
URL Extraction on the NetFPGA Reference Router
Michael Ciesla and Vijay Sivaraman

School of Electrical Engineering and Telecommunications
University of New South Wales, Sydney NSW 2052, Australia.

Emails: m.ciesla@student.unsw.edu.au, vijay@unsw.edu.au

Aruna Seneviratne
National ICT Australia (NICTA)

Sydney, Australia.
Email: aruna.seneviratne@nicta.com.au

Abstract— The reference router implementation on the NetF-
PGA platform has been augmented for real-time extraction of
URLs from packets. URL extraction can be useful for application-
layer forwarding, design of caching services, monitoring of
browsing patterns, and search term profiling. Our implemen-
tation modifies the gateware to filter packets containing a HTTP
GET request and sends a copy to the host. Host software is
implemented to extract URLs and search terms. The software
integrates with a database facility and a GUI for offline display
of web-access and search term profiles. We characterise the
link throughput and CPU load achieved by our implementation
on a real network trace, and highlight the benefits of the
NetFPGA platform in combining the superior performance of
hardware routers with the flexibility of software routers. We also
demonstrate that with relatively small changes to the reference
router, useful applications can be created on the NetFPGA
platform.

I. INTRODUCTION

The ability to view Uniform Resource Locators (URLs)
corresponding to traffic flowing through a network device
enables many diverse and interesting applications ranging
from application layer switching and caching to search term
visibility. Application-layer switching uses URLs to direct
HTTP protocol requests to specialised servers that store less
content, allowing for higher cache hit rates, and improved
server response rates [1]. The basis of most caching system
architectures is the interception of HTTP requests [2]. HTTP
requests identify the objects that the system must store and
are also used as index keys into storage databases. URLs also
contain user search engine terms (popular search engines such
as Google and Yahoo embed the search terms in the URLs).
Through appropriate means, ISPs can partner with marketing
companies to harvest search terms in order to generate new
revenue streams from targeted advertising [3].

To our knowledge, there currently is no deep packet in-
spection (DPI) functionality, specifically for URL extraction,
available on the NetFPGA platform. This project augments
the NetFPGA reference router to analyse HTTP packets and
extract URL and search term data. The NetFPGA user data
path parses packet headers and payloads to identify HTTP
GET packets and sends a copy to the host (in addition to
forwarding the packet along its normal path). Software on the
host displays the URLs and search terms on-screen in real-
time. It also logs the URLs and search terms to a database,
and a graphical user interface (GUI) has been developed to
graphically profile web-page accesses (e.g. top-20 web-sites

accessed) and search terms (e.g. to identify potential illegal
activity).

II. ARCHITECTURE

Our hardware accelerated URL extraction system consists of
two main components: hardware and software. The hardware
component is an extended NetFPGA IPv4 reference router
that filters packets containing a HTTP GET request method
in hardware and sends a copy to the host. The software
component is composed of three parts: URL Extractor (urlx),
database, and a graphical user interface. The URL Extractor
parses HTTP GET packets, extracts the contained URLs and
search terms, and then stores them into a database. The GUI
queries the database for top occurring URLs and search terms,
and displays them on-screen. Fig. 1 shows a system diagram.

Graphical User Interface

Database

URL Extractor

NetFPGA

HTTP Get Request Packets

URL & Search Terms

Top Occurring URLs & Search Terms

Fig. 1. System Diagram

A. IPv4 Reference Router Modification

Our design modifies the Output Port Lookup module of
the reference router. Fig. 2 shows the layout of the module
with the addition of the new http get filter submodule. The
output port lookup.v file has been altered to include the def-
inition of the http get filter and its wire connections to the
preprocess control and op lut process sm submodules.

The http get filter functions as a new preprocess block with
the responsibility of identifying packets containing URLs. The
HTTP protocol uses the GET request method to send URL
requests to a server. Packets containing a GET request are

op_lut_hdr_parser

ip_lpm

eth_parser

dest_ip_filter

ip_checksum

http_get_filter

ip_arp

op_lut_process_smpreprocess_control

fifo

reg_op_lut_regs

in_data

in_data

in_data

in_data

in_data

in_data

in_ctrl

in_data

in_ctrl

out_wr

out_data

out_ctrl

out_rd

in_data

in_ctrl

in_wr

in_data

in_ctrl

in_rdy

reg_X_in

reg_X_out

Preprocess Blocks

Fig. 2. Submodule layout of the modified Output Port Lookup. The http get filter is a new submodule and the op lut process sm has been altered.

Words 63:48 47:32 31:16 15:0

1 eth sa

2 type ver, ihl,tos

3 total length identification flags, foff ttl, proto

4 checksum dst ip

5 dst ip src port dst port sequence

6 sequence doff, flags

7 win size checksum urgent pointer options

8

Words 63:48 47:32 31:16 15:0

1 eth sa

2 type ver, ihl,tos

3 total length identification flags, foff ttl, proto

4 checksum dst ip

5 dst ip src port dst port sequence

6 sequence doff, flags

7 win size checksum urgent pointer options

8

9 HTTP "GET"

URL N-1

URL N

Packet Header

URL 1

URL 2

…

…

ack

options

options

User Data Path (in_data) Register Bits

eth da

eth sa

src ip

User Data Path (in_data) Register Bits

eth da

eth sa

src ip

ack

Fig. 3. NetFPGA word alignment for Unix GET packets. Fields shaded in
red are inspected for GET packet identification.

distinguished by containing the “GET” string at the beginning
of the TCP payload. In addition to checking for this string,
identifying GET packets involves inspecting four other header
fields (refer to Fig. 3). First, the packet length is checked to
ensure its large enough to contain the “GET” string. Second,
we check for the TCP protocol, which is used to transport
HTTP. Third, the destination port is inspected for HTTP
port numbers (our current implementations only checks for
port 80). Fourth, the TCP header length is checked since
it varies in size for GET packets originating from different
operating systems. For example, Linux TCP headers include
a 12-byte Option field that Windows does not. Consequently,
this changes the location of the “GET” string, and extra state
must be maintained to track whether the current packet being
processed is potentially a Windows or Unix GET packet.

The identification of GET packets is implemented by the
state machine shown in Fig. 4. By checking the above men-
tioned protocol header fields and for the occurrence of the
“GET” string at the beginning of the TCP payload, the state
machine carries out a seven stage elimination process of

WAIT_IP_PROTO_LEN

CHECK_DST_PORT

WORD_3

CHECK_TCP_LEN

WIN_GET

WORD_7

UNIX_GET

Fig. 4. Diagram of State Machine Used to Identify GET Packets

identifying a GET packet. The state machine initially idles
in the WAIT IP PROTO LEN state waiting for the IP packet
length and protocol fields of the IP header to be present on
the data bus. The preprocess control signals the http get filter
when this data is on the bus, and the elimination process is
started. If any of the checks fail, the state machine resets to
the WAIT IP PROTO LEN state, and waits for a new packet.
A FIFO is used to store the result of the GET packet check,
which is later used by op lut process sm.

The method used to check for the “GET” string varies
between Windows and Unix packets. For Unix packets (we’ve
tested Linux and Mac OS X operating systems), the string is
located in bits 8 to 31 of the 9th word. This is shown in Fig. 3.
Conversely, for Windows packets, there are no TCP Options
and the string spans multiple words on the NetFPGA data bus.
The letters “GE” are located in the first two bytes of the 7th
word and the remaining letter “T” is stored in the first byte of
the 8th word. To simplify the implementation, the WIN GET
state only checks for the “GE” letters and the UNIX GET state
checks for the whole “GET” string.

The WORD 3 and WORD 7 states do no processing and are
used to skip packet headers that are on the data bus.

The role of the op lut process sm submodule is to use data
gathered by the preprocess blocks to determine the correct
output port(s) a packet should take and then forward the packet
to the Output Queues module. Fig. 5 shows a state diagram of
the submodule. The initial state is WAIT PREPROCESS RDY,
which waits until all the preprocess blocks, i.e. eth parser,
ip lpm, http get filter, etc. have completed their processing
roles for the current packet on the data bus. The next state
for error free packets is MOVE MODULE HDRS. This state
controls which output port(s) a packet will be sent out on by
modifying the one-hot encoded output port field in the IOQ
packet header.

WAIT_PREPROCESS_RDY

MOVE_MODULE_HDRS

SEND_SRC_MAC_LO

SEND_IP_TTL

SEND_IP_CHECKSUM

MOVE_PKT

DROP_PKT

Fig. 5. State diagram of the op lut process sm submodule. Code in the
WAIT PREPROCESS RDY state has been altered.

Code changes have been made in the
WAIT PREPROCESS RDY state to update the IOQ header
output port field so that GET packets are duplicated up to the
host system through one of the CPU transmit queues.

The rest of the states take care of updating the correct
Ethernet MAC addresses, time-to-live field, and IP checksum
as packets get passed to the Output Queues module. No other
changes have been made in these states.

The extended reference router is configured using the soft-
ware tools provided in the NetFPGA base package, i.e. the cli,
Java GUI, or SCONE.

B. Software
The URL Extractor is written in C, and reads packets from

the first NetFPGA software interface, i.e. nf2c0, using raw
sockets. Raw sockets have been used because they allow
packets to bypass the Linux TCP/IP stack and be handed
directly to the application in the same form they were sent
from the NetFPGA hardware.

Uniform Resource Locators consists of two parts: Host,
and Uniform Resource Identifier (URI). Both these fields are
contained within a GET packet, as shown in Fig. 6. The URL
Extractor parses GET packets for these fields, and then extracts
and concatenates the data before storing it in the database. The
URLs are also checked to contain Google search terms, and
if found, are also entered into the database. Extracted URLs
and search terms are printed on-screen in real-time.

Fig. 6. Image of a HTTP GET Request Packet

As previously stated, the location of the “GET” string in
HTTP packets varies with the client operating system. In
addition to this, the format of GET packets is heterogeneous
across different browsing software, with variations in the offset
between the URI and Host fields. This is due to the fact
that the HTTP/1.1 RFC only states that certain fields must
be included in a GET request but not their specific location
[4]. The URL Extractor has been designed to handle both these
variations. Furthermore, GET requests can be large and span
across multiple TCP segments. Currently the software only
deals with GET requests confined to a single packet.

A MySQL database [5] is used to store the extracted URLs
and search terms. The database is composed of two tables:
one for URLs and the other for search terms.

The GUI queries the database for the top-20 occurring URLs
and search terms. It has also been written in C using the GTK+
API [6].

III. EXPERIMENTATION

We first verified our implementation in the simulation plat-
form by using the Perl testing library. The library allowed us
to create packets with specific TCP payloads. This was accom-
plished by first capturing GET packets using Wireshark and
then exporting the TCP header and payload using the “Export
as C Arrays” feature. These packet bytes were then imported
into our simulation scripts. Once verified in simulation, we

created regression tests that mirrored our simulation tests. The
regression tests were also created using the Perl testing library
and allowed us to verify the operation of our design in real
hardware. Furthermore, the regression tests of the reference
router were also used to ensure that our modifications did not
break the standard functionality of the reference router. The
availability of these tests greatly reduced the time required to
test our design.

Having verified the correctness of our implementation, we
ran three experiments to profile the system resource utilization
of our URL extraction system with and without the NetF-
PGA platform. The first two experiments both utilised the
NetFPGA but used different hardware designs; one filtered
HTTP GET packets while the other filtered all packets with
a TCP destination port equal to 80 (HTTP). We refer to
these designs as the GET and SPAN filters respectively, from
here on. The third experiment used a software router (a PC
configured as a router). Our experiments were based on a host
computer system running the CentOS 5.2 operating system and
contained an AMD dual core processor running at 3.0 GHz,
2 GB RAM, an Intel Pro/1000 Dual-port NIC, and an ASUS
M2N-VM DVI motherboard with an on-board gigabit NIC.
Ideally we would have liked to deploy our implementation
in a live network, but this raised practical concerns from the
system administrators at our University. We therefore had to
take the next best option, by which the network administrators
collected a trace of the entire department’s traffic to/from the
Internet over a 24-hour period, and gave us the trace, after
some sanitization (to remove clear-text passwords etc.), as a
set of PCAP files. We then used tcpreplay software [7] to play
the PCAP files at the maximum rate, using the --topspeed flag
(the size of the PCAP files were too large for use on the
NetFPGA packet generator [8]). Two PCs were used to pump
traffic into the URL extraction system in order to increase
the throughput to gigabit speeds. The total input rate by both
PCs was approximately 1.3 Gb/s into the NetFPGA platform
and 800 Mbps into the software router (both inputs into the
software router were connected to the Intel NIC). The network
trace contained 13 GB of traffic and was replayed in three
continuous iterations in each experiment. These input rates
and traffic volume presented a reasonable “stress-test” under
which the performance of the system was profiled.

Performance profiling was conducted with a lighter version
of the URL extraction software that did not include the
database and GUI. URLs and search terms were extracted to
a text file instead. This produced results that focused more
on the hardware component of the system as the higher level
software had not yet been optimised for performance.

Whilst conducting the experiments we monitored 4 system
variables: throughput into the router (measured at the output of
the senders), throughput on the interface that the urlx software
was binded to, the host CPU utilization, and the throughput
on the input interface of the adjacent router (as a measure of
the router’s forwarding rate).

Figs. 7 and 8 show the input and output rates of the
routers. The rates for both NetFPGA designs are identical as

the filtering level does not affect the forwarding rate of the
reference router. Their output rate is slightly below 1 Gb/s
because the output measurements were taken on a PC that
could not keep up with the line rate. As the NetFPGA is
capable of forwarding at the line rate [9], the output rate would
be 1 Gb/s had the measurements been taken directly from the
NetFPGA output port. Hence, it is fair to assume that our
design can perform URL extraction at the gigabit line rate.
Due to the dumbbell experimentation topology, the output of
the NetFPGA is a bottle neck point, and the difference between
the input and output graphs represents dropped packets at the
output queue.

The input rate into the software router is substantially lower
than that of the NetFGPA platform, even though the tcpreplay
settings were identical (using the –topspeed flag). This is due
to the flow control mechanism in Gigabit Ethernet [10] kicking
in and reducing the rate as the software router’s buffers become
full. The slower input rate led to an increased transmission
time. The software router also drops packets. This is most
likely caused by the processor not being able keep up since
it is at near maximum utilization, as shown in Fig. 10. The
average forwarding rate for the software router was 450 Mbps.
Overall, the NetFPGA forwarding rate for this topology is
more than 2 times faster than that of the software router.

Fig. 9 shows the throughput on the urlx receiving interface.
The GET and SPAN hardware filters transmit an average of 4K
and 48K packets per second up to the host respectively. The
GET filter transmits 12 times less traffic up to the host than the
SPAN filter. This result is in-line with the protocol hierarchy
analysis performed on the network trace that showed 1.62% of
packets contain a GET request and 19.20% were destined for
port 80. The resulting ration of these two numbers is 11.85.

During experimentation, we ensured that nothing was con-
nected on the MAC-0 port of the NetFPGA. This prevented
packets not part of the filtering process from being sent up to
the nf2c0 interface since the reference router sends exception
packets up to the host to be handled by software. It allowed
accurate collection of data from the interface.

As the software router has no filtering capability, the urlx
software is required to inspect every packet that enters the
router, and hence the high throughput level in Fig. 9.

Fig. 10 shows the CPU utilization of the host system. The
NetFPGA GET filter reduces the utilization by a factor of
36 over the software router, and a factor of 5.5 over the
SPAN router. The reductions are to due to fewer packets being
processed since filtering takes places in hardware. In addition,
the NetFPGA performs forwarding in hardware. This is in
contrast to the software router which has to process every
single packet.

The three distinct repetitions of the SPAN and GET curves
in Fig. 10 represent tcpreplay being looped through three
iterations. The 4th smaller repetition is most likely caused by
one of the two senders being out of sync and finishing later.
Our network trace spanned 13 PCAP files, each 1 GB in size.

The system performance data was gathered using col-
lectd [11] and the graphs were created using drraw [12].

Fig. 7. Input and Output Throughputs for NetFPGA Routers

Fig. 8. Input and Output Throughput for Software Router

Fig. 9. Throughput on urlx Receiving Interface(s)

Fig. 10. Total CPU Utilization for Dual Core Processor

IV. DEVICE UTILIZATION

The device utilization of the hardware component of our
URL extraction system (the GET filter) is almost identical to
that of the reference router design and is displayed in table I.

TABLE I
DEVICE UTILIZATION FOR THE GET FILTER

XC2VP50 Utilization
Resources Utilization Percentage

Slices 9731 out of 23616 41%
4-input LUTS 14394 out of 47232 30%

Flip Flops 8238 out of 47232 17%
Block RAMs 27 out of 232 11%
External IOBs 360 out of 692 52%

V. CONCLUSION

Our hardware accelerated URL extraction system is im-
plemented on the NetFPGA platform. It performs filtering
of HTTP GET packets in hardware and extraction, storage,
and display of URLs and search terms in software. We
believe this mix of hardware (high performance) and software
(high flexibility) makes the NetFPGA platform very suitable
for URL extraction: the filtering of HTTP GET packets in
hardware reduces the load on the host system’s processor,
whilst still maintaining packet forwarding at gigabit line-rate
speeds. We have shown that full URL extraction in a software-
based router consumes substantially more CPU cycles when
compared to the NetFPGA platform. On the other hand, a
fully hardware-based implementation of URL extraction, say
in a commercial router, would involve long development time;
simple solutions such as configuring port mirroring (e.g. SPAN
port on a Cisco router [13]) do not provide hardware filtering
of traffic and therefore still require a host system to filter the
traffic in software.

The implementation process of the GET filter was simplified
by the pipelined architecture of the reference router. Only
the operating details of the Output Port Lookup stage were
required in order to achieve our goal of filtering GET packets
in hardware. Furthermore, by reusing the reference router
design, the development time of the GET filter was greatly
reduced as we did not have to start from scratch.

Our code has been released, following the guidelines in [14],
to the larger community for re-use, feedback, and enhance-
ment. It can be downloaded from [15].

REFERENCES

[1] G. Memik, W. H. Mangione-Smith, and W. Hu.Netbench, “A bench-
marking suite for networkprocessors,” in International Conference on
Computer Aided Design (ICCAD), San Jose, CA, 2001.

[2] G. Barish and K. Andobraczka, “World wide web caching: Trends and
techniques,” IEEE Communications, vol. 38, no. 5, pp. 178–184, 2000.

[3] P. Whoriskey, “Every click you make: Internet providers
quietly test expanded tracking of web use to target
advertising,” 2008, http://www.washingtonpost.com/wp-
dyn/content/article/2008/04/03/AR2008040304052.html.

[4] R. Fielding et al., “RFC 2616: Hypertext Transfer Protocol – HTTP/1.1,”
1999, http://www.ietf.org/rfc/rfc2616.txt.

[5] MySQL, “MySQ website,” http://www.mysql.com/.
[6] Gtk, “The Gtk+ Project,” http://www.gtk.org/.
[7] tcpreplay developers, “tcpreplay website,”

http://tcpreplay.synfin.net/trac/wiki/tcpreplay.
[8] G. A. Covington, G. Gibb, J. Lockwood, and N. McKeown, “A Packet

Generator on the NetFPGA Platform,” in IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), Apr 2009.

[9] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and N. McKeown,
“Netfpga: An open platform for teaching how to build gigabit-rate
network switches and routers,” in IEEE Transactions on Education,
August 2008.

[10] IEEE Standard for Information technology–Telecommunications and
information exchange between systems–LAN/MAN–Part 3: CSMA/CD
Access Method and Physical Layer Specifications - Section Two, IEEE
Std. 802.3, 2008.

[11] F. Forster, “collectd website,” http://collectd.org/.
[12] C. Kalt, “drraw website,” http://web.taranis.org/drraw/.
[13] Cisco Systems, “Cisco SPAN Configuration,”

http://www.cisco.com/en/US/products/hw/switches/ps708/products tech
note09186a008015c612.shtml#topic5.

[14] G. A. Covington, G. Gibb, J. Naous, J. Lockwood, and N. McKeown,
“Methodology to contribute netfpga modules,” in International Confer-
ence on Microelectronic Systems Education (submitted to), 2009.

[15] M. Ciesla, V. Sivaraman, and A. Seneviratne, “URL Extraction Project
Wiki Page,” http://netfpga.org/netfpgawiki/index.php/Projects:URL.

