classifiers have started shifting from rule-based mechanisms that match flow

metadata, such as port numbers and server name indication (SNI) fields in TLS handshake payloads,
which have become less effective due to increasingly encrypted application traffic and the use of
randomized or non-standardized port numbers. Instead, statistical models are now being used to
classify network flows based on their time-series volumetric profiles, which are determined by the
actual content carried per application and are agnostic to metadata obfuscation and encryption.
However, for a large network like an ISP that can have millions of concurrent flows to be quickly
classified for downstream tasks such as usage accounting and performance measurement in real-
time, legacy metadata-based approaches can classify a candidate flow by its first or certain signaling
packet(s), while time-series statistical models often require a lengthy time-series input (e.g., packets)
before concluding a confident flow classification result.
Therefore, to enable the practical deployment of time-series statistical flow classifiers in large-

scale networks, prior research works [21, 28, 29, 31, 33, 38–41] have developed such models using
a fixed number of initial packets in a flow that carry static signatures in initialization requests
pertinent to a certain application (e.g., video streaming or conferencing) or content provider. How-
ever, given the diversified flow types in an ISP network, each with its static initial content carried
by a different number of initial packets, having this number fixed for every flow cannot always
produce reliable classification. Specifically, with a fixed number, unpredictable packets carrying
dynamic user content may be included for flows that inherently require a smaller number of initial
packets for classification, and initial packets carrying static flow content may not be sufficiently
captured for flows that require a larger number. Moreover, packet drops and retransmissions, which
are common in network communications, further render a fixed number of initial packets for
classifying diversified flows in realistic network environments ineffective.
To address this gap in network flow classification for large-scale networks, a run-time opti-

mization is required to determine the minimal number of packets to balance prediction accuracy
and system efficiency [48]. An insufficient number of time-series inputs can cause inaccurate
results, whereas a number more than the just enough value can lead to delays in classification.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

FastFlow : Early Yet Robust Network Flow Classification using the Minimal Number of Time-Series Packets 23:3

Such optimization objectives are formulated as a sequential decision-making problem by the ma-
chine learning community and approached by reinforcement learning techniques [25, 46]. Those
provide inspiration for us to develop a time-series network flow classifier with sequential decision-
making capability trained by reinforcement learning, which can determine the minimal number of
time-series data points at run-time to confidently classify each candidate flow.

In this paper, we develop FastFlow, a time-series flow classification method to accurately classify
network flows for their application types and content providers using the estimatedminimal number
of packets carrying initial static content pertinent to their types. Theminimal number is dynamically
estimated for each candidate flow at run-time. As will be overviewed in §3, our method FastFlow
represents raw packet streams of a flow as well-curated data sequences at dual granularity of
packets and slots (i.e., time intervals), and uses purposely designed time-series classifiers leveraging
long-short-term memory (LSTM) architecture tuned by reinforcement learning techniques for
run-time estimation on the minimal number of time-series inputs for classifying each flow. The
method is inherently capable of detecting unknown flows as outliers instead of mislabeling them
as one of the known types, and is robust to packet sequence disorders within a flow due to packet
drops and retransmissions, which are common cases during deployment at large networks. Our
contributions in this paper are three-fold.

Our first contribution (§4) defines a dual-grained time-series flow data sequence to repre-
sent volumetric statistics of a network flow as formal inputs to our time-series flow classifiers. The
fine-grained flow data sequence is curated for precise packet statistics of a candidate flow covering
not only packet sizes but also contextual information including directions and inter-arrival times
which serve as strong indicators for flow types when the packet sequence perfectly matches its
expected norm. It is complimented by a coarse-grained time-series data sequence that consists
of volumetric statistics of a flow per slot, which exhibits better statistical robustness to packet
sequence disorders caused by packet drops and retransmissions through interval-based aggregation.
The joint use of both types of time-series data sequence via a run-time selection process provides
quality representation of a flow with both precision and robustness to sequence disorder of its
arriving packets.

In the second contribution (§5), we develop a time-series flow classifier architecture that
leverages long-short term memory cells (LSTM) to classify network flows on the dual-grained
time-series flow data sequence describing statistics of packets arrived at runtime. The classifier is
trained by reinforcement learning techniques as a sequential decision making model with inference
functions (i.e., linear layers) flexible on prediction timestamps and an intermediate ‘unknown’ flow
type. The trained classifiers can dynamically estimate the minimal number of time-series data points
(e.g., packets) to confidently classify each candidate flow. To enhance the accuracy of our trained
classifiers in detecting unknown flow types that have their statistical characteristics deviating
from the known types, we develop a training data augmentation technique that compensates
the commonly absent unknown flow characteristics to improve the convergence of statistical
boundaries in the trained models for classifying known flow types.
The third contribution (§6) evaluates the classification performance of FastFlow. We start by

comparing FastFlow with state-of-the-arts methods and ablation alternatives on three popular
public network flow datasets from university and ISP labs, showcasing the performance of FastFlow
in both simple (over 98% accuracy using on average 4 initial packets in 0.03 seconds per flow) and
complex (over 86% accuracy using on average 13 initial packets in 0.6 seconds per flow) classification
tasks. We then deploy FastFlow in a large campus network. Using flow labels from a commercial
network traffic classification system as estimated ground truths, we demonstrate deployment
insights in the realistic network environment including flow classification performance of
seven popular application types and 33 content providers. On average, only 8.37 initial packets

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

23:4 Rushi Jayeshkumar Babaria, Minzhao Lyu, Gustavo Batista, and Vijay Sivaraman

of a flow are needed to classify its application type with an accuracy higher than 91%. Among
application types, conferencing flows are detected with the highest accuracy of 99.82% using 3 to
17 initial packets in approximately 1.34 seconds. FastFlow also achieves superior performance in
classifying content providers of each application type, an accuracy of 97% is achieved to classify
video streaming providers using the first 3 to 6 packets of each flow.

2 Related Work
Classifying encrypted network flows using time-series data for application classification [1, 59]
and network anomaly detection [4, 10] has been a popular topic given its importance for network
operation. Despite the large number of prior works that develop or fine-tune classification models
[5, 37, 42], many existing works focus on cost-effectively representing time-series flow data and
developing methods for early classification of network flows i.e., using the least number of time-
series data points for accurate prediction, which are closely related to our work.
Time-Series Flow Data Representation: To represent a network flow that consists of a

series of upstream and downstream packets arrived at different timestamps, some prior works
[2, 3, 9, 11, 15, 24, 32, 51, 51, 58, 59, 61, 62, 62, 64, 65] use aggregated metrics such as packet inter-
arrival time and packet length for a group of packets (such as by a fixed time interval or for a
certain number of packets), which lose fine-grained packet-level statistics for accurate classification.
To address this issue, other research works [14, 20, 22, 27, 45, 49, 50] choose to preserve a sequence
at per-packet granularity by capturing inter-arrival time and packet size of each packet without
aggregation. The classification models trained on such precise sequences can perform poorly in
operational networks as packets in a flow do not always come in precise sequence due to packet
drops and retransmission. This problem is especially severe for works [21, 38, 39] that classify a
flow by its first few packets. In our work, we propose a flow representation process that collectively
uses per-packet representation for accurate inference in general cases and time-series metrics
aggregated per slot (i.e., time interval) that provide resilience to candidate flows with disordered
packet sequence due to packet drops and retransmission.

Time-Series Early Classification of Network Flow: A cost-effective classification of network
flows in high-speed telecommunications networks often requires a decision to be taken after
inspecting a small number of packets. To balance flow classification accuracy and cost, prior works
use a unified number of packets or time intervals for all flows in their classification methodologies
[3, 24, 38, 39, 41, 45]. For example, GGFast [39] uses the first 50 packets to classify each flow
and Flowpic [45] specifies a constant 10-second time interval limit. In addition, the works in
[3, 8, 17, 21, 26, 40] evaluate the performance of their flow classifiers with various numbers of
packets or time intervals. Notably, in [52], the authors classify flows using their first several initial
packets. However, this number of packets is a hyper parameter optimized on each training dataset,
i.e., deployment network, rather than on a per flow level. While such fine-tuned static number of
inputs for a certain classification objective (e.g., streaming video providers) in one deployment
environment can performwell, suchmethods can be difficult to generalize for changing needs of flow
classification objectives (e.g., including new application types such as metaverse VR applications
[29] or new content providers). Such variations in flow classification objectives are common in
network operation, thus, having a static number of data points for all flows may not always provide
optimal performance. In addition, the number of input data required to classify each flow can
also be impacted by dropped or retransmitted packets in a practical environment. To address the
limitation, our flow classification dynamically estimates the minimal number of input packets or
time intervals for each candidate flow by equipping the time-series classifiers with a sequential
decision-making capability trained by reinforcement learning, which is the first of such attempts
(to the best of our knowledge) in network traffic classification.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

FastFlow : Early Yet Robust Network Flow Classification using the Minimal Number of Time-Series Packets 23:5

Table 1. Qualitative comparison between FastFlow and the state-of-the-art in terms of the three key require-
ments of time-series flow classification for deployment in large networks.

Method Number of time-series data points Unknown flow type Packet sequence disorder
[39] a fixed input size in the method able to detect not robust
[60] a unified input size per TCP/UDP able to detect not robust
[20] a fixed input size in the method not able to detect not robust
[64] a unified size per network able to detect not robust
[24] a fixed input size in the method able to detect robust
[3] a unified size per network not able to detect not robust
[21] a unified size per application type not able to detect not robust
[38] a unified size per network not able to detect not robust
[63] a unified size per network able to detect robust
FastFlow an estimated minimal size per candidate flow able to detect robust

3 Overview of the FastFlow Time-Series Flow Classification Method
This section discusses key requirements for flow classifications in large networks that are not fully
addressed by state-of-the-arts (§3.1), which motivate our FastFlow method overviewed in §3.2.

3.1 Key Requirements for Time-Series Flow Classification in Large Networks
Network operators expect that their flow classifiers have decent prediction performance and low
system costs [48]. Specifically, three major requirements can determine the practicality of flow
classification methods deployed in large networks with massive throughput scaling to millions of
concurrent flows: (i) early classification with the estimated minimal length of time-series packet
statistics, (ii) detecting unknown flow types, and (iii) robustness to packet sequence disorders.
Table 1 provides a comparison of state-of-the-art methods with respect to these three requirements.

First, operators seek to reduce computational resource consumption in processing packets that
can be amplified in magnitude when flow classifiers are deployed for millions of concurrent flows
in a large network. They also expect each flow to be quickly classified for precise post-prediction
telemetry. Therefore, early classification that aims to provide a prediction for each flow as early as
possible while maintaining classification accuracy is necessitated. This requires the estimation of
anminimal number of time-series data points (e.g., packets or slot statistics) for classifying
each candidate flow. An unnecessarily large input size may reduce classification speed, whereas an
insufficiently small number can lead to inaccurate classification results. State-of-the-art methods
either use a fixed input size, such as first 10 packets [3], a unified input size for each deployment
network (e.g., [39]) or per application type regardless of the possible variations and complexities in
flow profiles during practical deployment.

Second, for a flow classifier trained on a labeled dataset of known flow types such as applications
(e.g., video streaming or conferencing) and content providers (e.g., YouTube or Zoom), processing
flows that do not belong to any known types is unavoidable in practical deployments. Although
classifying flows into a finite coarse-grained scope can bypass unknown flow types, such as
annotating flows by their network protocols and port numbers [28], the value of classification
results diminishes for large network operators that require visibility into trending applications and
popular providers for network optimization and business strategies. Therefore, flow classifiers are
expected to produce fine-grained application or provider-level classification while being capable of
detecting unknown flow types rather than mislabeling them as one of the pre-defined known
types. This is known as out-of-distribution classification in the machine learning community for
scenarios in which it is unfeasible to enumerate all possible types. However, as listed in the third
column of Table 1, such capability does not always exist due to their classifier architectures.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

23:6 Rushi Jayeshkumar Babaria, Minzhao Lyu, Gustavo Batista, and Vijay Sivaraman

Network flows with packets
arrived in timeseries

Per packet flow data
representation

Classified types of
network flows

Flow type
selector

pkt pkt pkt pkt pkt pkt

pktpktpktpkt

pkt pkt pkt pkt

…

Flow 1

Flow 2

Flow n

Per time-interval slot flow
data representation

Duel-grained time-series flow data
representation with packet sequence

disorder tolerance (Sec. 4)

Time-series classifier for
per packet flow data sequence

Time-series classifier for
per time-interval slot flow data sequence

Time-series classifiers that use the estimated
minimal number of data inputs (Sec. 5)

…
…

[per-packet data sequence] of flow 1

[per-packet data sequence] of flow n

[per-interval data sequence] of flow 1

[per-interval data sequence] of flow n

flow type with
confidence

flow type with
confidence

Fig. 1. Overview of our FastFlow flow classification process for large networks.

Third, packet sequence disorders in a flow caused by packet drops and retransmissions are
commonly observed in large networks, where network conditions may not be ideal for every flow,
such as the client devices served by lossy wireless connections, network congestion or bottlenecks
on the routing path, or overwhelmed servers dropping packets. Therefore, flow classifiers are
expected to be reasonably robust to deviated time-series flow patterns caused by packet sequence
disorders. As shown in the last column of Table 1 and will be experimentally evaluated in §6, prior
works that precisely match a fixed number of packets for flow classification are not inherently
robust to packet sequence disorders. Some prior works are arguably robust as they use aggregated
statistics over a relatively lengthy interval (e.g., per 40.96 seconds [24] or the entire duration of a
flow [63]), however, this inevitably sacrifices the speed of real-time flow classification.

3.2 Overview of the FastFlow Flow Classification Method
Aimed to develop a flow classification method that addresses the three requirements for deployment
in large networks, we leverage a combination of fine-grained packet sequence with coarse-grained
slot sequence to represent time-series statistics per candidate flow. Our approach also avails of
time-series classifiers trained with reinforcement learning for dynamic estimations on the minimal
number of data points to take before making a confident classification per flow. An overview of
our method is provided in Fig. 1, showing the steps starting with a flow represented as time-series
data sequence until the final classification with confidence score. Our method aims to classify the
real-time flows carried by a large network into known flow types (i.e., types labeled during the
training process) or the unknown flow type (i.e., flow types not present in the training data) that
are not of interest to a network operator or need further analysis.
Starting from the left side of Fig. 1, all candidate flows that continuously have their packets

flowing through the network will be represented as a time-series sequence containing statistics
of the individual packets (i.e., packet level) and aggregated per a given slot (i.e., time interval). As
will be detailed in §4, this design takes advantage of both the precise flow statistics provided by
packet sequence under ideal network conditions and the robustness to packet sequence disorders
introduced by interval-based aggregation. As shown in the green modules in Fig. 1 and discussed in
§5.3, time-series flow data from each type of representation are fed into their respective time-series
classifiers. In contrast to prior works in flow classification, each classifier in our design is trained
with reinforcement learning techniques instead of supervised learning so that they are capable of
making confident classification when sufficient (least number of) time-series inputs are provided
for each candidate flow and identifying flows that do not belong to the known types. Two different
classifiers on packet and time interval real-time sequence data can produce unsynchronized results.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

FastFlow : Early Yet Robust Network Flow Classification using the Minimal Number of Time-Series Packets 23:7

For example, a flow with packet drops may not give a confident classification result until a large
number of packets are received for distinguishable sequential patterns. In contrast, the data sequence
aggregated by time interval can give fast prediction results with high confidence. To produce a fast
and robust classification result per flow, a high-confident classification result from either one of
the classifiers will first be selected.

4 Precise yet Packet Sequence Disorder Robust Time-Series Flow Data Representation
In this section, we discuss our dual-grained time-series data representation of a network flow that
precisely preserve the fine-grained data sequence at (i) packet-level (§4.1) for accurate classification
without the occurrence of packet sequence disorders, assisted with (ii) coarse-grained data sequence
aggregated per slot (i.e., time interval) that is robust to the impact of packet sequence disorders
on time-series classification performance (§4.2). The classification result for a candidate flow at
both granularities is selected by jointly considering their decision time and confidence §4.3 for the
earliest possible yet reliable decision.

4.1 Time-Series Flow Data Sequence at Packet Granularity
Under good conditions, network flows are expected to have lossless packet behaviors without
disorder in their packet sequences caused by packet drops and retransmissions. As discussed by
prior works [20, 21, 38, 39], network flows of a certain type, such as application types like video
streaming or online gaming, application titles like different online games, or different user device
operating systems (e.g., iOS and Android), often exhibit unique sequence in their packet directions,
sizes, and inter-arrival times. As revealed by prior works [29, 31, 33], this is particularly true for
their initial packets that carry static content (e.g., requested services or application metadata)
instead of those following ones depending on user’s actions.

Therefore, to precisely preserve the packet-level statistics, we define ourfine-grained time-series
packet representation of a candidate flow as:

p = [−→𝑝1,−→𝑝2, ..,−→𝑝𝑛] (1)
where as −→𝑝𝑛 describes statistics of the 𝑛th packet in this flow, including packet direction (𝑑𝑖𝑟𝑛),

packet size (𝑠𝑛), and inter-arrival time (Δ𝑡𝑛), which can be expressed as:
−→
𝑝𝑛 =

(
𝑑𝑖𝑟𝑛 𝑠𝑛 Δ𝑡𝑛

)𝑇 (2)

𝒑𝟏

A candidate flow with packets arrived from both upstream ↑ and downstream ↓

Per packet flow representation (Sec. IV.A)

𝒑𝟐 𝒑𝟑 𝒑𝟒 𝒑𝟓 𝒑𝟔 𝒑𝟕

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7
△𝒕𝟐 △𝒕𝟑 △𝒕𝟒 △𝒕𝟓 △𝒕𝟔 △𝒕𝟕

Per time-interval flow representation (Sec. IV.B)

𝒔𝟏
△𝒕𝟐

𝒔𝟐
△𝒕𝟑 △𝒕𝟒 △𝒕𝟓 △𝒕𝟔 △𝒕𝟕

𝒔𝟑 𝒔𝟒 𝒔𝟓 𝒔𝟔 𝒔𝟕
0

↓ ↓ ↓ ↓

↓ ↓ ↓

𝒗𝟎−𝜹

𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝒗𝜹−𝟐𝜹

0 𝛿
𝑡

2𝛿

𝒗𝟐𝜹−..

Fig. 2. A candidate flow being represented as per packet and
per slot time-series data sequence.

A visual example of converting an on-
going flow into our per-packet time-series
flow representation is provided in Fig. 2.
From the middle layer of the figure, we can
see that the statistics of every packet that
has arrived until the current timestamp
have been included in a runtime array for
this candidate flow. Our fine-grained time-
series flow representation with packet at-
tributes in matrix format is well compati-
ble with popular time-series classification
models such as Long-Short Term Mem-
ory Cell (LSTM) without extra overhead
for pre-processing. Considering computa-
tional efficiency, in our later implementa-

tion, the packet direction 𝑑𝑖𝑟𝑛 is set to 1 for upstream or 0 for downstream, the packet size 𝑠𝑛 is
calculated as the packet payload size excluding the network and transport layer headers in the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

23:8 Rushi Jayeshkumar Babaria, Minzhao Lyu, Gustavo Batista, and Vijay Sivaraman

unit of MTU (i.e., 𝑠𝑛 = 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑛/𝑀𝑇𝑈), and the packet inter-arrival time is taken as its log-scale
conversion.

4.2 Time-Series Flow Data Sequence at Slot Granularity
Our per packet sequence p as defined in Equation 1 works well for time-series flow classification
when the packet-level profiles precisely match their expected patterns learned during the training
process. However, this nearly ideal assumption might not always be realistic in deployment when
the expected packet sequence of a candidate flow can be disordered due to packet drops and
retransmissions caused by practical factors such as network, client, and server conditions. Therefore,
we introduce our coarse-grained time-series representation for a candidate flow with each data
point aggregated on slots, which can better handle packet sequence disorders caused by less ideal
network conditions by trading off visibility into each packet.
We acknowledge that prior works [3, 26] have also used aggregation per a certain number of

packets instead of time intervals, as their classifications mainly use time-independent volumetric
profiles such as average packet sizes. In early classification tasks, temporal information of a flow,
such as the burstiness of the arrived packets, is equally important [24, 41]. Therefore, we aggregate
packets that fall into each time-interval slot by their arrival times to preserve both volumetric and
temporal information.

Assuming that the first packet of a flow arrived at the timestamp 0, and we have a time-interval
slot of interest 𝛿 for aggregation, our slot time-series representation of a flow can be defined as:

v = [−−−→𝑣0−𝛿 ,−−−−→𝑣𝛿−2𝛿 , . . . ,
−−−−−−−−→𝑣 (𝑛−1)𝛿−𝑛𝛿] (3)

where −−−−−−−−→𝑣 (𝑛−1)𝛿−𝑛𝛿 represents the statistics aggregated from the packets that arrived between the
timestamps of (𝑛 − 1)𝛿 and 𝑛𝛿 .

Aggregating packet statistics per time-interval slot: We now describe our methodology for
obtaining the aggregation data point−−−−−−−−→𝑣 (𝑛−1)𝛿−𝑛𝛿 . For simplicity, we use−→𝑣 for this data point, omitting
its index in the rest of this section.We aim to explicitly preserve important contextual characteristics
of a network flow that are inherently impacted by its functions and types [28, 29, 33, 53], including
packet directions, sizes of light and heavy packets, and dominant data transmission direction. Also,
the representation process should also be lightweight in real time, i.e., can be achieved by online
algorithms. We therefore define the aggregated data point −→𝑣 in Equation 4:

−→𝑣 =

(
sℎ↑ sℎ↓ s𝑙↑ s𝑙↓

∑
s↑∑
s↓

)𝑇
(4)

where the first five items sℎ↑, sℎ↓, s𝑙↑, s𝑙↓ and
∑
s↑∑
s↓

denote the average packet payload size for
upstream heavy packets, downstream heavy packets, upstream light packets, downstream light
packets, and ratio between total upstream and downstream packet sizes per time-interval slot 𝛿 ,
respectively. We use the average function for packet payload sizes as it is statistically important
and can be computed using online algorithms in real-time. The light and heavy packet payload
sizes are decided by a threshold value that can be set empirically for each deployment network. In
our later implementation, we chose a threshold value of 1200 bytes to group packet payloads into
light and heavy categories, which have been demonstrated as a reasonable separation.

4.3 Selecting Flow Classification Results at Real-Time
In our flow classification process provided in Fig. 1, time-series data sequence of a candidate flow
at the granularities of both packet (§4.1) and slot (§4.2) are fed into their respective classifiers, each
generates a classification result (i.e., flow type) with classification confidence. Our classifiers (to be
discussed in §5.1) that work on packet or slot time-series data sequences can process their confident
results for one candidate flow asynchronously. For example, a flow without packet sequence

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

FastFlow : Early Yet Robust Network Flow Classification using the Minimal Number of Time-Series Packets 23:9

Algorithm 1: Selecting flow classification results produced by packet and slot classifiers
nearly synchronously or asynchronously.

(1) Input: (class𝑝 , conf𝑝)← classification results with confidence scores on packet flow data sequence, (class𝑡 , conf𝑡)← results on
slot flow data sequence, (𝑇𝑝 ,𝑇𝑡)← confidence thresholds for packet and slot flow data sequence, Δ𝑠𝑒𝑙𝑒𝑐𝑡 ← user-defined
selection time window;

(2) Output: (𝑐𝑙𝑎𝑠𝑠𝑠 , 𝑐𝑜𝑛𝑓𝑠)← the selected flow classification result and its confidence score;
(3) Real-time flow classification result selection process:

// asynchronous event: a new result from the packet sequence classifier

(5)(5) if an arrived (𝑐𝑙𝑎𝑠𝑠𝑝 , 𝑐𝑜𝑛𝑓𝑝) and no (𝑐𝑙𝑎𝑠𝑠𝑡 , 𝑐𝑜𝑛𝑓𝑡) arrive within Δ𝑠𝑒𝑙𝑒𝑐𝑡 then
(6) if 𝑐𝑜𝑛𝑓𝑝 > 𝑇𝑝 then
(7) return (𝑐𝑙𝑎𝑠𝑠𝑠 , 𝑐𝑜𝑛𝑓𝑠)← (𝑐𝑙𝑎𝑠𝑠𝑝 , 𝑐𝑜𝑛𝑓𝑝) // confident flow type selected and exit

(8) else
(9) wait for another data point to arrive

(10) end
(11) end

// asynchronous event: a new result from the slot sequence classifier

(13)(13) if an arrived (𝑐𝑙𝑎𝑠𝑠𝑡 , 𝑐𝑜𝑛𝑓𝑡) and no (𝑐𝑙𝑎𝑠𝑠𝑝 ,𝑐𝑜𝑛𝑓𝑝) arrive within Δ𝑠𝑒𝑙𝑒𝑐𝑡 then
(14) if 𝑐𝑜𝑛𝑓𝑡 > 𝑇𝑡 then
(15) return (𝑐𝑙𝑎𝑠𝑠𝑠 , 𝑐𝑜𝑛𝑓𝑠)← (𝑐𝑙𝑎𝑠𝑠𝑡 , 𝑐𝑜𝑛𝑓𝑡) // confident flow type selected and exit

(16) else
(17) wait for another result to arrive
(18) end
(19) end

// synchronous event: new results from both classifiers

(21)(21) if a (𝑐𝑙𝑎𝑠𝑠𝑝 , 𝑐𝑜𝑛𝑓𝑝) and a (𝑐𝑙𝑎𝑠𝑠𝑡 , 𝑐𝑜𝑛𝑓𝑡) arrive within Δ𝑠𝑒𝑙𝑒𝑐𝑡 then
(22) if 𝑐𝑜𝑛𝑓𝑝 > 𝑐𝑜𝑛𝑓𝑡 and 𝑐𝑜𝑛𝑓𝑝 > 𝑇𝑝 then
(23) return (𝑐𝑙𝑎𝑠𝑠𝑠 , 𝑐𝑜𝑛𝑓𝑠)← (𝑐𝑙𝑎𝑠𝑠𝑝 , 𝑐𝑜𝑛𝑓𝑝) // flow type by packet sequence selected and exit

(24) else
(25) wait for another result to arrive
(26) end
(27) if 𝑐𝑜𝑛𝑓𝑡 > 𝑐𝑜𝑛𝑓𝑝 and 𝑐𝑜𝑛𝑓𝑡 > 𝑇𝑡 then
(28) return (𝑐𝑙𝑎𝑠𝑠𝑠 , 𝑐𝑜𝑛𝑓𝑠)← (𝑐𝑙𝑎𝑠𝑠𝑡 , 𝑐𝑜𝑛𝑓𝑡) // flow type by slot sequence selected and exit

(29) else
(30) wait for another result to arrive
(31) end
(32) end

disorders can be confidently classified by the packet sequence classifier when the fifth packet arrives
at a 0.5-second timestamp. In contrast, the slot classifier may produce its results at a 3-second
timestamp. Alternatively, a flow with packet sequence disorders may never be confidently classified
by its packet sequence classifier, while the slot classifier may generate a confident result within
several seconds. In addition, both classifiers can produce their confident results without noticeable
time differences, i.e., synchronously. Therefore, to select the most accurate classification label for
a candidate flow at the earliest possible timestamp, we design a real-time algorithm (algorithm 1)
to select the confident classification result for a candidate flow from its labels produced by packet
and slot classifiers asynchronously or synchronously.
The algorithm takes flow classification results and their confidence scores that are generated

in real-time from both packet and slot sequence classifiers. As will be discussed soon in §5.1, the
packet sequence classifier generates one result when a new packet arrives, and the slot classifier
generates one prediction per time interval. Those results generated at runtime are continuously
checked against preset confidence thresholds 𝑇𝑝 and 𝑇𝑡 to select a highly confident flow type. In
our implementation, we use 90th-percentile of all confidence values obtained during the training

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

23:10 Rushi Jayeshkumar Babaria, Minzhao Lyu, Gustavo Batista, and Vijay Sivaraman

LSTM architecture

tanh

tanh

Curr. state 𝒉𝒕

Features extracted at
each time-series step t …

Inference
linear layer

features 𝒇𝒕

Curr. flow
data point

𝒅𝒕 …
… …

Long-term
memory 𝒄𝒕"𝟏

Prev. state
𝒉𝒕"𝟏

Long-term
memory 𝒄𝒕

the unknown
flow type

known flow types
classification
confidence
scores 𝒔𝒕

LSTM-based module trained by reinforcement learning

Dynamic
flow type
decider
(Algo.2)

flow classification decision
at the current timestamp 𝑡

a known flow type
the unknown type

continue for 𝒅𝒕"𝟏

flow type
with conf.

FastFlow Time-Series Flow Classifier Architecture

Fig. 3. The architecture of FastFlow time-series flow classifier realizing a sequential decision-making process.

process. We also provide a practical selection time window Δ𝑠𝑒𝑙𝑒𝑐𝑡 to recognize synchronously
and asynchronously generated results by both classifiers.

For the asynchronous event, i.e., a flow classification result is generated by one classifier, and no
result is generated by the other one within Δ𝑠𝑒𝑙𝑒𝑐𝑡 , as specified by blocks (1) and (2) in Algorithm 1,
the classification confidence is checked with the respective threshold for the decision to accept
the predicted flow type or wait for more results to come. For the synchronous event processed by
block (3), the results of both classifiers are first compared with each other before checking with
their respective confidence thresholds for a decision. In our engineering implementation, a bonus
confidence score will be added to the classification result if both classifiers predict the same flow
type.

5 Time-Series Flow Classifier with the Estimated Minimal Length of Data Sequence
After discussing how each network flow is represented as a time-series data sequence at both
packet level (for precision) and slot level (for robustness to packet disorder), we now present our
time-series (LSTM-based) classifiers (§5.1) that dynamically estimate the minimal length of data
sequence required for accurate classification. Our LSTM classifiers are fitted with a reinforcement
learning technique (§5.2) on augmented labeled training datasets (§5.3).

5.1 Time-Series Classifier Architecture for Early Flow Classification
Our approach uses time-series classifiers (green modules in Fig. 1) to predict each flow type by its
per packet or slot data sequences. After deployment, these classifiers are expected to process a
large number of concurrent flows timely and accurately. An approach to increase the efficiency
of the classifiers is to provide early predictions using a small number of time-series inputs (i.e.,
packets or slots) for each flow. There is no single optimal number of time-series inputs for all flows,
and a one-fits-all approach will not provide optimal results in practice.
However, existing works in flow classification typically train their models with a standard

supervised approach that requires a fixed number of timesteps [41], [45], [49]. The number of
timesteps is considered a model hyperparameter optimized during training. Therefore, these
methods will process the same amount of input for every flow and cannot adapt to the requirements
of each candidate flow. Since the optimal time-series input length required for each flow may
vary according to the classification objective and minor variations in the data sequence caused by
network conditions, these approaches leave room for optimization. Moreover, traditional classifiers
make a “closed-world” assumption that, after deployment, they will only observe the class labels
present in the training set. However, this is an unrealistic assumption given the number and
diversity of flows in operational networks. Consequently, these classifiers are doomed to misclassify
unknown flows, unseen in the training data, as one of the known flow types [60].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

FastFlow : Early Yet Robust Network Flow Classification using the Minimal Number of Time-Series Packets 23:11

Algorithm 2: Dynamic inference on time-series flow data sequence.
(1) Input: Confidence scores of flow types ®𝑠𝑡 from the classifier, after processing the 𝑡𝑡ℎ data point in the flow data sequence;

confidence threshold𝑇𝑢𝑛𝑘 ; and the maximum time steps to make prediction𝐶𝑢𝑛𝑘 .
(2) Output: Predicted flow type 𝑙 and the prediction confidence 𝑝 . ®𝑐𝑡 ← 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (®𝑠𝑡)
(3) if 𝑡 = 𝐶𝑢𝑛𝑘 then

// End flow classification as the maximum number of time step 𝐶𝑢𝑛𝑘 has been reached.

(4) 𝑙 ← ‘unknown’;
(5) 𝑝 ← ®𝑐𝑡 [‘unknown’]
(6) return 𝑙 , 𝑝
(7) end
(8) if ®𝑐𝑡 [‘unknown’] ≥ 𝑇𝑢𝑛𝑘 or 𝑎𝑟𝑔𝑚𝑎𝑥 (®𝑐𝑡) = ‘unknown’ then

// Not yet confident enough to make a ‘not unknown’ prediction, wait for ®𝑠𝑡+1
(9) 𝑙 ← ‘unknown’

(10) 𝑝 ← ®𝑐𝑡 [‘unknown’]
(11) continue for the next time step 𝑡 + 1.
(12) else

// Confident enough to make a ‘not unknown’ prediction

(13) 𝑙 ← 𝑎𝑟𝑔𝑚𝑎𝑥 (®𝑐𝑡)
(14) 𝑝 ← ®𝑐𝑡 [𝑙]
(15) return 𝑙 , 𝑝
(16) end

Existing works on flow classification using time-series models (especially deep-learning based)
are prone to misclassify unknown flow types into known types [7]. Even existing approaches
that can address the open-world assumption often come with additional requirements such as
additional data [64], extra computing power [60] or constraints on data distribution [24]. Our
approach addresses both requirements with a uniquely elegant solution: a sequential decision maker.
Under this paradigm, a classifier can take one of two decisions after receiving a new time-series data
point: output a prediction or wait for the next data point. This decision is based on the classifier’s
confidence until the current data point. This approach has two major benefits: (i) the classifier
issues a prediction as soon as it has gained enough confidence, and (ii) if no prediction is issued
after enough data points, the classifier can issue an unknown class label output.
Specifically, Fig. 3 illustrates the architecture of our classifier. The blue rectangle indicates the

section of the model trained with reinforcement learning. An LSTM cell provides a feature set at
each time step. These features are fed into a fully connected network that outputs a class or an
unknown label. The next section provides details on the training process for our trainable classifier
module, which uses reinforcement learning instead of supervised learning approaches.
Our classifier leverages an LSTM [18] architecture due to its ability to process sequential data.

Traditional LSTM-based classifiers extract features from a fixed number of timesteps and feed
these features to a softmax layer to obtain scores for each known class label. As shown in the blue
region of Fig. 3, our classifier module has two key design choices that differ from prior works. First,
instead of waiting for a fixed number of timesteps, our model extracts features from the LSTM
architecture every time a new data point arrives, which are then used by an inference linear layer
for the classification confidence scores of each candidate class. Second, we introduce the ‘unknown’
flow type in addition to the existing types. Therefore, given a new flow, our model can output a
temporary unknown label for the initial timesteps and wait for more data points of the same flow
until a confidence classification can be concluded or the maximum number of timesteps has been
reached. The run-time decision on each time step is made by the dynamic flow type decider (green
box in Fig. 3) as detailed in Algo. 2.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

23:12 Rushi Jayeshkumar Babaria, Minzhao Lyu, Gustavo Batista, and Vijay Sivaraman

The algorithm processes the confidence of the 𝑘 known classes plus the extra unknown class for
each incoming time-series data point. If the confidence of the unknown class is greater than the
threshold 𝑇𝑢𝑛𝑘 or if it is the most confident class, a temporary unknown classification is decided,
making the classifier continue for the next time series data point. Otherwise, the algorithm produces
the most confident class among the 𝑘 known classes. This process continues until an output is
issued or the classifier processes a maximum of 𝐶𝑢𝑛𝑘 timesteps. We note that both thresholds, 𝑇𝑢𝑛𝑘
and𝐶𝑢𝑛𝑘 , are hyperparameters. In our training process, we tune𝐶𝑢𝑛𝑘 to provide a balance between
prediction accuracy and speed.

5.2 Training FastFlow Classifiers with Reinforcement Learning
We have conceived the network flow classification task as a sequential decision problem, making
traditional supervised learning methods unsuitable for training our models. Traditional supervised
learning defines a loss function computed for every training case. Therefore, these methods assume
that every case should immediately lead to some loss after classification. However, our design
introduces a postponing decision that does not immediately lead to a loss of value.

Reinforcement learning (RL) [6] is a better-suited approach to train our models. RL involves an
agent (i.e., sequential decision-making classifier) that observes the current environment state and
chooses to take an action from a predefined action space. Based on this action, the environment
will update its current state. Each time the agent/classifier selects an action, it gets a reward based
on its fit to the current state. This process repeats until the environment arrives at a terminal state,
where the agent cannot change the environment’s state further. RL learning aims to maximize the
total reward granted to the agent from the start state to the terminal state.
There are many popular RL algorithms, such as Q-learning [55], PPO [44], and A3C [35]. We

employ Q-learning since our flow classification leads to a discreet action space. Q-learning is
also known to be sample efficient [23], which is crucial when collecting labeled data is expensive.
Finally, Q-learning had several enhancements over the initial algorithm, such as model architecture
structure [54], loss function [47], and training process [43], which have improved its performance,
as our experiments confirm. Q-learning trains the agent to choose the best action from the action
space given a state. Given a current state 𝑠 as input, the agent outputs a number (Q value) for each
action potential 𝑎 ∈ 𝐴 in the action space 𝐴. The Q-value 𝑄 (𝑠, 𝑎) represents the expected reward
for taking action 𝑎 in state 𝑠 . Therefore, after training, the agent always picks the action with the
maximum Q-value given an input state.

In our flow classification approach, the agent is our classifier C. The state is the first 𝑝 timesteps
of the flow representation (in either packet or slot). The action space for a 𝑘-way classification
problem has 𝑘 + 1 actions, one for each flow type, and the 𝑘 + 1𝑡ℎ action for the unknown class. The
terminal state occurs when the agent chooses to make a prediction or when it has seen a maximum
number of timesteps, 𝐶𝑢𝑛𝑘 . The reward given to the agent is decided by the reward function that
takes the current state 𝑠 , the action 𝑎, and the actual class label 𝑙 of the current flow.

reward_func(𝑠, 𝑎, 𝑙) =

𝑤𝑎𝑖𝑡_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 if 𝑎 == 𝑘 + 1
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑟𝑒𝑤𝑎𝑟𝑑 else if 𝑎 == 𝑙

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑤𝑎𝑟𝑑 otherwise
(5)

The reward function outputs a positive reward (‘+1’ in our training process) if the classifier
outputs a correct prediction; or a negative reward (‘−1’ in our implementation) for an incorrect pre-
diction. However, if the classifier decides to output ‘unknown’ and continues for the next timestep,
a negative reward ‘𝑤𝑎𝑖𝑡_𝑝𝑒𝑛𝑎𝑙𝑡𝑦’, a hyperparameter that determines the speed of classification,
will be awarded. We set the value of ‘𝑤𝑎𝑖𝑡_𝑝𝑒𝑛𝑎𝑙𝑡𝑦’ as ‘−.03’ in our experiments after iterative
selections. Lowering its value will place more importance on classification speed than accuracy and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

FastFlow : Early Yet Robust Network Flow Classification using the Minimal Number of Time-Series Packets 23:13

vice versa. The model is then trained using double Q learning loss with sampling priority [43, 47]
that inputs tuples of (𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒, 𝑟𝑒𝑤𝑎𝑟𝑑).

5.3 Training Flow Data Augmentation
A final component of our solution involves the generation of flows with unknown labels. In many
real scenarios, these unknown flows are readily available, consisting of all flows that do not belong
to the interest classes. However, we may find some challenges in collecting these flows in practice.
One situation occurs when these flows need to be manually labeled to guarantee they do not
fall into one of the existing classes. Another practical situation involves training models using
benchmark datasets, as most of these datasets do not bring a general unknown class.

A solution to this problem is to generate synthetic unknown flows using augmentation techniques.
Augmentation is a widely used approach in deep learning to solve data deficiency [34], as several
deep models have a large number of parameters that require extensive training sets. We use a strong
augmentation approach that generates synthetic unknown flows away from the high-density areas
that characterize each known flow type.

known class A

known class B

class borders

(a) Classifier trained
on known classes.

unknown class(es)
misclassified

(b) Misclassifying un-
known class(es).

refined class borders

(c) Classifier with re-
fined class borders

Fig. 4. (a) Under the closed-world assumption, a classifier can
naively split the entire feature space according to the existing
classes. (b) The resulting classifier misclassifies unknown instances
as belonging to one of the existing classes. (c) We use augmenta-
tion in classifier training to generate closely outlying synthetic
unknown flows that help bind the classes’ decision borders.

Fig. 4 is a simplified example that
illustrates using strongly augmented
flows to restrain the decision border
around each class, so that the trained
classifier is capable of detecting flow
instances belonging to the unknown
types (i.e., not statistically belonging
to any known class) with the refined
borders of each flow type.
Specifically, this synthetic un-

known flow augmentation is achieved
by distorting the attributes of packets
before converting them into packet
or slot flow data representation. We
start by sampling 𝛼𝑎𝑡𝑡𝑟 ∈ [0, 1] frac-
tion of packets in each flow. The pay-

load size, 𝑝𝑠𝑖 , direction, 𝑑𝑖𝑟𝑖 , and timestamp, 𝑡𝑖 for each sampled 𝑖th packet are then distorted as
follows.

𝑝𝑠
𝑎𝑢𝑔

𝑖
= 𝑝𝑠𝑖 ∗ 𝛼𝑝𝑠 + U(0, 𝑀𝑇𝑈) ∗ (1 − 𝛼𝑝𝑠) (6)

𝑡
𝑎𝑢𝑔

𝑖
= 𝑡𝑖 + ((𝑡𝑖+1 − 𝑡𝑖) ∗ U(0, 1) − (𝑡𝑖 − 𝑡𝑖−1) ∗ U(0, 1)) ∗ 𝛼𝑡𝑠 (7)

where 𝛼𝑝𝑠 ∈ [0, 1] and 𝛼𝑡𝑠 ∈ [0, 1] are the strength of payload and timestamp distortion, respectively.
𝑈 (𝑎, 𝑏) denotes the uniform distribution over the range [𝑎, 𝑏]. To apply augmentation for the
attribute 𝑑𝑖𝑟𝑖 , the direction of a flow is randomly reversed with probability 𝛼𝑑𝑖𝑟 . In practice, we set
𝛼𝑝𝑠 , 𝛼𝑡𝑠 and 𝛼𝑑𝑖𝑟 to ‘0.2’ after experimental selections. 𝛼𝑎𝑡𝑡𝑟 is sampled from 𝑈 (0.6, 0.9) to generate
highly augmented pseudo unknown flows. We represent this augmentation over attributes using
F𝑎𝑡𝑡𝑟 , as formally defined in formula 8.

augmented_training_flow = Fattr (flow_known, 𝛼attr, 𝛼𝑝𝑠 , 𝛼𝑡𝑠 , 𝛼dir) (8)
Notably, the pseudo unknown flows used in the classifier training process will be labeled ‘un-

known’. Therefore, during training, the classifier will always get a negative reward when it mis-
classifies these flows into one of the known types. This enhances the unknown flow detection
capability of our trained classifier. We also create a weaker form of augmentation by setting 𝛼𝑎𝑡𝑡𝑟

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

23:14 Rushi Jayeshkumar Babaria, Minzhao Lyu, Gustavo Batista, and Vijay Sivaraman

from𝑈 (0, 0.2) to increase the size of the training data and mitigate the class imbalance [57], which
are also tested as effective in our evaluation using public datasets and campus network deployment.

6 Evaluation, Benchmarking and Deployment Insights
This section thoroughly evaluates FastFlow for flow classification, focusing on classification perfor-
mance (accuracy and execution time) and recognition of unknown flows in line with our design
objectives. This section starts by describing the experimental setup used in our experiments (§6.1),
followed by a comparison with the state-of-the-art (§6.2). We also provide an ablation study evalu-
ating the necessity of our use of packet and slot flow data sequence (§6.3), and conclude this section
with deployment insights in our university campus network that mimics a residential ISP (§6.4).

6.1 Lab Evaluation Setup
Our lab experiments evaluate the performance of FastFlow in achieving two primary objectives:
i) classifying network flows accurately with fast speed through the use of the estimated minimal
number of packets per flow and ii) maintaining classification robustness to packet sequence disorders
and unknown flow types commonly found in deployments. To achieve this objective we use three
popular public datasets containing labeled packet captures (PCAPs) of network flows for various
network types, namely VNAT [24] by MIT Lincoln lab for VPN networks, UTMobileNet [19] for
mobile networks, and UNIBS [16] collected from the campus network edge of the University of
Brescia. Table 2 lists the flow types in each dataset.
Table 2. Specification of the three public net-
work flow datasets used in our evaluation.

UTMobileNet UNIBS
Flow type #flows Flow type #flows
Google-Maps 2584 Browsers 18820
Netflix 1680 P2P 14175
Reddit 1295 Mail 4432
Youtube 1031 Other 2368
Facebook 1028 Skype 499
Instagram 994
Pinterest 994 VNAT
Google-Drive 709 Streaming 1628
Spotify 699 Chat 811
Twitter 682 Control 611
Gmail 400 File Transfer 456
Hangout 351
Messenger 329

A common limitation of these public datasets is that
they are collected under nearly ideal network conditions,
with no packet drop or retransmission in each labeled
flow. Also, they do not contain unknown (unlabelled)
flows. Therefore, we augment these datasets to introduce
packet sequence disorders and randomly exclude certain
flow types to mimic unknown flows in our evaluation.
To simulate packet sequence disorder, we randomly

drop 𝛼𝑑𝑟𝑜𝑝 ∈ [0, 100) percentage of packets in the flow.
For TCP flows, these packets are reinserted if the flow
uses TCP after a variable retransmission delay. In practice,
we set the retransmission delay as the RTT calculated
by a three-way handshake. We chose the the drop proba-
bility 𝛼𝑑𝑟𝑜𝑝 of each packet randomly following a normal

distribution with a mean value of 5% and a standard deviation of 3.5%, as suggested by the network
operation community [36, 56]. This models a scenario with more realistic network conditions.
To test the capability of detecting unknown flow types, we randomly exclude around 20-25%

of the flows from the training set for each training and evaluation iteration. More precisely, we
remove three flow types from UTMobileNet, and one flow type from UNIBS and VNAT. We perform
ten evaluation iterations for each dataset. We guarantee that every flow type is excluded from the
training set at least once. During each evaluation iteration, we randomly use 70% of the data for
model training and the remaining 30% data for testing.
We must clarify that these augmentations were chosen to give existing datasets more realistic

data characteristics. These augmentations were not introduced into the data to benefit FastFlow,
besides the fact that our method was designed to deal with packet drops and unknown flows. To
certify that FastFlow is not favored, the packet drops are only introduced in the test data. Thus,
neither FastFlow nor its competitors have information about the packet drop rate during training.
We also present results of the non-augmented dataset in Appendix B, so the reader can have a

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

FastFlow : Early Yet Robust Network Flow Classification using the Minimal Number of Time-Series Packets 23:15

Table 3. Classification performance comparison between FastFlow, the state-of-the-art and baselines under
packet sequence disorder and unknown flow types.

Dataset Method
Classification performance on known flow types Unknown types

Macro F1 (%) Accuracy (%) Packets (#) Time (s) FPR (%) TPR (%)

UTMobileNet
FastFlow 85.42 86.32 12.92 ± 9.48 0.57 ± 1.61 4.56 86.94
GGFast [39] 77.82 83.90 50 2.56 ± 0.49 1.04 90.42
Grad-BP [60] 80.33 83.85 100(TCP) 10(UDP) 4.86 ± 1.98 4.92 61.35
Pkt.-5 65.28 74.20 5 0.28 ± 1.07 – –
Pkt.-45 80.02 81.17 45 2.40 ± 1.24 – –
Time-int.-5 73.39 75.96 4.39 ± 1.96 0.25 – –
Time-int.-45 85.29 87.05 42.02 ± 9.23 2.25 – –

VNAT FastFlow 96.24 98.03 4.16 ± 1.34 0.033 ± 1.43 0 97.32
GGFast [39] 70.45 86.68 50 1.08 ± 0.42 0 99.47
Grad-BP [60] 95.64 95.91 100(TCP) 10(UDP) 1.91 ± 0.56 4.98 93.07
Pkt.-5 63.53 71.48 5 .035 ± 0.81 – –
Pkt.-45 80.41 85.66 45 0.96 ± 1.59 – –
Time-int.-5 96.48 97.59 14.22 ± 5.42 0.25 – –
Time-int.-45 95.20 97.45 100.47 ± 23.44 2.25 – –

UNIBS FastFlow 92.30 95.21 9.92 ± 3.92 0.36 ± 0.82 2.54 98.16
GGFast [39] 87.93 91.95 50 1.52 ± 1.87 0.87 99.37
Grad-BP [60] 90.15 93.46 100(TCP) 10(UDP) 2.95 ± 1.97 4.93 68.45
Pkt.-5 81.49 87.02 5 0.19 ± 1.18 – –
Pkt.-45 90.53 94.45 45 1.36 ± 1.46 – –
Time-int.-5 81.91 82.84 6.83 ± 2.80 0.25 – –
Time-int.-45 92.36 95.55 75 ± 17.15 2.25 – –

complete picture of FastFlow performance with all combinations of presence and absence of packet
drops and unknown flows.
Our experiments use different performance measures. We report accuracy and macro F1 for

identifying known flow types. Accuracy is a prevalent performance measure, but it is difficult
to interpret in the presence of several flow types and when some are uncommon. Macro F1 is
the unweighted average of the F1 measure for each flow. This measure favors classifiers that
perform well for all flow types independently of the number of flows. Both measures are shown as
percentages, with higher values indicating better classifiers.

We report the false positive rate (FPR) and the true positive rate (TPR) to assess the recognition of
unknown flows. The FPR measures the percentage of unknown flows incorrectly assigned to one of
the existing flow types. The TPR measures the percentage of unknown flows correctly recognized
as such. Finally, we report the number of packets and inference time in seconds as measures of
inference efficiency.
We conclude our experiment setup with some remarks about FastFlow hyperparameters to

enable the reproducibility of our results. The hyper-parameters for the FastFlow’ LSTM cells are set
through standard tuning processes, including a hidden size of 128, Adam optimizer with a learning
rate of 3𝑒 − 4, and a capped training epoch of 200. The static parameters in FastFlow classifier
architecture are empirically tuned for a balanced classification and speed per deployment network
(or dataset). For example, the time-interval slot is configured as 50ms, 𝐶𝑢𝑛𝑘 is set to 20, 30, and 15
for UNIBS, UTMobilenet and VNAT dataset, respectively. In our campus deployment, this value is
set to 25 during the training process. 𝑇𝑢𝑛𝑘 and𝑤𝑎𝑖𝑡_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 are consistently set to 0.8 and -0.03,
respectively.

6.2 Evaluation and Comparison to the State-of-the-art
We evaluate the performance of FastFlow and compare it with two representative state-of-the-art
network flow classification methods recently developed by the research community: GGFast [39]
and Grad-BP [60] as well as some baselines. Both GGFast and Grad-BP have been practically

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

23:16 Rushi Jayeshkumar Babaria, Minzhao Lyu, Gustavo Batista, and Vijay Sivaraman

0 10 20 30 40
Fixed number of initial packets

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

UNIBS 2009
UTMobilenet 2021
VNAT

(a) Accuracy for using a
fixed number of packets.

0 10 20 30 40
Fixed number of initial packets

50

60

70

80

90

100

M
ac

ro
 F

1
(%

)

UNIBS 2009
UTMobilenet 2021
VNAT

(b) Marco F1 for using a
fixed number of packets.

0.0 0.5 1.0 1.5 2.0 2.5
Fixed time (second)

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

UNIBS 2009
UTMobilenet 2021
VNAT

(c) Accuracy for using
fixed time-interval slots.

0.0 0.5 1.0 1.5 2.0 2.5
Fixed time (second)

50

60

70

80

90

100

M
ac

ro
 F

1
(%

)

UNIBS 2009
UTMobilenet 2021
VNAT

(d) Marco F1 for using
fixed time-interval slots.

Fig. 5. Performance of classifiers when using time-series statistics from a fixed number of packets or time-
interval slots on the three public datasets. The bounded range of each data point shows the variation of
accuracy/marcoF1 across flow types in each dataset.

deployed in large networks, as discussed in their respective papers. GGFast classify flows by their
packet length sequences and Grad-BP uses deep learning models to classify flow types by its packet
lengths and directions in time-series sequences. The two methods are trained with their original
design without our augmentation technique for unknown flow detection as discussed in §5.3. Other
promising works such as CATO [48] for flow classification in large networks leveraging different
approaches like multi-objective optimization, are not all extensively evaluated.

Table 3 summarizes our evaluation results1 FastFlow outperforms GGFast and Grad-BP in terms
of classification performance for known flow types and inference efficiency. GGFast performs
better than FastFlow for detecting unknown flows. However, GGFast’s small decrease in FPR and
increase in TPR for unknown flows comes with a significant decrease in performance for the
classification of known flow types. For example, for the VNAT dataset, GGFast macro F1 is only
70.45% where FastFlow archives a respected 96.24%. Similar results can be observed for the other
datasets. Compared with FastFlow, the performance drop of GGFast may be due to its dependence
on packet sequence patterns that can be affected by packet drops and retransmissions. For GradBP,
apart from its choice of using a fixed number of packets for flow classification, its performance
in detecting unknown flows may be affected by not having a dataset augmentation technique for
training the unknown flow detection capability.

We also include some baselines that represent families of methods in the literature. For example,
several prior works classify network flows using a fixed number of time-series data points of
either packets or time-interval slots [3, 24, 39, 41]. We include the performance of standard LSTM
time-series classifiers that take a fixed number of initial flow data points without the ability to detect
unknown flows, therefore, their respective values in Table 3 are marked as ‘-’. These classifiers use
the first five packets (named ‘Pkt.-5’ in Table 3), the first forty-five packets (named ‘Pkt.45’), the
first five slots (named ‘Time-int.-5’), and the first forty-five slots (named ‘Time-int.-45’).

FastFlow outperforms most of the baselines. Pkt.-5 clearly does not have enough information to
make precise classifications. Pkt.-45 shows that increasing the number of packets does improve
classification performance but not enough to achieve FastFlow’s performance.We did not investigate
the performance of packet classifiers with more than 45 packets since the inference times for Pkt.-45
are already much larger than FastFlow. Slot classifiers perform better than packet classifiers. Overall,
five slots are not enough to guarantee good performance, but with 45 intervals, the classifiers can
reach similar classification performance to FastFlow and even slightly outperform our proposal.

1Additional results of our extensive evaluation are available in Appendix B. They include i) ideal network flow conditions
on the original datasets, ii) with only packet sequence disorders, and iii) with only unknown flow types. FastFlow classifiers
perform satisfactorily in all three scenarios.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

FastFlow : Early Yet Robust Network Flow Classification using the Minimal Number of Time-Series Packets 23:17

Table 4. Ablation study comparing FastFlow with only one input flow data representation.

Dataset Method
Classification performance on known flow types Unknown types

Macro F1 (%) Accuracy (%) Packets (#) Time (s) FPR (%) TPR (%)

UTMobileNet
FastFlow 85.42 86.32 12.92 ± 9.48 0.57 ± 1.61 4.56 86.94
Packet seq. 79.08 79.81 8.71 ± 4.05 0.51 ± 0.43 3.63 88.24
Time-int. seq. 87.54 88.61 26.30 ± 9.10 1.63 ± 0.11 4.68 83.21

VNAT FastFlow 96.24 98.03 4.16 ± 1.34 0.033 ± 1.43 0 97.32
Packet seq. 94.29 96.49 3.97 ± 1.73 0.006 ± 1.18 0 99.24
Time-int. seq. 99.40 99.61 7.93 ± 5.06 0.093 ± 1.32 0 98.78

UNIBS FastFlow 92.30 95.21 9.92 ± 3.92 0.36 ± 0.82 2.54 98.16
Packet seq. 90.51 92.37 5.44 ± 3.29 0.27 ± 1.20 0 97.92
Time-int. seq. 92.60 96.07 18.02 ± 9.83 0.48 ± 0.42 3.18 94.4

However, this comes with a longer inference time. We also notice that all baselines cannot handle
unknown flows, so we cannot measure their performance on this task.

In addition to the two fixed numbers (i.e., 5 and 45) of packets or slots for flow classification, we
have also tested other fixed numbers from 5 to 45 with a step of 5. The results, including accuracy
and marco F1 score, are averaged for each dataset and are provided in Fig. 5. We can see that
FastFlow outperforms all settings with fixed number of inputs in both accuracy and marco F1 score.
From Fig. 5, it can also be observed that using more initial packets or time-interval slots to classify
a flow does not necessarily produce better accuracy, validating the merit of FastFlow method that
can dynamically estimate the minimal number of packets or slots to classify each candidate flow.

6.3 Ablation Study with Only Packet or Slot Flow Data Sequence
This section presents additional analyses that provide a better understanding of FastFlow perfor-
mance. We start with an ablation study that characterizes the proposal’s performance with either
packet or slot representation.

FastFlow collectively uses two data representations: packet and slot data sequence. We analyze the
importance of using both representations instead of one alone. This study excludes one time-series
classifier (green boxes in Fig. 1) trained over one flow data representation (red or yellow boxes in
the same figure). Table 4 summarizes the results, where Packet seq. stands for a FastFlow version
using only a packet representation and Time-int. seq. using only a slot representation.

This assessment shows that the slot representation is the best representation to classify known
flows, while the packet representation performs well for unknown flows. In terms of inference
time efficiency, the packet representation is the best. By design, FastFlow inherits the best of
each representation. Its known flow classification performance is inferior, but close to the slot
representation. In contrast, its unknown flow identification is close to the packet representation,
which performs best. Regarding inference efficiency, FastFlow is faster than the time representation
but slower than the packet representation.
Toward this discussion, we now focus on the inference efficiency of FastFlow. The results in

Tables 3 and 4 indicate that FastFlow is efficient. However, we only report the mean number of
packets and inference time for all classes. Therefore, in Figs. 6 and 7, we provide details on the
inference efficiency of FastFlow method for each flow type. Both plots show a cumulative distribution
function (CDF). Fig. 6 shows the fraction of packets per flow type classified by FastFlow for a given
number of packets. Fig. 7 similarly shows the fraction of packets per flow classified for a given time
threshold in seconds.
Both plots show a high amount of variability across flow types and datasets. Regarding the

datasets, UTMobileNet required the largest number of packets (i.e., 30) to classify all packets, while
UNIBS required half of this amount (i.e., 15), and VNAT only needed 10 packets. We reckon that

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

23:18 Rushi Jayeshkumar Babaria, Minzhao Lyu, Gustavo Batista, and Vijay Sivaraman

0 5 10 15 20 25 30
Number of packets taken

0

20

40

60

80

100

Fl
ow

s c
la

ss
ifi

ed
 (%

)

facebook
gmail
google-drive
google-maps
hangout
instagram
messenger
netflix
pinterest
reddit
spotify
twitter
youtube

(a) UTMobileNet

0 5 10 15 20 25 30
Number of packets taken

0

20

40

60

80

100

Fl
ow

s c
la

ss
ifi

ed
 (%

)

BROWSERS
MAIL
OTHER
P2P
Skype

(b) UNIBS

0 5 10 15 20 25 30
Number of packets taken

0

20

40

60

80

100

Fl
ow

s c
la

ss
ifi

ed
 (%

)

FT
chat
control
streaming

(c) VNAT

Fig. 6. CDF plots for number of packets taken to classify each flow by FastFlow classifiers.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Amount of time taken (second)

0

20

40

60

80

100

Fl
ow

s c
la

ss
ifi

ed
 (%

)

facebook
gmail
google-drive
google-maps
hangout
instagram
messenger
netflix
pinterest
reddit
spotify
twitter
youtube

(a) UTMobileNet

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Amount of time taken (second)

0

20

40

60

80

100

Fl
ow

s c
la

ss
ifi

ed
 (%

)

BROWSERS
MAIL
OTHER
P2P
Skype

(b) UNIBS

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Amount of time taken (second)

0

20

40

60

80

100

Fl
ow

s c
la

ss
ifi

ed
 (%

)

FT
chat
control
streaming

(c) VNAT

Fig. 7. CDF plots for the amount of time taken to classify each flow by FastFlow classifiers.

the number of packets may be correlated with the number of flow types in each dataset, as a larger
number of flow types makes the recognition of individual flows more challenging.

Regarding recognizing individual flow types in each dataset, we notice that some can be readily
classified, while others require more packets. This contributes to the standard deviation numbers
observed in Tables 3 and 4. In both cases, these plots indicate the adaptability of FastFlow to
recognize which flow types are more straightforward to classify.

6.4 FastFlow Deployment in a Live Network
Our final evaluation assesses the classification performance and inference efficiency of FastFlow in
a realistic network deployment with a massive volume of data and a large number of unknown
flows. During a one-week deployment from 1st to 7th November 2024, a copy of the traffic ex-
changed between our university campus border router and the Internet was streamed to our server
running FastFlow prototype via two 10 Gbps network interfaces for inbound and outbound traffic2,
respectively. The server is configured with an 8-core Intel Xeon E5-2620 CPU and 64GB DDR4
RAM. As depicted in Fig. 1, two LSTM-based models are deployed to analyze real-time packet
and slot time-series data, respectively. The number of model executions is directly determined
by the number of packets and time-interval slots required to classify a candidate flow, as will be
reported in the ‘Packet (#)’ and ‘Time (s)’ columns of Table 6 and 7. Given the simplified design
of the classifier structure, the small dimension of the inference linear layer, and our engineering
optimization including huge memory pages, large batch processing sizes, and concurrency, the
prototype can be run on the server for our campus deployment (for a peak number of concurrent
flows of around 50K and an average of 8.37 packets per flow) without performance issues being
2We have obtained ethical clearance approval as detailed in Appendix A, which allows us to analyze campus traffic for
Internet application classifications without collecting information that can identify users such as university IDs and names.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

FastFlow : Early Yet Robust Network Flow Classification using the Minimal Number of Time-Series Packets 23:19

observed. To train our classifiers, we have collected flows labeled by a commercial network traffic
classification system from Canopus Networks Pty Ltd one week before the deployment, indicated
by the ‘# train. flow’ column in Table 5. With the about 1 million labeled flows, our classifiers are
trained by a single NVIDIA-4090 GPU. The training process took about 6 hours.

Shown as the ‘# live flow’ column, during the one-week live deployment, our prototype processed
22.9 million flows that belong to seven application types served by 32 content providers labeled by
the commercial system deployed in parallel to our FastFlow prototype.
Table 5. Summary of the deployment data with the
number of flows per application and content provider.

Application Provider #live flow #train. flow

Video Streaming

MS Stream 1835585 136358
Youtube 1835508 124088
QQ 592163 12424
WeChat 387700 31024
Fastly 96750 15339

Software Update

Adobe 1814389 101212
Windows 310918 34429
Apple 820493 31090
Ubuntu 10921 1763

Conferencing

Discord 337876 38945
WhatsApp 30959 2589
GoogleMeet 30034 1415
MS Teams 154832 2010
Facetime 9866 815
Zoom 5424 361

Social Media

TikTok 1492556 115313
Instagram 1344128 73665
Facebook 759719 42566
LinkedIn 185968 16363
Reddit 154804 10566
Twitter 126376 6679

File Storage

Apple iCloud 908163 13808
MS Sharepoint 679058 25600
Dropbox 112415 11778
Google Drive 253460 8327
OneDrive 59111 3485

Download

AmazonAWS 1212689 35159
GoogleServices 882736 37417
Google 755756 21928
MS DotNET 10880 13701

Mail Microsoft 738633 26950
Google 87650 4216

Unknown – 4075187 –

We analyze the performance of FastFlow for
application types and their content providers.
Table 6 shows the results for the application
type. On average, FastFlow achieves an accu-
racy of 91.45%, and Macro F1 of 90.23%. The
average number of packets is 8.37, and the av-
erage time to classify a flow is 0.5 seconds.
Among the seven application types, Fast-

Flow achieves very high classification accu-
racy for conferencing (over 99%), mail (over
95%), and software update (over 93%), all of
which have quite deterministic initial packet
patterns compared to other application types.
For mail and software, such patterns become
confidently clear within the first eight pack-
ets with slight variations within 3 or 4 pack-
ets. In comparison, conferencing flows require
about 3 to 18 packets for confident classifica-
tion by FastFlow due to the diversified flow
functionalities such as for video, audio, chats,
and screen sharing as discussed in [33], each
can have a unique initial packet sequence for
function-specific requests.
The other four application types have de-

cent classification performance with less than
10 packets and 1 to 2 seconds for over 85% ac-
curacy or macro F1 compared to existing lit-
erature. The exception is social media flows,
which are only classified with about 82% accu-

racy using up to 20 packets in 4 seconds. As we can see in the provider list of the social media
application type in Table 5, the flows labeled as social media by the commercial system belong to
providers offering a mixed set of services such as short videos (e.g., Tiktok), picture sharing (e.g.,
Instagram), online social platforms (e.g., Facebook) and forums (e.g., Reddit), which are inherently
different in the content delivered via network flows compared to each other. With a maximum time
step threshold𝐶𝑢𝑛𝑘 value tuned as 25 packets, our classifiers can accurately detect 91.94% unknown
flows that are labeled by the commercial system. The remaining unknown flows are classified as
mostly ‘social media’ and ‘conferencing’, followed by ‘download’, as reported in the ‘Unknown FPR’
column of Table 6. We acknowledge that those false positives may not be truly misclassification as
we use the labels provided by the commercial system as an estimation of ground truths, which has
no means of always being correct, particularly for the applications (e.g., social media and software
update) that have providers not included in the ground-truth labels.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

23:20 Rushi Jayeshkumar Babaria, Minzhao Lyu, Gustavo Batista, and Vijay Sivaraman

Table 6. Performance metrics of flow classification by FastFlow for application type.

Application Macro F1 (%) Accuracy (%) Packets (#) Time (s) Unknown FPR (%)
Video Streaming 89.90 88.73 8.31 ± 4.38 0.21 ± 1.32 0.00
Software Update 92.50 93.18 7.22 ± 4.50 0.10 ± 1.06 0.00
Conferencing 98.63 99.82 10.57 ± 7.27 1.34 ± 3.89 4.34
Social Media 81.91 82.42 11.89 ± 5.65 1.59 ± 2.38 5.17
File Storage 89.13 84.75 8.83 ± 4.11 0.23 ± 2.17 0.00
Download 83.60 87.97 10.10 ± 6.22 0.20 ± 1.21 1.43

Mail 93.66 95.20 6.12 ± 3.33 1.68 ± 9.58 0.00
Unknown – 91.94 20 ± 0.00 0.77 ± 2.69 –
Average 90.23 91.45 8.37 0.5 –

We also developed and deployed flow classifiers to determine the content provider of each flow
with its identified application type. Given that classifying content providers within each application
type reduces the classification scope and possible variations within the same flow type, we observe
better performance for both accuracy and speed in all subsequent content provider classifiers
compared to its preliminary application type classifiers. We show the classification performance of
our content provider classifiers for two representative application types, including video streaming
and software update in Table 7.

For video streaming content providers, our classifiers achieve superior performance in the three
content providers primarily providing streaming services, including Microsoft Stream (used by our
university for organizational video content such as lecture recording), YouTube, and Fastly. Over
97% accuracy is achieved with about 3 to 4 initial packets (less than 0.15 seconds) per flow. The
video flows supported by QQ and WeChat, mainly known as social media applications with video
streaming as their side features, require an average of 5 to 8 packets (less than 0.2 seconds) for
classification accuracy over 89%. This shows the complexity of flow patterns for content providers
that offer services across application types. Notably, all flows labeled (by the commercial system)
as video flows get confidently classified by their provider types instead of being classified as the
‘unknown’ type shown in the last column of Table 7.

Software update has all its popular content providers accurately (over 93%) predicted with
about six initial packets (less than 0.1 seconds) per flow. Windows and Apple, which have a
diversified firmware catalog potentially supported by different product teams, are classified with
lower accuracies (94.20% and 93.12%) compared to Adobe and Ubuntu (98.24% and 99.38%), which
are with unified firmware/software portals for updates. From the last column of Table 7, a minority
(less than 0.48%) of Adobe and Windows flows labeled by the commercial system are misclassified
as ‘unknown’ by our FastFlow classifier, suggesting that further improvements on the fine-grained
labeled dataset are needed to train a more accurate classifier on those application/provider types.

As discussed earlier for the result of application types, social media flows are inherently diversified
in their functionalities, which also leads to a mediocre classification performance (80% to 90% in
accuracy and Marco F1) to classify the content provider of each flow. This necessitates a ground-
truth dataset with well-engineered flow types within the application type for training purposes,
which is not within the scope of this paper. Similar insights are observed for other application
types and are not explicitly discussed.
System deployment considerations: Here we discuss two practical considerations when

deploying FastFlow in a live network. First, according to our performance benchmarking, around
30K concurrent flows can be processed by a time-series classifier on a single Intel Xeon E5-2620 CPU
core of the server. Therefore, our 8-core CPU is sufficient for processing our live campus traffic with
up to 50K concurrent flows. While not used in our current deployment, we have also benchmarked
on a NVIDIA-4090 GPU that the two classifiers in FastFlow can process up to 200K concurrent flows.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

FastFlow : Early Yet Robust Network Flow Classification using the Minimal Number of Time-Series Packets 23:21

Table 7. Performance of flow classification by FastFlow for representative application providers.

Application Provider Macro F1 (%) Accuracy (%) Packet (#) Time (s) Unknown FPR (%)

Video Streaming

Microsoft 98.70 99.29 3.25 ± 2.32 0.05 ± 0.44 0.00
YouTube 97.98 97.14 4.25 ± 3.98 0.15 ± 1.51 0.00

QQ 89.77 86.32 8.32 ± 4.68 0.19 ± 0.36 0.00
WeChat 91.01 91.56 5.78 ± 5.43 0.11 ± 0.40 0.00
Fastly 99.05 99.33 4.76 ± 1.56 0.01 ± 0.02 0.00

Software Update

Adobe 98.09 98.24 4.75 ± 2.44 0.02 ± 0.09 0.48
Windows 93.84 94.20 6.40 ± 2.97 0.08 ± 0.51 0.38
Apple 95.20 93.12 6.61 ± 4.16 0.06 ± 0.46 0.00
Ubuntu 98.77 99.38 6.63 ± 1.55 0.13 ± 0.15 0.00

Conferencing

Discord 98.74 99.70 1.20 ± 1.59 0.04 ± 0.03 0.00
Whatsapp 99.22 99.38 2.99 ± 2.30 0.39 ± 2.45 0.00
GoogleMeet 98.41 96.87 4.00 ± 4.09 0.13 ± 0.05 0.03
MS Teams 98.68 99.20 2.51 ± 1.45 0.57 ± 2.51 0.00
FaceTime 97.77 95.65 3.65 ± 3.60 0.38 ± 1.80 0.00
Zoom 97.41 98.62 4.12 ± 4.45 0.99 ± 3.62 0.07

Social Media

TikTok 83.51 86.36 6.31 ± 3.52 0.13 ± 0.18 0.00
Instagram 85.17 88.97 11.16 ± 5.57 0.29 ± 1.39 0.00
Facebook 82.35 82.12 9.90 ± 5.23 0.06 ± 0.28 0.05
LinkedIn 81.16 89.09 10.52 ± 5.26 0.27 ± 1.62 0.00
Reddit 84.61 88.85 9.09 ± 4.62 0.67 ± 4.10 0.00
Twitter 84.06 88.14 3.85 ± 4.11 0.02 ± 0.10 0.00

File Storage

Apple iCloud 96.44 95.00 11.89 ± 4.62 0.05 ± 0.10 4.76
MS Sharepoint 91.94 95.65 7.35 ± 4.40 0.05 ± 0.27 2.42

Dropbox 96.42 97.29 8.12 ± 2.63 0.08 ± 0.12 0.00
Google Drive 97.77 96.24 3.85 ± 4.11 0.02 ± 0.10 1.48
OneDrive 88.37 84.73 9.63 ± 3.95 0.03 ± 0.07 0.00

For larger workloads, we suggest two scaling-up options, including leveraging GPU servers that
are more efficient in executing neural network models and setting up parallel computing nodes, each
processing a subnet of the monitored network. Second, the classification performance of machine
learning classifiers can be significantly impacted by the quality of the training data. For FastFlow,
its performance for both classification of known flow types and unknown flow detection is directly
determined by the quality of the flow data used in the training process. In our proof-of-concept
research prototype, we used a commercial network traffic classification system for flow labels. In
industrial practice, such localized training data are often obtained from ISP digital twins or by the
service team of a network observability platform.

7 Conclusion
In this paper, we present FastFlow, a time-series early flow classification method that can be
practically deployed in large networks such as ISPs at runtime. By developing a dual-grained
time-series flow representation scheme and innovating a time-series flow classifier architecture
trained with reinforcement learning techniques, FastFlow is the first of its kind that addresses three
key deployment challenges in large networks, including accurate classification with the estimated
minimal number of initial packets in each candidate flow, robust to packet sequence disorders, and
capable of detecting unknown flow types. We extensively validate the classification performance of
FastFlow using public datasets and compare its performance with ablation alternatives and state-
of-the-art methods. FastFlow is implemented and deployed in a large campus network to classify
application types and content providers of network flows. The deployment insights showcase that
FastFlow classifiers can accurately classify flows for their applications and content providers with
only about 10 initial packets of each flow in less than one or two seconds, and are able to detect
flows that do not belong to a known type.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

23:22 Rushi Jayeshkumar Babaria, Minzhao Lyu, Gustavo Batista, and Vijay Sivaraman

Acknowledgement
We thank our shepherd Francesco Bronzino and the anonymous reviewers for their insightful
feedback. This work is supported by the Australian Government’s Cooperative Research Centres
Projects (CRC-P) Grant CRCPXIV000099.

References
[1] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapé. 2020. Toward effective mobile encrypted

traffic classification through deep learning. Neurocomputing 409 (Apr 2020), 306–315.
[2] Iman Akbari, Mohammad A. Salahuddin, Leni Ven, Noura Limam, Raouf Boutaba, Bertrand Mathieu, Stephanie Moteau,

and Stephane Tuffin. 2021. A Look Behind the Curtain: Traffic Classification in an Increasingly Encrypted Web.
Proceedings of the ACM on Measurement and Analysis of Computing Systems 5, 1, Article 04 (Feb 2021), 26 pages.

[3] Hassan Alizadeh, Harald Vranken, André Zúquete, and Ali Miri. 2020. Timely Classification and Verification of
Network Traffic Using Gaussian Mixture Models. IEEE Access 8 (May 2020).

[4] Omar Almomani, Mohammed Amin Almaiah, Adeeb Alsaaidah, Sami Smadi, Adel Hamdan Mohammad, and Ahmad
Althunibat. 2021. Machine learning classifiers for network intrusion detection system: comparative study. In Proc.
International Conference on Information Technology. 440–445.

[5] Ahmad Azab, Mahmoud Khasawneh, Saed Alrabaee, Kim-Kwang Raymond Choo, and Maysa Sarsour. 2024. Network
Traffic Classification: Techniques, Datasets, and Challenges. Digital Communications and Networks 10, 3 (Jul 2024).

[6] Andrew Gehret Barto, Richard S Sutton, and CJCH Watkins. 1989. Learning and Sequential Decision Making. Vol. 89.
University of Massachusetts Amherst, MA.

[7] David Berend, Xiaofei Xie, Lei Ma, Lingjun Zhou, Yang Liu, Chi Xu, and Jianjun Zhao. 2021. Cats are not fish:
deep learning testing calls for out-of-distribution awareness. In Proc. Automated Software Engineering. Virtual Event,
Australia, 1041–1052.

[8] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule, and Kave Salamatian. 2006. Traffic Classification
on the Fly. ACM SIGCOMM Computer Communication Review 36, 2 (Apr 2006), 23–26.

[9] Jakub Michał Bilski and Agnieszka Jastrzębska. 2023. CALIMERA: A new early time series classification method.
Information Processing and Management 60, 5 (Jul 2023), 103465–103498.

[10] Agathe Blaise, Mathieu Bouet, Vania Conan, and Stefano Secci. 2020. Detection of zero-day attacks: An unsupervised
port-based approach. Computer Networks 180 (Oct 2020), 107391.

[11] Francesco Carrera, Vincenzo Dentamaro, Stefano Galantucci, Andrea Iannacone, Donato Impedovo, and Giuseppe
Pirlo. 2022. Combining unsupervised approaches for near real-time network traffic anomaly detection. Applied Sciences
12, 3 (Jan 2022), 1759.

[12] Hyunseok Chang, Matteo Varvello, Fang Hao, and Sarit Mukherjee. 2021. Can You See Me Now? A Measurement
Study of Zoom, Webex, and Meet. In Proc. ACM IMC. Virtual Event.

[13] Albert Choi, Mehdi Karamollahi, Carey Williamson, and Martin Arlitt. 2022. Zoom Session Quality: A Network-Level
View. In Proc. PAM. Virtual Event.

[14] Murat Dener, Samed Al, and Gokce Ok. 2023. RFSE-GRU: Data Balanced Classification Model for Mobile Encrypted
Traffic in Big Data Environment. IEEE Access (Jan 2023).

[15] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful IslamMamun, and Ali A Ghorbani. 2016. Characterization
of Encrypted and VPN Traffic Using Time-Related Features. In Proc. International Conference on Information Systems
Security and Privacy. Rome, Italy, 407–414.

[16] Alice Este, Francesco Gringoli, and Luca Salgarelli. 2011. On-Line SVM Traffic Classification. In Proc. International
Wireless Communications and Mobile Computing Conference. Istanbul, Turkey.

[17] Johan Garcia and Topi Korhonen. 2018. Efficient Distribution-Derived Features for High-Speed Encrypted Flow
Classification. In Proc. SIGCOMM Workshop on Network Meets AI and ML. Budapest, Hungary, 21–27.

[18] Alex Graves and Alex Graves. 2012. Long short-term memory. Supervised sequence labelling with recurrent neural
networks (Feb 2012), 37–45.

[19] Yuqiang Heng, Vikram Chandrasekhar, and Jeffrey G. Andrews. 2021. UTMobileNetTraffic2021: A Labeled Public
Network Traffic Dataset. IEEE Networking Letters 3, 3 (Dec 2021), 156–160.

[20] Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. 2021. New Directions in Automated Traffic Analysis.
In Proc. ACM CCS. Virtual Event, Republic of Korea, 3366–3383.

[21] Nen-Fu Huang, Gin-Yuan Jai, Han-Chieh Chao, Yih-Jou Tzang, and Hong-Yi Chang. 2013. Application Traffic Classifi-
cation at the Early Stage by Characterizing Application Rounds. Information Sciences 232 (May 2013), 130–142.

[22] Auwal Sani Iliyasu and Huifang Deng. 2020. Semi-Supervised Encrypted Traffic ClassificationWith Deep Convolutional
Generative Adversarial Networks. IEEE Access 8 (May 2020).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

FastFlow : Early Yet Robust Network Flow Classification using the Minimal Number of Time-Series Packets 23:23

[23] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. 2018. Is Q-learning provably efficient? Advances
in Neural Information Processing Systems 31 (Dec 2018).

[24] Steven Jorgensen, John Holodnak, Jensen Dempsey, Karla de Souza, Ananditha Raghunath, Vernon Rivet, Noah DeMoes,
Andrés Alejos, and Allan Wollaber. 2024. Extensible Machine Learning for Encrypted Network Traffic Application
Labeling via Uncertainty Quantification. IEEE Transactions on Artificial Intelligence 5, 1 (Jan 2024), 420–433.

[25] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan
Wierstra. 2016. Continuous Control with Deep Reinforcement Learning. In Proc. ICLR. San Juan, Puerto Rico.

[26] Yang Liu, Jinfu Chen, Peng Chang, and Xiaochun Yun. 2017. A novel algorithm for encrypted traffic classification
based on sliding window of flow’s first N packets. In Proc. IEEE International Conference on Computational Intelligence
and Applications. Beijing, China, 463–470.

[27] Manuel Lopez-Martin, Belén Carro, Antonio Sanchez-Esguevillas, and Jaime Lloret. 2017. Network Traffic Classifier
With Convolutional and Recurrent Neural Networks for Internet of Things. IEEE Access (Sep 2017).

[28] Minzhao Lyu, Sharat Chandra Madanapalli, Arun Vishwanath, and Vijay Sivaraman. 2024. Network Anatomy and
Real-Time Measurement of Nvidia GeForce NOW Cloud Gaming. In Proc. PAM. Virtual Event, 61–91.

[29] Minzhao Lyu, Rahul Dev Tripathi, and Vijay Sivaraman. 2023. MetaVRadar: Measuring Metaverse Virtual Reality
Network Activity. Proceedings of the ACM on Measurement and Analysis of Computing Systems 7, 3 (Sep 2023), 1–29.

[30] Kyle MacMillan, Tarun Mangla, James Saxon, and Nick Feamster. 2021. Measuring the Performance and Network
Utilization of Popular Video Conferencing Applications. In Proc. ACM IMC. Virtual Event.

[31] Sharat Chandra Madanapalli, Hassan Habibi Gharakheili, and Vijay Sivaraman. 2022. Know Thy Lag: In-Network
Game Detection and Latency Measurement. In Proc. PAM. Virtual Event, 395–410.

[32] Anthony McGregor, Mark Hall, Perry Lorier, and James Brunskill. 2004. Flow Clustering Using Machine Learning
Techniques. In Proc. PAM. Antibes Juan-les-Pins, France, 205–214.

[33] Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer Rexford. 2022. Enabling Passive Measure-
ment of Zoom Performance in Production Networks. In Proc. ACM IMC. Nice, France.

[34] Agnieszka Mikołajczyk and Michał Grochowski. 2018. Data Augmentation for Improving Deep Learning in Image
Classification Problem. In Proc. IEEE International Interdisciplinary PhD Workshop. Gdansk, Poland, 117–122.

[35] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. 2016. Asynchronous Methods for Deep Reinforcement Learning. In Proc. ICML. New York
City, USA, 1928–1937.

[36] Obkio. 2024. What is Acceptable Packet Loss? 10% Packet Loss = 100x Slower. https://obkio.com/acceptable-packet-loss/
Accessed: 2024-11-08.

[37] Fannia Pacheco, Ernesto Exposito, Mathieu Gineste, Cedric Baudoin, and Jose Aguilar. 2019. Towards the Deployment
of Machine Learning Solutions in Network Traffic Classification: A Systematic Survey. IEEE Communications Surveys
& Tutorials 21, 2 (Jun 2019), 1988–2014.

[38] Lizhi Peng, Bo Yang, and Yuehui Chen. 2015. Effective Packet Number for Early Stage Internet Traffic Identification.
Neurocomputing 156 (May 2015), 252–267.

[39] Julien Piet, Dubem Nwoji, and Vern Paxson. 2023. GGFAST: Automating Generation of Flexible Network Traffic
Classifiers. In Proc. ACM SIGCOMM. New York, USA, 850–866.

[40] Buyu Qu, Zhibin Zhang, Li Guo, and Dan Meng. 2012. On Accuracy of Early Traffic Classification. In Proc. IEEE
International Conference on Networking, Architecture, and Storage. Xiamen, China, 348–354.

[41] Sangita Roy, Tal Shapira, and Yuval Shavitt. 2022. Fast and lean encrypted Internet traffic classification. Computer
Communications 186 (May 2022), 166–173.

[42] Ola Salman, Imad H Elhajj, Ayman Kayssi, and Ali Chehab. 2020. A Review on Machine Learning–Based Approaches
for Internet Traffic Classification. Annals of Telecommunications 75, 11 (Nov 2020), 673–710.

[43] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2016. Prioritized Experience Replay. In Proc. ICLR. San
Juan, Puerto Rico.

[44] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal Policy Optimization
Algorithms. arXiv preprint arXiv:1707.06347 (Jul 2017).

[45] Tal Shapira and Yuval Shavitt. 2021. FlowPic: A Generic Representation for Encrypted Traffic Classification and
Applications Identification. IEEE Transactions on Network and Service Management 18, 2 (Sep 2021), 1218–1232.

[46] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser,
Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. 2016. Mastering the Game of Go with Deep Neural
Networks and Tree Search. Nature 529, 7587 (Jan 2016), 484–489.

[47] Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement Learning with Double Q-learning. In
Proc. AAAI Conference on Artificial Intelligence. Phoenix, USA, 2094–2100.

[48] Garry Wan, Shinan Liu, Francesco Bronzino, Nick Feamster, and Zakir Durumeric. 2025. CATO: End-to-end Optimiza-
tion of ML Traffic Analysis Pipelines. In Proc. USENIX NSDI. Philadelphia, PA, USA.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

https://obkio.com/acceptable-packet-loss/

23:24 Rushi Jayeshkumar Babaria, Minzhao Lyu, Gustavo Batista, and Vijay Sivaraman

[49] Wei Wang, Y. Sheng, Jinlin Wang, Xuewen Zeng, Xiaozhou Ye, Yongzhong Huang, and Ming Zhu. 2017. HAST-IDS:
Learning Hierarchical Spatial-Temporal Features using Deep Neural Networks to Improve Intrusion Detection. IEEE
Access (Dec 2017).

[50] WeiWang,Ming Zhu, JinlinWang, Xuewen Zeng, and Zhongzhen Yang. 2017. End-to-end encrypted traffic classification
with one-dimensional convolution neural networks. In Proc. IEEE Intelligence and Security Informatics. Beijing, China.

[51] YuWang, Chao Chen, and Yang Xiang. 2015. Unknown Pattern Extraction for Statistical Network Protocol Identification.
In Proc. IEEE LCN. Clearwater Beach, Florida, 506–509.

[52] Yipeng Wang, Huijie He, Yingxu Lai, and Alex X. Liu. 2022. A Two-Phase Approach to Fast and Accurate Classification
of Encrypted Traffic. IEEE/ACM Trans. Netw. 31, 3 (Jun 2022), 1071–1086.

[53] YifanWang, Minzhao Lyu, and Vijay Sivaraman. 2024. Characterizing User Platforms for Video Streaming in Broadband
Networks. In Proc. ACM IMC. Madrid, Spain.

[54] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. 2016. Dueling Network
Architectures for Deep Reinforcement Learning. In Proc. ICML. New York City, USA, 1995–2003.

[55] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine Learning 8, 3 (Jul 1992), 279–292.
[56] WebSentra. 2024. Packet Loss: Understanding, Diagnosing & Fixing in Networks. https://www.websentra.com/packet-

loss-understanding-diagnosing-fixing-in-networks/ Accessed: 2024-11-08.
[57] Sebastien C Wong, Adam Gatt, Victor Stamatescu, and Mark D McDonnell. 2016. Understanding Data Augmentation

for Classification: When to Warp?. In Proc. International Conference on Digital Image Computing: Techniques and
Applications. Gold Coast, Australia.

[58] Charles V Wright, Fabian Monrose, and Gerald M Masson. 2006. Using visual motifs to classify encrypted traffic. In
Proc. International Workshop on Visualization for Computer Security. Alexandria, VA, USA, 41–50.

[59] Baris Yamansavascilar, M. Amac Guvensan, A. Gokhan Yavuz, and M. E. Karsligil. 2017. Application Identification via
Network Traffic Classification. In Proc. International Conference on Computer Networks and Communications. Silicon
Valley, USA, 843–848.

[60] Lixuan Yang, Alessandro Finamore, Feng Jun, and Dario Rossi. 2021. Deep Learning and Zero-Day Traffic Classification:
Lessons Learned From a Commercial-Grade Dataset. IEEE Transactions on Network and Service Management 18, 4 (Sep
2021), 4103–4118.

[61] Ruixi Yuan, Zhu Li, Xiaohong Guan, and Li Xu. 2010. An SVM-based Machine Learning Method for Accurate Internet
Traffic Classification. Inf. Syst. Front. 12 (Mar 2010), 149–156.

[62] Sebastian Zander, Thuy Nguyen, and Grenville Armitage. 2005. Automated Traffic Classification and Application
Identification Using Machine Learning. In Proc. IEEE LCN. Sydney, Australia, 250–257.

[63] Jun Zhang, Chao Chen, Yang Xiang, Wanlei Zhou, and Athanasios V. Vasilakos. 2013. An Effective Network Traffic
Classification Method with Unknown Flow Detection. IEEE Trans. Netw. Serv. Manag. 10, 2 (Jun 2013), 133–147.

[64] Jun Zhang, Xiao Chen, Yang Xiang, Wanlei Zhou, and Jie Wu. 2015. Robust Network Traffic Classification. IEEE/ACM
Trans. Netw. 23, 4 (Aug 2015), 1257–1270.

[65] Zhuang Zou, Jingguo Ge, Hongbo Zheng, Yulei Wu, Chunjing Han, and Zhongjiang Yao. 2018. Encrypted traffic
classification with a convolutional long short-term memory neural network. In Proc. IEEE HPCC. Exeter, UK, 329–334.

A Ethics
We have obtained ethical clearance from our university ethics board (UNSW Human Research
Ethics Advisory Panel approval number HC211007) which allows us to analyze campus traffic for
Internet applications without being able to access user identities such as ID numbers and names.
In our campus deployment, insights into application types and providers were reported in an
aggregated manner, preserving anonymity rather than identifying specific users. In our analysis,
no attempt was made to associate network flows with personal identities.

B Additional Lab Evaluation Results of FastFlow Classification Performance
B.1 Speed of FastFlow Classifiers with Only Packet or Slot Data Sequence
B.1.1 Using Only Packet Data Sequence. Fig. 8 contains CDF plots showing the number of packets
taken to classify flows by the classifiers that only consume the packet data sequence. For the three
datasets, the number of packets required for flow classification is usually less than 8. However,
as discussed before, our classifiers that only use packet data sequence cannot achieve decent
performance when there are packet drops and retransmissions in a candidate flow.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

https://www.websentra.com/packet-loss-understanding-diagnosing-fixing-in-networks/
https://www.websentra.com/packet-loss-understanding-diagnosing-fixing-in-networks/

FastFlow : Early Yet Robust Network Flow Classification using the Minimal Number of Time-Series Packets 23:25

0 2 4 6 8 10 12
Number of packets taken

0

20

40

60

80

100

Fl
ow

s c
la

ss
ifi

ed
 (%

)

facebook
gmail
google-drive
google-maps
hangout
instagram
messenger
netflix
pinterest
reddit
spotify
twitter
youtube

(a) UTMobilenet

0 2 4 6 8 10 12
Number of packets taken

0

20

40

60

80

100

Fl
ow

s c
la

ss
ifi

ed
 (%

)

BROWSERS
MAIL
OTHER
P2P
Skype

(b) UNIBS

0 2 4 6 8 10 12
Number of packets taken

0

20

40

60

80

100

Fl
ow

s c
la

ss
ifi

ed
 (%

)

FT
chat
control
streaming

(c) VNAT
Fig. 8. CDF plots for number of packets taken by FastFlow classifiers on only packet data sequence.

0.0 0.5 1.0 1.5
Amount of time taken (second)

0

20

40

60

80

100

Fl
ow

s c
la

ss
ifi

ed
 (%

)

facebook
gmail
google-drive
google-maps
hangout
instagram
messenger
netflix
pinterest
reddit
spotify
twitter
youtube

(a) UTMobileNet

0.0 0.5 1.0 1.5
Amount of time taken (second)

0

20

40

60

80

100

Fl
ow

s c
la

ss
ifi

ed
 (%

)

BROWSERS
MAIL
OTHER
P2P
Skype

(b) UNIBS

0.0 0.5 1.0 1.5
Amount of time taken (second)

0

20

40

60

80

100

Fl
ow

s c
la

ss
ifi

ed
 (%

)

FT
chat
control
streaming

(c) VNAT

Fig. 9. CDF plots for amount of time taken by FastFlow classifiers on only slot data sequence.

Table 8. Classification performance of FastFlow on ideal network flow dataset without packet sequence
disorder or unknown flow type.

Dataset Method Macro F1 (%) Accuracy (%) Packets Taken (#) Time Taken (s)

UTMobileNet

FastFlow 89.44 90.54 13.96 ± 5.94 0.70 ± 2.45
Packet seq. 90.83 92.20 9.07 ± 3.91 0.47 ± 2.73
Time-int. seq. 88.74 91.50 26.50 ± 12.95 1.32 ± 3.80
GGFast [39] 88.04 90.56 50 2.46 ± 1.98
Grad-BP [60] 89.08 88.11 100(TCP) 10(UDP) 4.77 ± 2.31
Pkt.-5 69.97 74.33 5 ± 0.00 0.24 ± 1.95
Pkt.-45 89.76 91.06 45 ± 0.00 2.30 ± 1.47
Time-int.-5 73.41 74.02 4.91 ± 2.72 0.25
Time-int.-45 86.47 91.10 44.92 ± 7.21 2.25

VNAT

FastFlow 95.00 96.31 4.36 ± 6.35 0.02 ± 1.29
Packet seq. 95.22 96.60 2.94 ± 2.31 .007 ± 0.15
Time-int. seq. 92.25 95.17 10.57 ± 4.20 0.15 ± 0.24
GGFast [39] 77.56 90.81 50 1.07 ± 1.35
Grad-BP [60] 93.70 95.92 100(TCP) 10(UDP) 1.92 ± 1.35
Pkt.-5 95.76 96.78 5 ± 0.00 0.03 ± 0.62
Pkt.-45 87.87 87.92 45 ± 0.00 0.90 ± 2.86
Time-int.-5 90.10 92.17 14.89 ± 5.24 0.25 ± 0.00
Time-int.-45 80.71 82.09 107.45 ± 18.19 2.25 ± 0.00

UNIBS

FastFlow 95.87 98.34 5.42 ± 2.19 0.28 ± 0.60
Packet seq. 95.87 98.34 5.42 ± 2.19 0.28 ± 0.60
Time-int. seq. 93.57 97.05 10.26 ± 8.66 0.43 ± 1.68
GGFast [39] 91.97 95.03 50 1.79 ± 3.40
Grad-BP [60] 93.87 97.22 100(TCP) 10(UDP) 3.28 ± 2.05
Pkt.-5 86.68 93.82 5 ± 0.00 0.26 ± 0.46
Pkt.-45 92.30 92.44 45 ± 0.00 1.56 ± 3.06
Time-int.-5 72.41 76.32 4.84 ± 2.37 0.25
Time-int.-45 91.60 93.39 64.60 ± 9.75 2.25

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

23:26 Rushi Jayeshkumar Babaria, Minzhao Lyu, Gustavo Batista, and Vijay Sivaraman

Table 9. Classification performance of FastFlow with packet sequence disorders in each candidate flow.

Dataset Method Macro F1 (%) Accuracy (%) Packets Taken (#) Time Taken (s)

UTMobileNet

FastFlow 85.32 87.21 12.83 ± 6.74 0.93 ± 1.67
Packet seq. 80.30 82.05 9.29 ± 4.00 0.54 ± 0.76
Time-int. seq. 86.69 88.20 18.21 ± 9.96 1.37 ± 2.36
GGFast 72.43 78.49 50 2.49 ± 1.61
Grad-BP 82.59 84.25 100(TCP) 10(UDP) 5.02 ± 1.85
Pkt.-5 64.72 71.73 5 ± 0.00 0.28 ± .202
Pkt.-45 81.20 82.84 45 ± 0.00 2.35 ± 1.94
Time-int.-5 70.28 72.62 3.92 ± 2.78 .25
Time-int.-45 85.90 89.04 44.09 ± 8.53 2.25

VNAT

FastFlow 91.32 94.82 4.88 ± 6.79 .061 ± 0.43
Packet seq. 89.42 93.71 3.03 ± 2.59 .021 ± 0.33
Time-int. seq. 91.82 94.89 10.08 ± 7.2 0.19 ± 0.24
GGFast 65.22 76.48 50 1.28 ± .641
Grad-BP 88.62 90.33 100(TCP) 10(UDP) 2.47 ± 0.94
Pkt.-5 88.91 92.34 5 ± 0.00 0.04 ± .399
Pkt.-45 82.10 84.20 45 ± 0.00 1.11 ± 2.94
Time-int.-5 89.46 91.89 12.23 ± 6.02 .25
Time-int.-45 80.27 82.11 86.77 ± 17.02 2.25

UNIBS

FastFlow 92.04 97.28 6.99 ± 4.17 0.40 ± 0.91
Packet seq. 89.06 94.86 5.59 ± 2.38 0.39 ± 2.27
Time-int. seq. 92.33 96.23 10.09 ± 10.02 0.56 ± 1.16
GGFast 74.31 79.58 50 1.82 ± 0.92
Grad-BP 90.62 93.48 100(TCP) 10(UDP) 3.71 ± 1.33
Pkt.-5 80.31 88.85 5 ± 0.00 0.32 ± 0.96
Pkt.-45 89.55 95.7 45 ± 0.00 1.61 ± 0.81
Time-int.-5 69.76 73.80 2.12 ± 2.42 .25
Time-int.-45 91.29 92.94 63.96 ± 7.97 2.25

B.1.2 Using Only Time-Interval Slot Data Sequence. Fig. 9 contains CDF plots for the amount of
time needed for classifiers that only uses time-interval slot data sequence. Compared to the CDF
plots in Fig. 7 for FastFlow classifiers using both packet and slot data sequences, we can conclude
that FastFlow performs significantly faster than the classifiers that only use slot data sequence.

B.2 Flow Classification Performance
B.2.1 Ideal Conditions without Packet Sequence Disorder and Unknown Flow Type. Table 8 shows
the classification results without augmenting the three public datasets. As expected, the macro-F1
and accuracy scores for all methods are higher compared to those with packet sequence disorder
introduced to the datasets. FastFlow performs slightly better than two state-of-the-art methods
(i.e., GGFast and Grad-BP) on the three datasets. Also, FastFlow requires much smaller number of
packets on average to classify flows compared to the state-of-the-art methods. For the ablation
studies, on the datasets without introduced packet sequence disorder, FastFlow classifiers that only
use packet data (i.e., ‘Packet seq.’) achieved equivalent accuracies on the three datasets compared to
the classifiers that use both packets and time-interval slots. Classifiers that only use time-interval
slot data (i.e., ‘Time-int. seq.’) are less accurate in such scenarios. FastFlow also outperforms all
classifiers using fixed length of input data.

B.2.2 With Packet Sequence Disorders but not Unknown Flow Type. Table 9 shows the evaluation
results when the datasets are augmented with packet sequence disorders. It can be seen that
FastFlow achieves a balanced performance in both classification accuracy and speed compared to
all methods. Classifiers that only use packet data (i.e., ‘Packet seq’, ‘Pkt.-5’ and ‘Pkt.-45’) are not
robust to packet sequence disorders. Classifiers that only use time-interval slot data (i.e., ‘Time-int

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

FastFlow : Early Yet Robust Network Flow Classification using the Minimal Number of Time-Series Packets 23:27

Table 10. Classification performance of FastFlow with unknown flow type.

Dataset Method
Classification Performance Unk. flow detection

Macro F1 (%) Accuracy (%) Packets (#) Time (s) FPR (%) TPR (%)

UTMobileNet

FastFlow 89.21 90.2 12.74 ± 5.99 0.59 ± 1.07 4.16 88.21
Packet seq. 90.07 90.7 8.51 ± 3.63 0.41 ± 0.23 2.81 90.01
Time-int. seq. 89.33 89.72 29.63 ± 10.29 1.68 ± 3.79 4.59 85.38
GGFast 90.35 91.49 50 2.92 ± .96 4.97 92.81
Grad-BP 91.21 91.68 100(TCP) 10(UDP) 5.73 ± 1.49 4.88 69.87
Pkt.-5 72.95 77.78 5 0.15 ± 1.99 – –
Pkt.-45 88.96 90.07 45 2.61 ± 0.79 – –
Time-int.-5 69.51 74.93 6.49 ± 2.94 0.25 – –
Time-int.-45 88.85 89.49 39 ± 6.04 2.25 – –

VNAT

FastFlow 99.33 99.46 3.89 ± 1.61 .06 ±0.74 0 99.39
Packet seq. 99.33 99.46 3.89 ± 1.61 .06 ±0.07 0 99.20
Time-int. seq. 99.70 99.80 7.85 ± 4.35 .088 ± 1.64 0 98.93
GGFast 84.28 90.72 50 0.95 ± .62 2.79 99.42
Grad-BP 99.77 99.79 100(TCP) 10(UDP) 1.97 ± 0.84 4.98 99.30
Pkt.-5 92.01 96.50 5 0.03 ± 0.83 – –
Pkt.-45 94.72 98.67 45 0.84 ± 0.59 – –
Time-int.-5 93.42 98.96 15.79 ± 3.07 0.25 – –
Time-int.-45 90.43 93.50 93.52 ± 11.96 2.25 – –

UNIBS

FastFlow 94.56 97.80 6.32 ± 2.68 0.28 ± 1.30 1.33 97.32
Packet seq. 95.10 97.79 5.19 ± 3.02 0.23 ± 1.16 0 98.29
Time-int. seq. 92.62 96.18 11.41 ± 7.81 0.39 ± 0.83 4.18 98.40
GGFast 93.12 97.45 50 1.35 ± 1.31 3.43 99.03
Grad-BP 89.09 96.11 100(TCP) 10(UDP) 2.53 ± 1.63 4.90 73.90
Pkt.-5 85.08 89.81 5 0.23 ± 0.93 – –
Pkt.-45 93.56 97.54 45 1.22 ± 1.84 – –
Time-int.-5 82.45 87.01 5.62 ± 1.92 0.25 – –
Time-int.-45 92.73 95.63 86.01 ± 21.02 2.25 – –

seq.’, ‘Time-int.-5’ and ‘Time-int.-45’) are either not having good accuracy with small numbers of
inputs or requiring long time (e.g., over 45 seconds) for flow classification.

B.2.3 With Unknown Flow Types but not Packet Sequence Disorder. Table 10 reports the evaluation
results on the three datasets augmented with unknown flows. Compared to the two state-of-
the-arts methods and FastFlow classifiers with only packet or time-interval slot data sequences,
FastFlow achieves decent performance in both classification accuracy and speed for both known
and unknown flows.

Received January 2025; revised April 2025; accepted April 2025

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 23. Publication date: June 2025.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview of the FastFlow Time-Series Flow Classification Method
	3.1 Key Requirements for Time-Series Flow Classification in Large Networks
	3.2 Overview of the FastFlow Flow Classification Method

	4 Precise yet Packet Sequence Disorder Robust Time-Series Flow Data Representation
	4.1 Time-Series Flow Data Sequence at Packet Granularity
	4.2 Time-Series Flow Data Sequence at Slot Granularity
	4.3 Selecting Flow Classification Results at Real-Time

	5 Time-Series Flow Classifier with the Estimated Minimal Length of Data Sequence
	5.1 Time-Series Classifier Architecture for Early Flow Classification
	5.2 Training FastFlow Classifiers with Reinforcement Learning
	5.3 Training Flow Data Augmentation

	6 Evaluation, Benchmarking and Deployment Insights
	6.1 Lab Evaluation Setup
	6.2 Evaluation and Comparison to the State-of-the-art
	6.3 Ablation Study with Only Packet or Slot Flow Data Sequence
	6.4 FastFlow Deployment in a Live Network

	7 Conclusion
	References
	A Ethics
	B Additional Lab Evaluation Results of FastFlow Classification Performance
	B.1 Speed of FastFlow Classifiers with Only Packet or Slot Data Sequence
	B.2 Flow Classification Performance

