
Packet Pacing in Short Buffer
Optical Packet Switched Networks
Vijay Sivaraman∗‡, Hossam Elgindy†, David Moreland‡, Diethelm Ostry‡

∗School of Electrical Engineering and Telecommunications, University of New South Wales, Australia
†School of Computer Science and Engineering, University of New South Wales, Australia

‡ICT Centre, CSIRO, Australia

Abstract— In the absence of a cost-effective technology for
storing optical signals, emerging optical packet switched (OPS)
networks are expected to have severely limited buffering capa-
bility. This paper investigates the resulting impact on end-to-end
loss and throughput, and proposes that the optical edge switches
“pace” packets into the OPS core to improve performance
without adversely affecting end-to-end delays. In this context,
our contributions are three-fold. We first evaluate the impact of
short buffers on the performance of real-time and TCP traffic.
This helps us identify short-time-scale burstiness as the major
contributor to performance degradation, so we propose that the
optical edge switches pace the transmission of packets into the
OPS core while respecting their delay-constraints. Our second
contribution develops algorithms of poly-logarithmic complexity
that can perform optimal real-time pacing of high data rate
traffic. Lastly, we show via simulations of a realistic network
carrying real-time traffic that pacing can significantly reduce
losses at the expense of a bounded increase in end-to-end delay.
The loss-delay trade-off mechanism provided by pacing can help
achieve desired OPS network performance.

I. INTRODUCTION

The maturation of Wavelength Division Multiplexing
(WDM) technology in recent years has made it possible to
harness the enormous bandwidth potential of an optical fibre
cost-effectively. As systems supporting hundreds of wave-
lengths per fibre with transmission rates of 10-40 Gbps per
wavelength become available, electronic switching is increas-
ingly challenged in scaling to match these transport capacities.
All-optical switching [1] shows promise in meeting these
challenges. To support data traffic efficiently, various optical
sub-wavelength switching methods such as in [2], [3] have
been proposed, of which optical packet switching (OPS) [4]
is particularly attractive. Several experimental test-beds [5]–[9]
have demonstrated the feasibility of OPS.

A fundamental concern in OPS networks is contention,
which occurs at a switching node whenever two or more
packets try to leave on the same output link, on the same
wavelength, at the same time. In electronic store-and-forward
switches, contention is resolved relatively easily using RAM
(that can buffer as many as a million packets). By comparison,
a state-of-the-art optical buffer available on an integrated opto-
electronic chip can hold at most a few dozen optical packets
[10]. Alternatively, spools of fibre can implement fibre delay
lines (FDLs) [11] that provide optical buffering capability. Un-
fortunately, the high speed of light implies that even minimal
buffering requires large fibre spools (1 km of fibre buffers

light for only 5µsec; contrast this to conventional electronic
routers that typically have buffering of 50-250 msec), and
this makes the provision of more than a few tens of µsec of
delay with FDLs unwieldy. Additionally, incorporating FDLs
into a typical OPS switch design (such as the shared memory
architecture [4], [12]) requires larger optical crossbars, which
can add significantly to cost as the FDL buffers increase. At
the present time it seems that OPS networks of the foreseeable
future will have very short buffering capacity.

It should be noted that there have been other proposals
for resolving contentions in the optical domain, such as
wavelength conversion [13], [14], deflection routing [15],
and combinational schemes [16]. However, these schemes
also have limitations (cost of wavelength converters, packet
reordering, etc.), and are not expected to significantly alleviate
contentions in a cost-effective manner. Though we do not ex-
plicitly consider these schemes, our conclusions are generally
applicable whenever contention resolution resources are sparse
in the network.

Our objective in this paper is to investigate the impact of
sparse OPS contention resolution resources (henceforth “short
buffers”) on the performance of real-time and TCP traffic, and
to develop means of managing the performance degradation.
Our contributions are three-fold. First, we demonstrate via
traffic trace simulations and TCP experiments that in spite
of the high capacity available in OPS networks, short buffers
significantly impact performance when the traffic exhibits
short-time-scale burstiness. To address this, we propose the
“pacing” of packets at the optical edge, wherein the traffic is
made less bursty at short-time-scales, while respecting delay
constraints. Devising an optimal pacer that operates in real-
time on arbitrary traffic at high data rates is challenging.
Our second contribution therefore formulates algorithms that
can achieve this in time poly-logarithmic in the number of
queued packets, and points to approximations feasible for
efficient hardware implementation. For our final contribution,
we quantify via simulations the loss-delay tradeoffs of packet
pacing, both for a single link and for an OPS network topol-
ogy derived from an operational Australian network carrying
realistic traffic streams. We propose that pacing at the optical
edge can be instrumental in realising acceptable performance
in emerging short-buffer OPS networks.

Parallel to our work, other researchers have presented argu-
ments in favour of reducing network buffer sizes in general.



In [17] it was shown that contrary to the prevalent rule-of-
thumb, router buffer size can be scaled down by the square root
of the number of TCP flows sharing the bottleneck without
loss in performance. Very recently, the authors in [18], [19]
have argued that router buffers of size logarithmic in the TCP
congestion window size suffice for high throughput provided
each TCP sender paces packet injections from its window.
Remarkably, this signifies that under certain conditions, as
few as 10-20 packet buffers may suffice to achieve close to
maximum TCP throughput performance, irrespective of the
number of the TCP flows. While we have not undertaken
a careful comparison with our work, it would seem their
identification of the advantages of TCP pacing lends some
support to our proposal of pacing traffic at the optical edge.
There are however significant differences to our approaches
– while their study considers only TCP traffic, our study
aims to benefit simultaneous non-TCP real-time traffic as well.
Another difference is that rather than pacing at the end-hosts,
we focus on pacing at the edge of the optical network. The
former has the advantage that it may require changes only
in the end-host TCP implementation. Nevertheless, packet
spacing may not be adequately preserved when traffic reaches
the core network, particularly if there is a significant volume
of bursty real-time traffic sharing links with the TCP traffic.
Our approach puts the pacing as close to the short-buffer OPS
network as possible, potentially delivering improved perfor-
mance for all traffic. On the downside, our approach requires
dedicated, possibly expensive, high-speed pacing engines.

The rest of this paper is organised as follows: section II
illustrates the performance impact of short-buffers, discusses
prior work addressing this issue, and outlines our approach
of pacing packets. In section III we briefly describe the
system setting and recall results on off-line optimal smoothing
of video traffic relevant to our work. Section IV develops
efficient algorithms for the real-time pacing of arbitrary time-
constrained traffic, while section V quantifies via simulation
the loss-delay trade-off achievable via pacing. The paper is
concluded in section VI.

II. SHORT BUFFERS: IMPACT AND SOLUTIONS

In this section we first illustrate the impact of short buffers
on losses for synthetic trace traffic and throughput for real
TCP flows. We then briefly review some prior approaches
to improving this performance, and outline our approach to
tackling this through packet pacing.

A. Short Buffers and Real-Time Traffic

A direct impact of short network buffers is an increase in
packet losses. To illustrate with an example we consider a
single link with a queue of finite and small capacity. The link
rate is set at 10 Gbps, and packets have a constant size of
1250 bytes (this is consistent with earlier studies of slotted
OPS systems). Fig. 1 shows the packet losses as a function of
buffer size obtained from simulations of short range (Poisson)
as well as long range dependent (LRD) input traffic at various
system loads (the traffic model is detailed in section V). The

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30

Lo
ss

Buffer size (packets)

Poisson load=40%
Poisson load=60%
Poisson load=80%

LRD load=40%
LRD load=50%
LRD load=60%

Fig. 1. Loss vs. buffer size at a finite-buffer switch

8.5

9

9.5

10

10.5

11

11.5

12

8 10 12 14 16 18 20

A
gg

re
ga

te
 T

C
P

 th
ro

ug
hp

ut
 (

M
bp

s)

Optical switch (Cisco) buffer size (packets)

Fig. 2. OPS node (Cisco) buffer size vs. aggregate TCP throughput

plots illustrate that an OPS node with very limited buffering
(say 10 to 20 packets) can experience significant losses even
at low to moderate traffic loads, particularly with the LRD
model which is more representative of real-world traffic. This
loss performance may be unacceptable in a core network
that supports real-time applications with stringent loss QoS
requirements.

B. Short Buffers and TCP Traffic

The majority of Internet traffic today is TCP, and it may
be argued that TCP performance is better measured in terms
of throughput rather than loss, since TCP relies on loss for
detecting and reacting to congestion. In [17] the authors
consider buffering at bottleneck links and argue that it can be
reduced considerably while maintaining high link utilisation.
For our experiment the short-buffer link operates at low to
moderate utilisation (as may be expected of high-speed OPS
links), and is hence not the bottleneck link. Nevertheless,
we show that the losses due to short buffers at these non-
bottleneck links can still result in significant degradation of



TCP performance.
Our experiments were run between multiple PCs running

Free-BSD at Sydney and Melbourne connected over the CeN-
TIE network [20], described in more detail in section V. A
Cisco 7206 VXR in Sydney acts as an OPS switch, whose
buffer size we vary. The Iperf tool was used to generate several
(32 for this experiment) TCP flows traversing from Sydney to
Melbourne, with a round-trip time of approximately 30 msec.
We also use an IXIA traffic generator to create UDP traffic that
multiplexes with the TCP flows and creates bottleneck links
prior to entering the Cisco OPS node. This is because we
are interested in the effect that short buffers at non-bottleneck
high-speed OPS links have on TCP performance. We therefore
ensure that the utilisation of the output link of the Cisco OPS
node does not exceed 60%. We modify the buffer size on the
Cisco OPS node and record the effect on the aggregate TCP
throughput for all the flows, plotted in Fig. 2 (the readings
for each run were collected for half an hour at one minute
intervals, with the standard deviation also plotted in the figure).
Our method for varying the buffer size is similar to [17],
namely by employing egress link shaping and adapting the
token bucket size; a limitation of this approach on the Cisco
is that the buffer cannot be reduced to below 8 packets. Even
at this buffering, we observe that the TCP throughput is 20%
lower than what is achievable with buffering of 16 or more
packets at the Cisco OPS node. This indicates that even though
OPS networks have sufficient capacity so as not to bottleneck
TCP flows, the extremely limited buffering at OPS nodes can
significantly degrade TCP throughput.

C. Prior Approaches to Reducing OPS Losses

The problem of reducing packet loss in short buffer optical
networks has been addressed by some earlier work. The
approach in [21]–[23] is to treat this as a global scheduling
problem, wherein packets are transmitted by the optical edge
nodes at appropriate time instants that meet the packet’s time-
constraints while minimising (a weighted measure of) loss in
the network. The general problem is shown to be NP-hard
[23], and approximate off-line [22], [23] and on-line [21]
algorithms are developed for restricted topologies. Though
theoretically insightful, these methods require global network-
wide co-ordinated scheduling amongst the nodes, which is not
practically feasible in packet networks.

An observation that emerges from the simulations of real-
time and experiments of TCP traffic is that when buffers are
very short, losses result even when a few packets arrive back-
to-back; in other words, short time-scale burstiness is a major
contributor to losses. Typical routers today have sufficient
electronic buffers to absorb such short time-scale burstiness,
and longer time-scales rate fluctuations are protected against
by means of rate-based shaping methods such as leaky-bucket
or GCRA. Shaping, however, is unsuitable in the OPS context,
since a low shaping rate leads to excessive delays, while
larger shaping rates are ineffective in reducing short time-
scale burstiness. This has been confirmed by studies in [24]
and our own earlier work in [25]. What is therefore required

CoS
classifier sorter

EDF

4 3 2 1

rate
controller

τ

server
output

input

service rate

τ τ τ τ

Fig. 3. Model of the pacer

is a means of smoothing traffic at short-time-scales without
adversely impacting on end-to-end delays.

D. Packet Pacing

Pacing, also known as smoothing, has been studied before
in the context of video traffic transmission. Unlike a shaper,
which releases traffic at a given rate, a pacer accepts arbitrary
traffic with given delay constraints, and releases traffic that
is smoothest subject to the time-constraints of the traffic,
where “smoothness” may be measured using the maximum
rate, rate variance, etc. The delay tolerance of traffic passing
through the pacer is crucial to the efficacy of the pacer – the
longer the traffic can be held back at the pacer, the more the
window of opportunity the pacer has to smooth traffic and
reduce burstiness. A fundamental theoretical contribution in
[26] identifies an optimal strategy for the off-line smoothing of
stored video clips. This has led to several studies on dynamic
smoothing of broadcast video streams [27]–[29] (where a
few seconds of distribution delay is acceptable) as well as
interactive video streams [30] (wherein only a few frames can
be buffered at the smoother).

Apart from our preliminary exploration in [31], to the best
of our knowledge there has not been a study of pacing in
the context of short-buffer OPS networks. In this paper we
investigate the applicability of pacing to OPS networks in
greater detail, and specifically make three new contributions:
(1) we provide additional motivation for pacing by demon-
strating the impact of short-buffers at non-bottleneck links on
TCP performance, (2) we develop new algorithms of provably
low complexity that can perform the pacing in real-time for
traffic with arbitrary delay constraints, and (3) we quantify via
simulations of a realistic topology the loss-delay tradeoffs that
packet pacing facilitates. In the next section we describe the
architecture of the pacer and elaborate on the optimal off-line
algorithm which provides the basis for our real-time pacing
algorithms.

III. SYSTEM MODEL AND OFF-LINE OPTIMUM

The packet pacer smoothes traffic entering the OPS network,
and is therefore employed at the optical edge switches on
their egress links connecting to the all-optical packet switching



τ
1 τ2 τ

3
τ

k0 T

delay bound

w
or

kl
oa

d 
(b

yt
es

)

arrival curve A(t)

deadline curve D(t)

a feasible exit curve S(t)

time

Fig. 4. Arrival, deadline, and exit curves for an example workload process

core. Note that the optical edge switches process packets
electronically, and are therefore assumed to have ample buffers
required to do the pacing. Once a packet enters the OPS
core, is it processed all-optically by each OPS core switch,
where buffering is limited. The idea of pacing is therefore
to modify the traffic profile entering the OPS network so
as to use the limited buffers more efficiently and reduce
losses, but without adversely affecting end-to-end delay. As
we mentioned in the previous section, rate-based shaping is
unsuitable as it does not effectively resolve short-time-scale
burstiness, while adversely affecting end-to-end delay. Our
pacing method instead smoothes traffic, namely minimises
output burstiness, subject to delay constraints. We will show in
this paper that this approach is very effective in reducing short-
time-scale burstiness, and hence OPS losses, while preserving
end-to-end delay performance.

A generic architecture of our pacer is shown in Fig. 3.
Incoming packets are classified (according to some criteria)
and assigned a deadline by which they are to be released by the
pacer. A special case we will consider later is when all packets
have identical delay constraints, in which case the architecture
can be simplified. The objective of the pacer is to produce the
smoothest output traffic such that each packet is released by
its deadline. It is natural for the pacer therefore to release
packets in order of deadline, namely to implement Earliest
Deadline First (EDF) service [32], [33], which has known
optimality properties [34] and can be implemented efficiently
[35]. However, the pacer, much like a traffic shaper, is non-
work-conserving, and in trying to produce a smooth output,
behaves as a variable rate server whose rate is modulated by
the deadlines of the waiting packets. The challenge is in deter-
mining the rate modulation strategy that maximally smoothes
the output (discussed in this section) and in implementing this
scheme efficiently in real-time at high data rates (the subject
of the next section).

Our pacing strategy derives from studies of video traffic
smoothing, which we summarise next. Let [0, T ] denote the
time interval during which the pacing system is considered,
chosen such that the system is void of traffic at 0 and T .
Denote by A(t), 0 ≤ t ≤ T the arrival curve, namely the
cumulative workload (say in units of bytes) arriving in [0, t).

Denote by D(t), 0 ≤ t ≤ T the deadline curve, namely the
cumulative workload that has to be served in [0, t) so as not
to violate any deadlines (thus any traffic with deadline earlier
than t contributes to D(t)). Fig. 4 depicts an example A(t) and
D(t) for the case where all arriving traffic has identical delay
requirements. Note that by definition D(t) can never lie above
A(t). Any service schedule implemented by the pacer can be
represented by an exit curve S(t), 0 ≤ t ≤ T , corresponding to
the cumulative traffic released by the pacer in [0, t). A feasible
exit curve, namely one which is causal and satisfies the delay
constraint, must lie in the region bounded above by the arrival
curve A(t), and below by the deadline curve D(t).

Amongst all feasible exit curves, the one which corresponds
to the smoothest output traffic, measured by various metrics
such as transmission rate variance, has been shown in [26] to
be the shortest path between the origin (0, 0) and the point
(T,D(T )), as shown in Fig. 4. This curve always comprises
a sequence of straight-line segments joining points on the
arrival and deadline curves, each segment representing a period
during which the service rate is a constant. Computation of
this curve requires knowledge of the complete traffic arrival
curve, which restricts the approach to off-line applications
like the transmission of stored video files. For on-line video
transmission applications such as news and sports broadcasts
for which delays of seconds to minutes are tolerable, on-line
algorithms can be derived from the above off-line optimal by
maintaining a time window (i.e. delay buffer) to implement a
lookahead capability (see for example [27]–[29]). There has
also been some work in smoothing interactive video streams
[30] wherein a few frames are buffered at the smoother.

To the best of our knowledge, there has been no prior
study (other than our own in [31]) on the applicability of
traffic smoothing or pacing to short-buffer OPS networks. Prior
studies of video transmission have predominantly considered
off-line or time-lagged on-line smoothing, whereas in the OPS
context pacing has to be done in real-time for arbitrary input
traffic. Further, unlike video applications where one or at most
a few streams are smoothed at end-hosts or video servers, the
OPS edge nodes have to smooth traffic aggregates at very
high data rates. In the next section we develop algorithms that
optimally pace high-rate traffic in real-time and are amenable
to efficient implementation at OPS edge nodes.

IV. EFFICIENT REAL-TIME PACING

It is shown in [26] that an off-line pacer yields the smoothest
output traffic satisfying the delay constraints if its service
rate follows the shortest path lying between the arrival and
deadline curves. In the on-line case, however, the packet
arrival process is non-deterministic, and the arrival curve is not
known beforehand. In the absence of any assumptions about
future packet arrivals, our on-line algorithm determines the
smoothest output for the packets currently in the pacer. Thus
at time t, the arrival curve considered to the right of t is a
horizontal line (since future arrivals are not known yet), and
the shortest-path exit curve degenerates to the convex hull of
the deadline curve [31]. Upon each packet arrival, the deadline



1

3

2
arrival
new packet

Final hull: O-A-B-C-D-H

original hull: O-A-B-C-D-E-F-G

C

B

A

E
F

G

H

delay bound

packet deadline

second test vertex

first test vertex

final vertex: D-H is tangent to deadline curve

D

deadline curve

O

packet arrival

time

w
or

kl
oa

d 
(b

yt
es

)

Fig. 5. Example showing single-class hull update

curve is augmented, and this may require a recomputation of
the convex hull which defines the optimal exit curve. This
section develops algorithms for the efficient update of the
convex hull of the deadline curve upon each packet arrival.

A. Single Delay Class

We first consider the case where all packets entering the
pacer have identical delay constraints. This simplies the hull
update algorithm since each packet arrival augments the dead-
line curve at the end. This is illustrated with an example in Fig.
5. Starting with the original convex hull O-A-B-C-D-E-F-G, a
new packet arrival at time 0 adds a new point H to the deadline
curve. From H, we find a tangent to the original convex hull by
doing a binary search on the hull segment slopes. Operation
1 examines the mid-point C of the hull, realises that H-C

lies below the original hull, and so moves right. In operation
2 the mid-point E of the right half is examined, and it is

found that EH lies above the original hull, so the algorithm
moves left, till it reaches point D in operation 3 that gives
the desired tangent and final hull O-A-B-C-D-H.

1) Determine size and deadline of newly arrived packet and
create new vertex u.

2) Search in the AVL tree for the tangent point r from
vertex u to the convex hull.

3) Delete all vertices with time larger than that of r, insert
vertex u, and rebalance the AVL tree.

Fig. 6. Single-class hull update algorithm

Fig. 6 depicts the update algorithm more formally. Recalling
that the deadline curve is a piecewise-linear curve, where the
start/end times of its individual segments correspond to arrival
of new packets as illustrated in Fig. 5, we can represent it
as a planar polygonal line whose vertices v0, v1, . . . vn are
in increasing order with respect to both axes. The vertices
are stored in a height-balanced search tree T structure, the
AVL tree for example, with the value of time used as the
search key. Along with each vertex we also store pointers to

new packet
deadline

A

new hull vertices

O

packet arrival

deadline curve

hull vertex disappears

new deadline curve

w
or

kl
oa

d 
(b

yt
es

)

time

Fig. 7. Example illustrating that an arbitrary number of new hull points may
appear when the arriving packet has an arbitrary deadline

its predecessor and successor on the boundary of its convex
hull.

In step 1 of the algorithm, the size of the incoming packet
is determined, along with its deadline, and a new vertex u
is created. The arrival of the new packet, which causes the
deadline curve to be amended, results in appending a new
vertex to the end of the hull. The new vertex may cause it to
lose convexity, since the newly added segment may have slope
larger than that of the preceding hull edge. Step 2 therefore
searches the tree T for the unique vertex r such that slope
of the segment connecting r and u is smaller than that of
the preceding hull edge but larger than that of the following
hull edge. The search process is a binary search of the AVL
tree, as described by Preparata [36, procedure TANGENT]. At
this stage the hull representation is restructured in step 3 by
removing all vertices with value of time larger than that of r,
inserting the new vertex u, and rebalancing the tree T , again
as described in [36].

The complexity of the above convex hull update operation
that need to be performed upon the arrival of each packet
has O(log n) cost, where n is the number of queued packets
[36]. Once the pacer has released packets corresponding to
a segment of the hull, the segment needs to be deleted.
The complexity of deleting a vertex of the convex hull and
restructuring the tree T also has O(log n) cost, where n is the
number of queued packets, as shown in [36].

B. Multiple Delay Classes

We now consider the general case where arriving packets
may have arbitrary delay constraints. Handling packets with
different delay times is complicated by the fact that the arrival
of a new packet causes significant changes to the deadline
curve. Recalling that the deadline curve is a piecewise-linear
curve, where the start/end times of its individual segments
correspond to deadlines of packets already in the system,
we represent it as a planar polygonal line whose vertices



v0, v1, . . . vn form a sequence in increasing order with respect
to both axes. The arrival of the new packet with a deadline
between two existing vertices, say vi and vi+1, changes the
deadline curve through the insertion of a new vertex u between
them in the sequence and raising each of the vertices in the
sub-sequence vi+1, vi+2, . . . , vn by a value corresponding to
the size of the new packet. As a result some vertices of the
deadline curve, which were not part of the hull prior to arrival
of the new packet, may appear as convex hull vertices as
illustrated in Fig. 7. The number of such new points can be as
high as the number of packets in the system, and the process
of re-computing the convex hull is not as simple as searching
a binary tree as we did in the single-class case above.

The idea behind the algorithm is that for an incoming packet
with arbitrary deadline, the original deadline curve is split
into two parts, corresponding to the left and right of the new
arrival’s deadline. The convex hulls for each of the parts is
independently computed, after the deadline curve to the right
has been shifted up to account for the new packet arrival. The
two hulls are then merged back to get the complete convex
hull. The goal is to perform this process as efficiently as
possible.

1) Determine size and deadline of newly arrived packet and
create new vertex u.

2) Insert u into the 2-3 tree and divide it into trees TL and
TR. TL holds keys ≤ that of u, and TR the remaining.
Store size of new packet in root of TR.

3) Merge TL and TR into a single tree.

Fig. 8. Multi-class hull update algorithm

Fig. 8 depicts our algorithm for determining the convex
hull upon each packet arrival. Our vertices are stored in
the leaves of a search tree T structure which is capable of
supporting concatenable-queue operations, such as the 2-3 tree
[37, sections 4.12], with the value of time used as the search
key. Each internal node of T stores the convex hull of its leaves
in a secondary tree structure that is also capable of supporting
concatenable-queue operations. A linear size of the tree T and
all its secondary structures is achieved by storing a vertex in
the convex hull of an internal node only if it is not stored in
any of its ancestor nodes [38].

In step 1 of the algorithm, the size of the incoming packet
is determined, along with its deadline, and a new vertex u
is created. The arrival of the new packet, which causes the
deadline curve to be altered, triggers re-computation of the
convex hull. Step 2 therefore searches the tree T along the
root-to-leaf path and inserts the new vertex u as a new leaf
according to its deadline value. The tree T is then divided
about u so that all the leaves to the left of u and u itself are
in one 2-3 tree TL and all the leaves to the right of u are in a
second 2-3 tree TR. The division is a recursive process detailed
in [37, section 4.12]. For each internal node visited during the
search process that will be deleted in the divide process, we
use the convex hull stored in its secondary structure to compute
a complete hull for each of its children, as described in [38].

At the end of the divide process, values of all vertices in TR

need to be incremented by the size of the incoming packet
(i.e. shift the deadline curve up); this is achieved by storing
the size of the new packet in the root of TR. In step 3, the
two trees TL and TR are again concatenated into a single tree,
which yields the final convex hull of the new deadline curve.
The complexity of the entire convex hull update operation that
need to be performed upon each packet arrival is O(log2 n),
where n is the number of queued packets [38].

As in the single-class case, a hull segment needs to be
deleted once packets corresponding to the segment have been
released. The complexity of deleting a vertex of the convex
hull and restructuring the tree T again has an O(log2 n) cost,
where n is the number of queued packets, as shown in [38].

V. PERFORMANCE STUDY

Having shown that pacing can be implemented efficiently
at high speeds, we now show that pacing can be very effective
in improving loss performance, at the expense of a small and
bounded increase in end-to-end delays. In this section we use
simulations to show the performance improvement at a single
switch with short-buffers and in an OPS network based on a
real topology.

The traffic model we use for our simulations is based
on long range dependent (LRD) generators derived from
Norros’ self-similar traffic model [39]. This model combines a
constant mean arrival rate with fractional Gaussian noise (fGn)
characterised by zero mean, variance σ2 and Hurst parameter
H ∈ [1/2, 1). We use our filtering method [40], related to
the FFT-based methods described in [41], [42], to generate,
for a chosen H , a sequence {xi} of normalised fGn (zero
mean and unit variance). A discretisation interval ∆t is chosen,
and each xi then denotes the amount of traffic, in addition
to the constant rate stream, that arrives in the i-th interval.
Specifically, the traffic yi (in bits) arriving in the i-th interval
of length ∆t seconds is computed using:

yi = max{0, ρc∆t + sxi}
where ρc denotes in bits-per-second the constant rate stream,
and s is a scaling factor that determines the instantaneous
burstiness. This truncated Gaussian nature of yi implies that
the resulting traffic rate ρ = E[yi]/∆t is different from ρc.
Specifically, they satisfy the relation:

ρ∆t

s
=

1√
2π

e−(ρc∆t/s)2/2 +
ρc∆t

s
Q(−ρc∆t/s)

where Q(X) = P{x > X} denotes the complementary
cumulative density function of the standard Gaussian random
variable x.

For this work we set the Hurst parameter at H = 0.85 and
the discretisation interval ∆t = 1.0µs. The scaling factor s is
chosen to satisfy ρc∆t/s = 1.0, which corresponds to mod-
erate burstiness (around 16% of the samples are truncated),
and ρc is then adjusted to give the desired mean traffic rate.
The fluid traffic is then packetised into fixed-length packets
(of size 1250 bytes) before being fed to the simulations.



0.25

0.5

1

0 2 4 6 8 10 12 14 16

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n 
be

ta
(s

)

log2(s)

no pacing
pacing delay = 10 usec

pacing delay = 100 usec
pacing delay = 1 msec

pacing delay = 10 msec

Fig. 9. Burstiness β(s) vs. time-scale s with pacing for LRD traffic

1e-06

1e-05

0.0001

0.001

0.01

0.1

0 5 10 15 20 25 30

Lo
ss

Buffer size (packets)

pacer_delay = 0 usec
pacer_delay = 10 usec
pacer_delay = 20 usec
pacer_delay = 30 usec
pacer_delay = 40 usec
pacer_delay = 50 usec
pacer_delay = 60 usec
pacer_delay = 70 usec

Fig. 10. Loss vs. buffer size with pacing for LRD traffic

A. Single Node

In this scenario we consider again the single link with short
buffer studied in section II-A, and introduce our pacer between
the traffic source and the link queue. We first study the effect of
pacing on burstiness, quantified by the coefficient of variation
β(s) of the traffic volume measured over time interval of
length s. Log-log plots of β(s) versus s are routinely used
to indicate self-similarity of traffic traces and to show the
influence of the Hurst parameter H . Fig. 9 plots burstiness

on log scale for LRD input traffic at 40% loading. The slope
of −(1−H) = −0.15 validates the Hurst parameter setting of
0.85 (the different slope at very short time-scales is explained
by the discretization of the ideal fluid model required to
generate packets). The figure also shows burstiness of traffic
paced using our method described in the previous section for
pacing delay budgets of 1µsec, 10µsec, 100µsec, 1msec, and
10msec. As expected, at short time-scales pacing dramatically
reduces burstiness, and this benefit increases with the pacing
delay budget. In fact, at short time-scales, the burstiness of



paced LRD traffic seems to fall at slope 0.5, indicative of short
range dependent behaviour. However, as time-scales increase,
the burstiness levels off, till it converges back to that of the
input LRD traffic, since pacing ceases to be effective at time-
scales larger than the delay “window” available to the pacer.
This plot indicates that pacing is quite effective in reducing
short time-scale burstiness but does not impact the long time-
scale characteristics of the traffic.

In Fig. 10 we plot the total losses at the single-link of finite
and small buffer capacity. Various per-packet delay bounds
are considered at the pacer, measured in µsec (recall that
1µsec also corresponds to the transmission time of our 1250
byte packet at the link rate of 10 Gbps). A pacer wherein all
packets have delay budget 0 produces output identical to its
input, and the resulting loss curve is therefore identical to the
corresponding curve in Fig. 1. As the delay budget at the pacer
is increased, the pacer becomes more effective in eliminating
the bunching of packets being sent to the small-buffer node,
and this helps reduce losses. In this example, for buffer size
of 10, an extra 70µsec in end-to-end delay introduced by the
pacer helps reduce loss by more than an order of magnitude – a
considerable cost-benefit advantage. The losses can be reduced
even further if the traffic can tolerate larger delays at the pacer.
However, if the buffer size were to get much larger, paced
traffic would not have a significant advantage over unpaced
traffic, since losses from large buffers are a result of longer
time-scale burstiness which is not alleviated by pacing.

B. CeNTIE Network

We now quantify the impact of pacing via simulations of
an OPS network with topology derived from a real-world
network, transporting realistic traffic flows carrying LRD
traffic. Fig. 11 shows part of the CeNTIE network, a trans-
continental Australian research network [20] with MANs in
Sydney, Canberra, Melbourne, and Perth. It includes end-
user research groups from the health, education, film post-
production, and finance industries. We simulate a subset of
the CeNTIE network, with logical topology and fibre lengths
shown in Fig. 12. There are 4 core switches in the chosen
topology – two in Sydney, at CSIRO-Marsfield and the Univer-
sity of Technology, Sydney (UTS), and one each in Melbourne
and Perth. There are four edge switches connected to the
Marsfield core switch - one each at CSIRO-Marsfield, CSIRO-
Riverside, MacQuarie University (MQU), and the Royal North
Shore Hospital (RNSH). The UTS core switch is connected
to three edge switches – the Conservatorium of Music (Con),
University of New South Wales (UNSW), and Nepean Hos-
pital. At Melbourne, there is an edge switch at the University
of Melbourne (UMel), while Perth has two edge switches,
at the Australian Resource Research Centre (CSIRO-AARC)
and the University of Western Australia (UWA). All the above
mentioned sites are currently live on the CeNTIE network.

We simulate the CeNTIE network as if it were an OPS net-
work. Numerous architectural options exist for OPS networks
– slotted versus unslotted, space-switching versus broadcast-
and-select fabrics, feed-forward versus feed-back FDLs, etc.

W

λ 1

λ

1

N

τ

τD

λ 2

(N+D) x (N+D)

Optical Crossbar

1

N

Switch Control Unit

Sync

Sync

pkt headers

Fig. 13. OPS node architecture

Since short packet buffering capability is a problem common
to all the above, we illustrate its effect in a relatively simple
architecture, namely a slotted and synchronous system [6]
transporting fixed length packets. Fig. 13 depicts the shared-
memory core optical packet switch [4], [12] architecture used
in this work. On each of the input fibres, an optical splitter
splits a small amount of power from the incoming packets
and sends it to the control unit. The control unit extracts
timing information (used for configuring the synchronisation
stages) and packet header information (used for determining
the packet route and configuring the optical crossbar ac-
cordingly). Input signals are synchronised to align packets
to slot boundaries, and demultiplexed into the component
wavelengths. We assume that wavelength converters are not
employed, and each wavelength traverses its own switching
plane. Output port contentions are resolved using a set of
D FDL buffers of increasing length that provide delays of
1, 2, . . . ,D slots across all wavelengths.

Though time-slotted OPS systems require complex hard-
ware to perform synchronization, the scheduling algorithms
are significantly simpler than for asynchronous systems trans-
porting variable length packets [43]. We choose our slot size
to be 1µsec, which, at bandwidth per wavelength of 10Gbps,
carries an optical packet of size 1250 bytes. This slot size is
commensurate with studies in the literature [44], and is also
consistent with current optical crossbar technology such as
[45].

For the simulations, we selected eight traffic flows typical of
the usage of the CeNTIE network. These flows are depicted in
Fig. 12, and Table I shows their characteristics including the
type of traffic and the number of core-links traversed. The
diversity in hop-lengths and end-to-end propagation delays
give a representative sampling of traffic flows in the CeNTIE



Perth MAN Sydney MAN

Fig. 11. CeNTIE Network

MelbournePerth

UWA

ARRC UMel Con UNSW

Nepean RNSH

F1

F4F8

F31000km

25km

5000km

8km 0.2km

6km Riverside

10km

5km 16km

40km15km

0.1km

F6

F5

CSIRO

F7

UTS

F2

MQU

Marsfield

Sydney
Sydney

1km

Fig. 12. CeNTIE Simulation Topology and Flows

network. Flows F1-F4 carry time-critical traffic, and so we
choose to not subject them to pacing. Flows F5-F8 carrying
intranet and university traffic are not considered to be very
time-critical, and are hence subject to pacing at the OPS edge.

Though our work does not preclude the use of wavelength
converters, our simulations assume that they are not available.
Consequently, traffic from different wavelengths are indepen-

dent and do not interact, and it suffices to simulate a single
wavelength. Also, our traffic flows are unidirectional; the study
of closed-loop traffic is left for the future. All links operate
at 10Gbps. Each flow generates LRD traffic at a mean rate of
1.5 Gbps. Each of the three core links carries 4 flows, and is
thus loaded at 6 Gbps or 60% of link capacity. We believe
such a loading scenario is realistic.



1e-06

1e-05

0.0001

0.001

0.01

0.1

0 5 10 15 20 25 30

A
gg

re
ga

te
 lo

ss

Maximum FDL buffer (packets)

no pacing
pacing delay = 100 usec
pacing delay = 200 usec
pacing delay = 300 usec
pacing delay = 400 usec
pacing delay = 500 usec
pacing delay = 600 usec
pacing delay = 700 usec
pacing delay = 800 usec
pacing delay = 900 usec

pacing delay = 1000 usec

Fig. 14. Loss vs. maximum FDL buffer for the CeNTIE network

TABLE I

CENTIE NETWORK FLOWS SIMULATED

flow# src → dest traffic type hops

F1 RNSH → Nepean medical 1

F2 Nepean → ARRC management 2

F3 Riverside → Conservatorium functions 1

F4 Conservatorium → UWA music collab 2

F5 CSIRO-Marsfield → ARRC intranet 3

F6 MQU → UNSW university 1

F7 UNSW → UMel university 1

F8 UMel → UWA university 1

Fig. 14 plots the aggregate network losses against the
maximum FDL buffer size at each OPS node for various
delay constraints at the pacer for packets of the non-time-
critical flows F5-F8. Note first that in the absence of any
buffers at the OPS nodes, pacing has no effect on loss rates.
Though counter-intuitive, this is because loss in a bufferless
slotted system depends only on how many input lines have a
packet destined for the same output line in a particular slot,
and this is invariant to pacing. In a slotted system, pacing
helps reduce burstiness in terms of variation in the number
of packets carried in groups of slots, it can not change the
statistics at the granularity of a single slot.

For maximum FDL buffer size in the range of 10-20 packets,
it is seen that pacing the non-time-critical flows by introducing
a few hundred µsec of delay reduces losses in the OPS network
by more than an order of magnitude. For a cross-continental
network with multiple tens of msec in propagation delay, an
additional delay of less than a msec is negligible, but allows
substantial improvement in loss performance. This ability to

trade-off a slight increase in end-to-end delay for a substantial
reduction in loss, and the ability to explicitly control this trade-
off, could make pacing a very useful mechanism in short buffer
OPS networks.

VI. CONCLUSIONS

Emerging optical packet switched (OPS) networks will
likely have very limited buffering capability, possibly no more
than a few tens of packets. This can adversely impact end-
to-end performance, causing high losses for real-time traffic
and reduced throughput for TCP flows. Since short-time-
scale burstiness is the major contributor to the performance
degradation, we proposed the “pacing” of traffic at the optical
edge prior to injection into the OPS core. Pacing reduces the
traffic burstiness for a bounded and controllable penalty in end-
to-end delay. We developed algorithms of poly-logarithmic
complexity that can efficiently implement optimal real-time
pacing of traffic aggregates with arbitrary delay requirements.
Through simulation of a realistic network, we showed that
pacing can reduce losses in short-buffer OPS networks by
more than an order of magnitude, at the expense of a small
increase in end-to-end delay. This ability to trade-off delay
for loss points to a feasible way of realising acceptable
performance from short-buffer OPS networks.

Our future work targets a deeper study of TCP performance
over short-buffer networks, particularly when it multiplexes
with real-time traffic. It would also be interesting to undertake
a comparison of our approach of pacing traffic at the optical
edge to the approach in [18], [19] of pacing TCP at end hosts.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Craig Russell of CSIRO,
together with Mohit Mundhra and Amit Kumar of the Indian



Institute of Technology for their help in setting up the TCP
experiments in this paper.

REFERENCES

[1] R. Ramaswami and K. N. Sivarajan, Optical Networks, A Practical
Perspective, 2nd ed. Morgan Kaufmann, 2002.

[2] C. Qiao and M. Yoo, “Optical burst switching (OBS) – A new paradigm
for an optical Internet,” J. of High Speed Networks, vol. 8, no. 1, pp.
69–84, 1999.

[3] I. Chlamtac, V. Elek, A. Fumagalli, and C. Szabo, “Scalable WDM
access network architecture based on photonic slot routing,” IEEE/ACM
Trans. Networking, vol. 7, no. 1, pp. 1–9, Feb 1999.

[4] S. Yao, S. Dixit, and B. Mukherjee, “Advances in photonic packet
switching: an overview,” IEEE Comm. Magazine, vol. 38, no. 2, pp.
84–94, Feb 2000.

[5] A. Carena et al., “OPERA: An optical packet experimental routing
architecture with label swapping capability,” J. Lightwave Tech., vol. 16,
no. 12, pp. 2135–2145, Dec 1998.

[6] C. Guillemot et al., “Transparent optical packet switching: The European
ACTS KEOPS project approach,” J. Lightwave Tech., vol. 16, no. 12,
pp. 2117–2134, Dec 1998.

[7] D. Hunter et al., “WASPNET: A wavelength switched packet network,”
IEEE Comm. Magazine, vol. 37, no. 3, pp. 120–129, Mar 1999.

[8] D. Wonglumson et al., “HORNET: A packet switched WDM network:
Optical packet transmission and recovery,” IEEE Photonics Tech. Letters,
vol. 11, no. 12, pp. 1692–1694, Dec 1999.

[9] L. Dittmann et al., “The European IST project DAVID: A viable
approach toward optical packet switching,” IEEE J. Selected Areas in
Comm., vol. 21, no. 7, pp. 1026–1040, Sep 2003.

[10] H. Park, E. F. Burmeister, S. Bjorlin, and J. E. Bowers, “40-Gb/s
optical buffer design and simulations,” in Numerical Simulation of
Optoelectronic Devices (NUSOD), Santa Barbara, CA, Aug 2004.

[11] D. Hunter, M. Chia, and I. Andonovic, “Buffering in optical packet
switches,” J. Lightwave Tech., vol. 16, no. 12, pp. 2081–2094, Dec 1998.

[12] M. J. Karol, “A shared-memory optical packet (ATM) switch,” in Proc.
6th IEEE Wksp. Local and Metro Area Networks, 1993, pp. 205–211.

[13] S. L. Danielsen, P. B. Hansen, and K. E. Stubkjaer, “Wavelength
conversion in optical packet switching,” J. Lightwave Tech., vol. 16,
no. 12, pp. 2095–2108, Dec 1998.

[14] V. Eramo and M. Listani, “Packet loss in a bufferless optical WDM
switch employing shared tunable wavelength converters,” J. Lightwave
Tech., vol. 18, no. 12, pp. 1818–1833, Dec 2000.

[15] F. Forghierri, A. Bononi, and P. R. Prucnal, “Analysis and comparison
of hot-potato and single-buffer deflection routing in very high bit rate
optical mesh networks,” IEEE Trans. Commun., vol. 43, no. 1, pp. 88–
98, Jan 1995.

[16] S. Yao, B. Mukherjee, S. J. B. Yoo, and S. Dixit, “A unified study of
contention-resolution schemes in optical packet-switched networks,” J.
Lightwave Tech., vol. 21, no. 3, pp. 672–683, Mar 2003.

[17] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in Proceedings of SIGCOMM 2004, Portland, OR, Aug-Sep 2004.

[18] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden,
“Part III: Routers with very small buffers,” ACM SIGCOMM Computer
Communications Review, vol. 35, no. 3, pp. 83–90, July 2005.

[19] ——, “Routers with very small buffers,” in to appear in the Proceedings
of IEEE Infocom, Barcelona, Spain, Apr 2006.

[20] T. Percival, “An introduction to CeNTIE,” Presentation,
http://www.centie.org/docs/CeNTIE-web-intro.ppt.

[21] J. Naor, A. Rosen, and G. Scalosub, “Online time-constrained scheduling
in linear networks,” in Proceedings of INFOCOM 2005, Miami, FL, Mar
2005.

[22] M. Adler, S. Khanna, R. Rajaraman, and A. Rosen, “Time-constrained
scheduling of weighted packets on trees and meshes,” Algorithmica,
vol. 36, no. 2, pp. 123–152, 2003.

[23] M. Adler, A. L. Rosenberg, R. K. Sitaram, and W. Unger, “Scheduling
time-constrained communication in linear networks,” Theoretical Comp.
Sc., vol. 35, no. 6, pp. 599–623, 2002.

[24] H. Elbiaze and T. Atmaca, “Traffic management in multi-service optical
network,” in Proceedings of IEEE ICN 2001, Colmar, France, Jul 2001.

[25] V. Sivaraman, D. Moreland, and D. Ostry, “Ingress traffic conditioning
in slotted optical packet switched networks,” in ATNAC 2004, Sydney,
Australia, Dec 2004.

[26] J. D. Salehi, Z.-L. Zhang, J. Kurose, and D. Towsley, “Supporting stored
video: Reducing rate variability and end-to-end resource requirements
through optimal smoothing,” IEEE/ACM Transactions on Networking,
vol. 6, no. 4, pp. 397–410, August 1998.

[27] S. Sen, J. Rexford, J. Dey, J. Kurose, and D. Towsley, “Online smoothing
of variable-bit-rate streaming video,” IEEE Trans. Multimedia, vol. 2,
no. 1, pp. 37–48, Mar 2000.

[28] R. Chang, M. Chen, J. Ho, and M. Ko, “An effective and efficient traffic-
smoothing scheme for delivery of online VBR media streams,” in IEEE
Infocom, New York, NY, Mar 1999, pp. 447–454.

[29] G. Cao, W. Feng, and M. Singhal, “Online variable-bit-rate video traffic
smoothing,” Computer Communication, vol. 26, no. 7, pp. 639–651,
2003.

[30] Y. Mansour, B. Patt-Shamir, and O. Lapid, “Optimal smoothing sched-
ules for real-time streams,” in ACM Symposium on Principles of Dis-
tributed Computing, Portland, OR, 2000, pp. 21–29.

[31] V. Sivaraman, D. Moreland, and D. Ostry, “A novel delay-bounded traffic
conditioner for optical edge switches,” in IEEE HPSR 2005, Hong Kong,
May 2005.

[32] D. Ferrari and D. Verma, “A scheme for real-time channel establishment
in wide-area networks,” IEEE Jrnl. Selected Areas in Comm., vol. 8,
no. 3, pp. 368–379, Apr 1990.

[33] D. Verma, H. Zhang, and D. Ferrari, “Guaranteeing delay jitter bounds
in packet switching networks,” in Proc. TRICOMM, Chapel Hill, NC,
Apr 1991, pp. 35–46.

[34] L. Georgiadis, R. Guérin, and A. Parekh, “Optimal multiplexing on a
single link: delay and buffer requirements,” IEEE Trans. Inf. Theory,
vol. 43, no. 5, pp. 1518–1535, Sep 1997.

[35] V. Sivaraman, “End-to-end delay service in high speed networks using
earliest deadline first scheduling,” Ph.D. dissertation, University of
California, Los Angeles, March 2000.

[36] F. Preparata, “An optimal real-time algorithm for planar convex hull,”
Communications of the ACM, vol. 22, pp. 402–405, 1979.

[37] A. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms. Addison-Wesley Publishing Company, 1975.

[38] M. H. Overmars and J. van Leeuwan, “Maintenance of configuration
in the plane,” J. Computer and System Sciences, vol. 23, pp. 166–204,
1981.

[39] I. Norros, “On the use of fractional brownian motion in the theory of
connectionless traffic,” IEEE J. Selected Areas in Comm., vol. 13, no. 6,
pp. 953–962, Aug 1995.

[40] D. Ostry, “Synthesis of accurate fractional Gaussian noise by filtering,”
to appear in IEEE Trans. Information Theory, 2006.

[41] A. T. A. Wood and G. Chan, “Simulation of stationary Gaussian
processes in [0, 1]d,” J. Computational and Graphical Statistics, vol. 3,
no. 4, pp. 409–432, Dec 1994.

[42] C. R. Dietrich and G. N. Newsam, “Fast and exact simulation of station-
ary Gaussian processes through circulant embedding of the covariance
matrix,” SIAM J. Scientific Computing, vol. 18, no. 4, pp. 1088–1107,
July 1997.

[43] L. Tančevski et al., “Optical routing of asynchronous, variable length
packets,” IEEE J. Selected Areas in Comm., vol. 18, no. 10, pp. 2084–
2093, Oct 2000.

[44] D. Careglio, J. Pareta, and S. Spadaro, “Optical slot dimensioning in
IP/MPLS over OPS networks,” in Proc. WOAN 2003., Zagreb, Croatia,
Jun 2003.

[45] T. McDermott and T. Brewer, “Large-scale IP router using a high-speed
optical switch element,” J. Optical Networking, vol. 2, no. 7, pp. 229–
240, Jul 2003.


