
A Dynamic Stateful Multicast Firewall
Shen Li∗†, Vijay Sivaraman∗†, Alex Krumm-Heller†, Craig Russell†

∗School of Electrical Engineering and Telecommunications, University of New South Wales, Australia
†ICT Centre, CSIRO, Australia

Abstract—Enterprises are faced with the challenge of enabling
IP multicast applications without exposing their network to multi-
cast denial-of-service attacks. Current practice is to use firewalls
and manually configure them on a per-multicast-session basis.
This imposes a high work-load on the network administrator,
and severely reduces flexibility for end-users. In this paper,
we propose and demonstrate a simple yet powerful multicast
firewall algorithm that can, under most conditions, automatically
distinguish unsolicited multicast packets and drop them to protect
the network from denial-of-service attacks. Inspired by the “state-
ful” operation of unicast firewalls, our multicast firewall blocks
unsolicited multicast packets by maintaining state information
on multicast group membership and unicast interactions. We
prototype our algorithm as a plug-in to Linux NetFilter, and
present performance and scalability results from testing on a
high-quality multicast video platform coupled with synthetic
traffic from a network tester. Based on the prototype, we believe
that it is feasible to build multicast firewalls that can, without
manual intervention, and with minimal performance impact,
protect the network against multicast attacks.

I. INTRODUCTION

The IP multicast service model, introduced by Deering
in 1990 for efficient multipoint communication [1], offers
two key benefits: efficient use of bandwidth for multipoint
communication, and indirection of a group address which
allows for network-level rendezvous and service discovery.
In spite of the mixed success that IP multicast has had in
actual deployments, we are finally witnessing the emergence
of applications that can greatly benefit from IP multicast
support: examples include massive multiplayer online games
(MMOGs) [2], IP TV [3], and large-scale collaborative audio-
visual platforms such as the AccessGrid [4]. Probably the
largest hinderance to wide-area deployment of IP multicast
by ISPs has been the complexity of managing inter-domain
multicast routing, as illustrated by a recent article [5]. The
routing complexity is apparent in the list of multicast protocols
that a Cisco router advertises: PIM-SM, PIM-DM, BiDir-PIM,
PIM-SSM, AutoRP, MBGP, MSDP, and IGMPv1,v2,v3, while
still lacking MASC/AAP and BGMP.

This paper considers IP multicast from an enterprise orga-
nization’s point-of-view, wherein security has been the major
obstacle to widespread deployment. Native multicast allows
any Internet host to transmit to a multicast group, and this cre-
ates the potential for denial-of-service (DoS) attacks in which
one or many malicious hosts in the Internet can overwhelm
an enterprise network by transmitting unsolicited traffic on a
multicast group to which one or more hosts in the enterprise
network have subscribed. An example of a multicast DoS
attack is the Ramen worm [6] in 2001. Enterprises today

protect against multicast DoS attacks by deploying firewall
devices (such as Linux NetFilter or Cisco PIX) configured
with explicit rules to permit only desired multicast sessions.
These rules need to be configured manually by the network
administrator on a per-session basis (since multicast group
addresses may not be known apriori), imposing a high burden
on the personnel and causing frustration to end-users. These
factors have led several organisations to expose their multicast
environment outside the enterprise firewall, or to entirely
abandon efforts to benefit from such applications.

Though the general problem of securing multicast traffic has
been addressed before, no satisfactory solution has emerged
that protects against multicast DoS attacks. The IETF multicast
security (MSEC) working group is developing mechanisms
for encrypting and authenticating multicast messages, but do
not address DoS attacks. The IETF source specific multicast
(SSM) working group is developing efficient routing layer
solutions for single-source multicast groups; explicit knowl-
edge of the source allows routers to drop attack packets from
malicious sources. However, SSM requires enhancements to
the routing infrastructure, and may take many years to be
widely deployed. Proprietary protocols by which end-hosts can
signal their multicast session requirements to the firewall have
been proposed, but require special signalling software and can
open up the firewall to potential abuse.

In this paper we develop a simple yet novel firewall algo-
rithm that automatically blocks unsolicited multicast traffic.
Drawing inspiration from the “stateful” operation of unicast
firewall algorithms, our approach is based on the observation
that receivers of multicast traffic usually have unicast inter-
action with the sources of the multicast traffic. Maintaining
state on the unicast interactions, together with multicast group
memberships, can help the firewall determine if an incoming
multicast packet is solicited or not. We implement our proposal
as a simple plug-in to NetFilter on a Linux PC, and test
its performance on our high-quality multicast video platform
together with synthetic attack traffic. Our firewall is shown to
be effective in blocking multicast DoS attacks, with negligible
performance penalty in terms of packet latency and firewall
CPU load.

The rest of the paper is organised as follows: section II
reviews existing mechanisms for multicast security. In section
III we describe our stateful firewall solution, and discuss
various design trade-offs. Section IV outlines our prototype
implementation on Linux, and section V demonstrates perfor-
mance results from experiments conducted on our test-bed.
The paper is concluded in section VI.

II. BACKGROUND

This section reviews existing proposals for multicast secu-
rity, and discusses their effectiveness in blocking DoS attacks.

A. IETF MSEC

The IETF Multicast Security (MSEC) working group [7]
was chartered to standardize protocols for securing group
communication over the Internet. The main focus is on en-
suring privacy and authenticity of multicast messages using
cryptographic techniques, and an architecture is developed
whereby each group has a single trusted entity called the group
controller that performs key management. Though protection
against multicast DoS attacks is listed as a desirable goal in
the MSEC charter, there is no realistic mechanism for this,
short of the firewall knowing all the cryptographic keys and
performing authentication on all received multicast packets,
which would put an excessively high burden on the firewall.

B. IETF SSM

The complexity of choosing a rendezvous point in wide-area
multicast routing protocols motivated Holbrook and Cheriton
[8] to propose a restricted service model suitable for appli-
cations (such as IP TV) that require delivery from a single,
often well-known source. This model, now being standardised
by the IETF Source Specific Multicast (SSM) working group
[9], associates a multicast “channel” with both a group and
source IP address, whereby the identity of the source is
explicitly exposed so that the routing tree can be rooted
at the source. Consequently, routers will drop packets from
other (malicious) sources, solving the denial-of-service attack
problem at the routing layer. Though router vendors and ISPs
are pursuing SSM enthusiastically, it requires upgrades to the
routing infrastructure (to support IGMPv3, routing protocol
extensions, source-specific forwarding of muticast packets,
etc.), and may take several years to be widely adopted.

C. Proprietary Solutions

Proprietary solutions have been proposed by researchers
from HP Labs [10]. In the multicast proxy approach, a
proxy server is located outside the firewall. Clients inside the
organisation authenticate with the proxy and issue their request
for multicast traffic. The proxy server joins the multicast group
on the client’s behalf. When the multicast data stream arrives,
the proxy converts it into unicast for transmission across
the firewall to the requesting client. This approach has the
drawback that it requires installation and maintenance of proxy
devices. Moreover, the unicasting of the multicast stream to
each of the individual receivers does not scale well when there
are many internal receivers to a multicast group.

Another solution explored in [10] is the use of a private
protocol by which the multicast application dynamically no-
tifies the firewall of its group membership (this notification
can be extended to include information about the senders
on the multicast group). However, this method comes with
many caveats: first, the application and firewall would need
to implement this private protocol. Second, the firewall can

no longer remain a transparent device (it’s IP address will
have to be revealed by the network administrator to all hosts
within the enterprise), and this can open up the firewall to
misuse by internal users. Third, in some (albeit rare) cases the
firewall may not have an IP address (such as when it is a bridge
firewall). These drawbacks make this approach undesirable for
practical deployment.

III. A DYNAMIC STATEFUL MULTICAST FIREWALL

A. The Basic Idea

To understand the proposed solution, consider how unicast
sessions transit a firewall without network administrator inter-
vention. A firewall is like a valve, namely it allows all traffic
to go out (from the enterprise to the Internet) but is very
selective in the traffic it allows in (from the Internet to the
enterprise). Thus a unicast session initiated from the outside
(Internet-side) of a firewall to a host on the inside (enterprise-
side) of the firewall will be dropped at the firewall unless the
network administrator explicitly configures a rule to allow it
in. However, when a host from the inside requests a session,
the firewall forwards it out and notes that a request was sent
(i.e. maintains “state”). When the response arrives, the firewall
correlates the response with the original request and permits
the packet in. The “stateful” nature of firewalls allow unicast
traffic to flow in both directions without requiring network
administrator involvement, and is based on the principle that
if a user within the enterprise has initiated a session with
an external party, traffic from that external party’s application
should be admitted.

So how come the same idea cannot be directly applied to
multicast traffic? The first problem is that multicast traffic is
addressed to a group address rather than to individual end-
hosts, so the firewall cannot deduce the external recipients of
a multicast stream by inspecting the egress multicast traffic.
A second problem is that traffic on a multicast group is often
one-way, i.e. a receiver inside the enterprise might want to
watch a multicast video stream without necessarily generating
video itself. The firewall therefore needs more information
to help it distinguish solicited from unsolicited traffic incom-
ing multicast traffic. Our idea is based on the premise that
many multicast applications have unicast interaction with the
sources of the multicast data. As examples, video conferencing
tools such as the AcessGrid platform, CSIRO’s Virtual Tea-
room, Microsoft’s conference XP, and Avaya’s Collaborative
Videconferencing all have a unicast signalling channel for
managing the multicast data. By maintaining state on the
unicast traffic interactions as well as multicast memberships,
the “stateful” firewall can in most cases distinguish solicited
from unsolicited multicast traffic.

We explain this more formally using the notation below:
• C denotes the set of internal hosts, i.e. “client” IP ad-

dresses located within the organisation.
• G denotes the set of multicast groups to which one or

more internal hosts are subscribed.
• S denotes the set of external (Internet) hosts, that could

be potential “sources” transmitting on a multicast group.

Our multicast firewall maintains state regarding the following
two relations: first, the C-G relation, i.e. membership of inter-
nal hosts to multicast groups, and second, the C-S relation, i.e.
unicast interactions that internal hosts have had with external
senders (indicative of the external hosts that internal hosts
“trust”). When a multicast packet addressed to group g from
source s arrives at the firewall, it allows the packet to enter
only if there exists an internal client c ∈ C which has both
joined the group g and has had unicast interaction with source
s. This is discussed in more detail next as we describe how
the various relations are built.

B. Building the Client-Group (C-G) Relations

Building the C-G relations involves the firewall knowing the
set of multicast groups that internal clients are subscribed to.
Three possible ways are discussed below.

1) Client is also a Sender on the Group: In an interactive
multi-party multicast session, one would expect to be able
to determine participation of a client in a multicast group by
snooping for packets generated by that client addressed to that
multicast group. However, this approach fails not just for one-
way multicast applications (such as IP TV), but also for many
interactive multicast applications is use today. Unfortunately,
inter-domain multicast routing protocol complexity [5] has
made it common practice on platforms such as the AccessGrid
to have a single sender in each multicast group, in effect
requiring as many multicast groups to be set up as the number
of participants. The resulting one-way flow of traffic makes it
problematic to use egress multicast traffic as an indicator of
group memberships.

2) Snooping Routing Protocol Messages: Another way by
which a firewall (particularly if it is also the border router)
could deduce membership of multicast groups is from the
routing protocol messages that construct the multicast tree.
However, these routing protocol messages only carry infor-
mation on the group itself, and not on the clients subscribed
to that group. This does not suffice for building the desired C-
G relation, though it can assist in a weaker form of protection
where only the set G of subscribed groups is used.

3) IGMP snooping: The IGMP (Internet Gateway Manage-
ment Protocol) [11] provides direct information on member-
ship of multicast groups on a LAN. Host applications that
wish to join/leave a multicast group send IGMP join/leave
messages to their designated router. In addition, the router
periodically queries the LAN for membership of multicast
groups. If the firewall is integrated with the router, it would
be actively participating in IGMP and would hence know
the membership of hosts in its connected LANs. A bridged
firewall (that does not participate in routing) can deduce the
same information by passively snooping for IGMP messages.
A major drawback of this scheme is that it is restricted to
scenarios where the enterprise network is a layer-2 network
(LAN). If the enterprise has an internal routed network with
multiple LANs, the firewall would not see IGMP messages on
LANs not directly connected to it. This approach may there-
fore work well only for small enterprises with flat networks,

and alternative schemes are needed for large enterprises that
have routed networks.

C. Building the Client-Source (C-S) Relations

Much like a stateful unicast firewall, our multicast firewall
records unicast communication that internal clients have with
external sources. Some approaches are discussed below.

1) Snooping SIP Messages: The IETF SIP (Session Initia-
tion Protocol) working group [12] is developing a text-based
protocol for initiating interactive communication sessions be-
tween users, such as for audio, video, chat, interactive games,
virtual reality, etc. Multicast applications are increasingly
using SIP as the signalling mechanism. Snooping the unicast
SIP messages generated by an internal client can help the
multicast firewall in deducing the external sources from which
legitimate multicast traffic can be expected. This approach will
however not work with legacy multicast applications that use
proprietary signalling message formats.

2) Snooping All Unicast Packets: In the absence of a com-
mon unicast signalling message format across all applications,
one could have the firewall deduce the C-S relation by snoop-
ing all unicast traffic egressing the enterprise network. This
approach runs the risk that the firewall will permit an external
host running a “trustworthy” unicast application to launch
multicast attacks on a subscribed group. However, we believe
the benefits of generality (i.e. not being tied into a specific
signalling protocol) outweight the risks of this approach. The
other concern could be the complexity of maintaining state on
all unicast interaction, but we note that unicast firewalls today
are built to cope with this.

D. Inferring the Source-Group (S-G) Relations

As described earlier, our multicast firewall algorithm allows
a multicast packet from source s addressed to group g to
enter only if there is a client that is subscribed to multicast
group g and has had unicast interaction with source s. Stated
notationally, an (s, g) packet enters only if there exists c ∈ C
such that the (c, g) and (c, s) relations exist. The S-G relations
are therefore inferred from the C-G and C-S relations. The
determination of S-G relations is done for each incoming
multicast packet (we call this the query operation), and there-
fore needs to be efficient. At the same time, these relations
are updated whenever the C-G or C-S relations change, and
the corresponding update operation also needs to be efficient.
These performance trade-offs are discussed next.

E. Performance Trade-offs

Let nC , nS , and nG denote respectively the size of the sets
C, S, and G respectively. The S-G relations could be pre-
computed or determined on-the-fly, as discussed next.

1) Pre-Computing the S-G Relations: The C-G relations
could be stored in an nC × nG matrix where an entry is
non-zero if the client corresponding to its row is related
to the group represented by its column. A matrix could
similarly store the S-C relations, and the S-G relations could
be deduced from the product of the above two matrices.

With small number of active multicast groups, the storage
space requirement scales linearly with the number of internal
and external hosts. Queries require O(1) time, while update
operations (e.g. when a client talks to a previously unknown
source) are more expensive. Sparse matrices require reduced
storage at the expense of increased time for queries.

2) Dynamically Determining the S-G Relation: The S-
G relation can be computed on-demand at the firewall, as
and when multicast packets arrive at its external interface.
In the matrix representation above, this would correspond to
computing the (s, g) element of the S-G relation matrix, where
s denotes the source of the arriving packet and g the group it is
addressed to. This operation requires O(nC) time, but practical
implementations may use techniques that rely on the matrices
being sparse. The advantage of dynamically computing the
S-G relation is that updates to the underlying S-C and C-G
relation matrices do not entail upfront recomputations.

IV. IMPLEMENTING THE DYNAMIC STATEFUL FIREWALL

We implemented and tested our dynamic firewall as a plug-
in to Linux NetFilter, which is a packet filtering platform in
the Linux 2.4.x and 2.6.x kernel series. We wrote a kernel
module that maintains the state required for our dynamic
multicast firewall. Rules were inserted into the NetFilter’s rule-
table to direct all incoming multicast packets to our module,
as also all outgoing unicast traffic. Note that our module
does not need to snoop incoming unicast traffic. Within the
module, data structures are maintained to hold information
about the set of active multicast groups G, the set of receivers
(internal hosts) C, and the set of sources (external hosts) S.
Our current proof-of-concept implementation maintains these
sets in a combination of hashed tables, with linked lists used
to resolve collisions. In the future we intend to optimise the
implementation using more sophisticated data structures.

The C-G relations are derived by snooping IGMP messages.
This suffices for our testing scenarios in which the internal
network is switched and has no routers. We further clarify
here that our firewall operates as a bridge (i.e. no routing
functionality), and routing is performed by a router connected
to its external interface. When our firewall sees an IGMP
report indicating that a client has joined a group, the data
structures for the two are linked together with pointers. When
it is detected that clients have left multicast groups (via explicit
IGMP host leave messages or via inactivity timeout), the
associated pointers are removed.

The C-S relations are derived by observing all egress unicast
traffic. When an internal host interacts with a previously
unknown external host, a new node is created for the external
host and pointers used to link the two. As in the previous
explanation, these relations are removed after an inactivity
timeout (of the order of a few minutes).

The kernel firewall rules are configured so all multicast
packets arriving on the external interface are passed on to
our module. For a multicast packet from source s addressed
to group g, our module searches its data structure for group
g in set G, and for source s in set S. If either is unknown,

video
source

Switch

video
sink

Multicast Router

External
(Internet)

Internal
(Enterprise)

Firewall

IXIA traffic generator

Fig. 1. Topology for Experiments

the packet is dropped. Otherwise, it scans through the clients
c ∈ C that are members of group g till it finds one that has a
relation to s. If such a c is found, the packet is admitted into
the enterprise network, otherwise it is dropped.

We make two important observations here: first, that the
network administrator can override our module in a natural
way by configuring explicit static rules to permit/deny specific
multicast sessions (this may be desirable for certain important
sessions or where there is no unicast signalling interaction).
Packets for these sessions will then be handled by the kernel
rule-table, and will not even be seen by our module. Second,
as a fall-back option for multicast applications that do not have
periodic unicast signalling with the source(s), an end-user can
start ping session(s) to the source(s), which will cause the
multicast firewall to build the appropriate state.

V. PERFORMANCE EVALUATION

We tested our implementation on our laboratory test-bed
with topology as shown in 1. The firewall device is a Dell
desktop computer with a 2.8 GHz Pentium-IV processor and
512 MBytes of RAM. It was running the Red Hat Enterprise
Linux 4 Update 1 (kernel version 2.6.9-11EL) distribution. We
made the firewall operate in bridging mode (i.e. no routing), so
as to isolate firewall functionality from routing issues that are
beyond the scope of this paper. The firewall has two 100 Mbps
Ethernet interfaces, the external one connected to a Nortel
Passport 8600 series router running the PIM-SM multicast
routing protocol. The router is in turn connected to a PC
generating a multicast video stream, and to a port of the
IXIA traffic generator. The internal interface of the firewall
is connected via a layer-2 switch to a PC that sinks the video
traffic, as well as to a port on the IXIA traffic monitor. The
IXIA is a specialised hardware traffic generator and analyser.
It is capable of generating arbitrary packet streams, including
unicast, multicast, IGMP, etc., and analysing packet statistics
including data rates, latencies, etc. at high data rates. Our tests
below rely on its capabilities to emulate a large number of
multicast sessions and multicast DoS attack scenarios.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 30 40 50 60 70 80 90 100

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

us
ec

)

Incoming traffic rate (Mbps)

Static-rule firewall (Iperf multicast traffic)
Dynamic-module firewall (Iperf multicast traffic)

Static-rule firewall (video multicast traffic)
Dynamic-module firewall (video multicast traffic)

(a)

 0

 5

 10

 15

 20

 25

 30 40 50 60 70 80 90 100

C
P

U
 lo

ad
 a

t f
ire

w
al

l (
%

)

Incoming traffic rate (Mbps)

Static-rule firewall (Iperf multicast traffic)
Dynamic-module firewall (Iperf multicast traffic)

Static-rule firewall (video multicast traffic)
Dynamic-module firewall (video multicast traffic)

(b)

Fig. 2. Scenarion I [multicast-performance]: (a) packet latency and (b) firewall CPU load as a function of traffic load.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 30 40 50 60 70 80 90 100

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

us
ec

)

Incoming traffic rate (Mbps)

Static-rule firewall
Dynamic-module firewall (stabilised)

Dynamic-module firewall (updates in progress)

(a)

 0

 5

 10

 15

 20

 25

 30

 30 40 50 60 70 80 90 100

C
P

U
 lo

ad
 a

t f
ire

w
al

l (
%

)

Incoming traffic rate (Mbps)

Static rules
Dynamic firewall (stabilised)

Dynamic firewall (updates in progress)

(b)

Fig. 3. Scenarion II [multicast-scaling]: (a) packet latency and (b) firewall CPU load as a function of traffic load.

We conduct three sets of experiments designed to measure
performance, scaling and attack-resilience of our prototype im-
plementation. In each scenario we not only verify correctness
of our firewall (namely that it does not unduly block wanted
multicast traffic or permit unwanted traffic), but also quantify
its performance in terms of the latency for incoming unicast
traffic, and CPU load at the firewall device itself.

Scenario I [multicast-performance]: In this scenario, a
30 Mbps multicast video stream flows from the external to
the internal PC, accompanied by a low-rate unicast heartbeat.
After verifying that our dynamic firewall correctly admits the
multicast traffic, we introduce unicast flows from the IXIA’s
external port to the internal one via the firewall. The unicast
traffic rate is varied, such that the total traffic rate on the
firewall’s interface varies from 40 to 100 Mbps, and the latency
for the unicast traffic is measured. The objective is to quantify
if our module affects the enterprise’s unicast download latency
in the presence of multicast traffic. The baseline for compar-
ison in all our experiments is where explicit static rules are
configured to admit the multicast sessions.

Figure 2(a) plots the packet latency for incoming traffic
as a function of traffic load for two cases: (i) when the
multicast traffic is synthetically generated using Iperf, a net-
work traffic generation and measurement tool, and (ii) when
a live video session (in DV format, similar to what we use
in our AccessGrid platform) streams the multicast traffic. For
both these cases, the end-to-end packet latency is plotted for
our dynamic firewall module as compared to the baseline
that uses static rules; the curves overlap showing that the
dynamic operation incurs no performance penalty. Figure 2(b)
shows the corresponding CPU load at the firewall device. Our
dynamic firewall module causes no more than around 1% or
so higher load on the CPU, which is quite a small price to
pay for freedom from manual configuration.

Scenario II [multicast-scaling]: In this scenario we test the
scaling capability of our scheme by having the IXIA emulate
a large number of multicast groups and external sources. To
add to the 30 Mbps video stream, the internal Ixia port is
made to join 50 multicast groups (address range 239.1.2.3 to
239.1.2.52) and emulate 250 internal clients (address range

 0

 1000

 2000

 3000

 4000

 5000

 6000

 30 40 50 60 70 80 90 100

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

us
ec

)

Incoming traffic rate (Mbps)

Static-rule firewall
Dynamic-module firewall

(a)

 0

 5

 10

 15

 20

 25

 30 40 50 60 70 80 90 100

C
P

U
 lo

ad
 a

t f
ire

w
al

l (
%

)

Incoming traffic rate (Mbps)

Static rules
Dynamic firewall

(b)

Fig. 4. Scenarion III [multicast-attack]: (a) packet latency and (b) firewall CPU load as a function of traffic load.

10.2.0.0/24) conversing with 8000 external sources (address
range 10.1.0.0/19). The base-line performance is measured by
configuring the firewall with static rules to permit the above
sessions. We then remove the static rules, load our dynamic
firewall module, and repeat the experiment. We distinguish
the case when the C-S and C-G relations have already been
established (we call this the stabilised case) from the transient
case when the relations are being established – the latter
includes the performance impact caused due to heavy “update”
operations on the relations.

Figure 3(a) shows packet latency while 3(b) shows associ-
ated CPU load. We see that the stabilised performance curves
overlap with the base-line case, indicating that the query oper-
ations hardly incur a computational overhead. However, when
the relations are being established (transient), the performance
degradation is clearly visible. This indicates that “updates”
are expensive, probably due to the memory allocattion calls
when relations are being created. Insight from this scenario
is leading us to re-evaluate our design to minimise sytem
memory allocation in the next version of our implementation.

Scenario III [multicast-attack]: Our third scenario sim-
ulates multicast denial-of-service (DoS) attacks, originating
from the external IXIA port, in addition to the legitimate
traffic described in the previous scenario. We only consider
the case where the attackers (from IP range 10.1.128.1/19)
send packets to groups that clients in the enterprise have
subscribed to (otherwise the multicast routing protocols would
not deliver the attack packets to the enterprise anyway). We
now quantify if the attacks cause performance degradation
at the firewall (CPU load) or for internal clients (packet
latency) as the intensity of the attack packets (and hence load
on the firewall interface) varies. Figure 4(a) shows that the
packet latency is hardly distinguishable from the base-line
where the firewall uses static rules, and figure 4(b) shows
the associated CPU load to be only marginally higher. From
this we conclude that our firewall dynamically allows solicited
traffic without incurring much perceptible performance cost
even under reasonably severe DoS attacks.

VI. SUMMARY AND FUTURE WORK

In this paper we have proposed, prototyped, and tested a
first-of-a-kind multicast firewall algorithm that dynamically
determines solicited from unsolicited multicast traffic. This
eliminates the need for manual configuration of firewall rules
on a per-multicast-session basis, while protecting the enter-
prise network against multicast DoS attacks. We prototyped
our idea as a simple plug-in module to the Linux NetFilter
framework, and showed that it is easily implementable and
almost as efficient in terms of packet latency and CPU load
as having static rules. We believe that enterprises eager to
use emerging multicast applications could hugely benefit from
such a dynamic stateful multicast firewall.

Our future work is improving the performance of our pro-
totype implementation by reducing memory allocation system
calls, and investigating new data structures and algorithms that
provide appropriate trade-offs in space and time complexity for
typical enterprise traffic patterns.

REFERENCES

[1] S. Deering and D. Cheriton. Multicast Routing in Datagram Internet-
works and Extended LANs. ACM Transactions on Computer Systems,
8(2):85–110, May 1990.

[2] MMOGCHART. http://www.mmogchart.com.
[3] Microsoft TV: IPTV Edition. http://www.microsoft.com/tv/IPTVEdition.mspx.
[4] The Access Grid. http://www.accessgrid.org.
[5] S. Ratnasamy, A. Ermolinskiy, and S. Shenker. Revisiting IP Multicast.

In Proceedings of ACM Sigcomm, Pisa, Italy, Sep 2006.
[6] LWN.net. Multicast Impacts from the Ramen Worm, 2001.

http://lwn.net/2001/0125/security.php3.
[7] IETF Multicast Security (MSEC) working group.

http://www.ietf.org/html.charters/msec-charter.html.
[8] H. Holbrook and D. Cheriton. IP Multicast Channels: Express Support

for Single-Source Multicast Applications. In Proceedings of ACM
Sigcomm, Cambridge, MA, Sep 1999.

[9] IETF Source-Specific Multicast (SSM) working group.
http://www.ietf.org/html.charters/ssm-charter.html.

[10] L. Oria. Approaches to Multicast over Firewalls: An Analy-
sis. Technical Report HPL-IRI-1999-004, HP Labs, Aug 1999.
http://www.hpl.hp.com/techreports/1999/HPL-IRI-1999-004.html.

[11] W. Fenner. Internet Group Management Protocol, version 2. RFC 2236.
http://www.ietf.org/rfc/rfc2236.txt.

[12] IETF Session Initiation Protocol (SIP).
http://www.ietf.org/html.charters/sip-charter.html.

