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ABSTRACT

Wireless sensor networks need broadcast for operations such
as software updates, network queries, and command dissemi-
nation. Alongside ensuring authenticity of the source and data,
keeping the broadcast data secret is vital in certain applications
such as battlefield control, emergency response, and natural re-
source management. In this paper we propose and prototype
a mechanism for ensuring confidentiality and authenticity of
broadcast data in single-hop networks, and discuss possible ex-
tensions to multi-hop settings. Our scheme uses known low-
complexity symmetric encryption techniques for confidential-
ity, while changing the encryption key on a per-packet basis in
a verifiable but non-forgeable way to ensure authenticity. Mes-
sage integrity, freshness, and semantic security are also pro-
vided, and the broadcast data can be dynamic and incremen-
tally processed. We incorporate our security scheme into Del-
uge, the de facto network programming protocol in TinyOS,
and quantify the cost in terms of broadcast data transfer time
and node memory space on a TelosB mote based platform.

I. INTRODUCTION

Broadcast is an essential feature in any sensor network for crit-
ical operations such as network query, software updates, time
synchronisation, and network management. Given its impor-
tance, there is growing interest in addressing broadcast secu-
rity [1]. A primary concern is the authenticity of the broad-
cast source and data: for example, in Deluge [2], the de facto
network programming protocol distributed with TinyOS today,
an arbitrary node can broadcast new versions of the software,
disseminate malicious packets, program any number of nodes,
and take over the operation of the entire network. Authenti-
cating broadcasts is particularly challenging in wireless sensor
networks due to the constrained resources available at sensor
nodes, and has recently been posed as an open problem [3].
The symmetric authentication used in point-to-point commu-
nication based on a shared key between the two parties cannot
be used in broadcast since the key would need to be shared by
all parties, which is problematic since receivers should only be
able to verify but not originate broadcasts. Asymmetric authen-
tication mechanisms based on digital signatures are impractical
on a per-packet basis due to their high computation and com-
munication overheads. Recently, several proposals [4, 5, 6]
have emerged to address the challenges in broadcast authen-
tication, particularly in the context of network reprogramming.

Though authentication is arguably the most important secu-
rity primitive for sensor network broadcasts, confidentiality is
also vital in some critical applications, such as command and
control signaling in the battlefield. The application that mo-

tivates this paper is one undertaken by our organisation, the
Commonwealth Scientific and Industrial Research Organisa-
tion (CSIRO), to build a Water Resources Observation Network
(WRON) [7] to assist in managing and controlling the national
water resources of Australia. Confidentiality of various broad-
cast data and control messages is important in such a scenario.
For example, the sensory parameters (such as sampling peri-
ods and theresholds) would from time-to-time be updated using
broadcast mechanisms, and need to be kept private. Software
upgrades should be confidential to prevent exploitation of po-
tential bugs. This paper investigates the feasibility of securing
broadcasts and keeping them confidential given the resource
constraints at the sensor nodes. We are not aware of any prior
proposals that ensure both confidentiality and authentication of
broadcast traffic in wireless sensor networks.

Our contribution in this work is to propose and prototype a
practical solution for ensuring confidentiality, authenticity, in-
tegrity, and freshness of broadcast data, primarily in the context
of single-hop wireless sensor networks (extension to multiple
hops is possible by sacrificing certain properties). Our scheme
primarily uses symmetric key cryptography, shown to be feasi-
ble for efficient implementation on resource-constrained sensor
nodes, but changes the key on a per-packet basis so that un-
trusted recipients cannot forge the broadcast data. The keys are
derived from a one-way hash chain, whereby a key is verifiable
but not forgeable from the previous key. Our scheme allows
the broadcast data to be dynamic (i.e. need not be known in
its entirety a priori), and ensures high message entropy by us-
ing a different encryption key for each packet. We prototype
our mechanism in the context of the network reprogramming
protocol Deluge included in TinyOS, and present experimental
results on the associated time and space overheads in a TelosB
mote based single-hop network.

The rest of this paper is organised as follows: Section II.
defines the problem setting, solution requirements, and prior
approaches from the literature. Our solution, and possible ex-
tensions, are discussed in Section III.. Section IV. describes
our prototype and experimental results, while Section V. sum-
marises our work and points to directions for future work.

II. PROBLEM OVERVIEW AND PRIOR SOLUTIONS

This section defines the operating environment and threat
model, outlines the solution requirements, and discusses rel-
evant prior work in wireless sensor network broadcast security.

A. Operating Environment and Threat Model

We assume a single-hop wireless sensor network in which a
single source of broadcast data, called the base-station, can di-
rectly communicate with all sensor nodes (extension to multi-
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ple hops will be discussed in Section C.). We assume that the
base-station has abundant computation resources, and cannot
be compromised. The base-station is also assumed to hold a
public/private key pair, of which the public key is known to all
nodes. Each sensor node is also assumed to be equipped with
a public/private key pair, and the base-station knows the public
key of each sensor node that is a target of the broadcast data. As
we will see later, the public keys are required only during boot-
strapping to establish initial trust; thereafter shared symmetric
keys are used for data encryption.

If the application warrants confidentiality of the broadcast
data, the sensor nodes are expected to be protected against
physical compromise. The sensor nodes in our WRON project
are expected either to be physically inaccessible to attackers
(e.g. in secured areas), or hardened by incorporation of tamper-
resistant hardware. If one or more nodes in the network are not
compromise-resistant, confidentiality of the broadcasts is sac-
rificed, though our scheme will still ensure authenticity of all
broadcasts.

We assume an underlying broadcast data delivery protocol
that guarantees reliable in-order delivery of packets. For bulk
operations such as software upgrades, broadcast protocols such
as Deluge have built-in mechanisms to guarantee this. For mo-
bile applications such as battlefield command and control, it is
conceivable that a node is out of range for an extended period
of time and then rejoins the network. At such time our scheme
permits the node to re-establish synchrony (of keys) with the
base-station by going through the bootstrap process.

The wireless medium is assumed to be insecure in that a pas-
sive eavesdropper can listen to all transmissions. An active in-
truder can transmit arbitrary messages, or replay a valid cap-
tured message at a later time. We make no assumptions about
the number of intruders, their locations, their radio range, or
the degree of collusion amongst them. In the case where nodes
are not hardened against physical compromise, no assurances
on data confidentiality can be given since an intruder can ex-
tract the cryptographic keys. Nevertheless, our scheme does
assure authenticity of the broadcast source and data, under the
assumption that the intruder does not have the capability to
block reception of packets at an uncompromised node; such
jamming effectively makes the network multi-hop, and requires
enhancement of our solution as discussed later. Finally, we do
not address denial-of-service or battery-drain attacks.

B. Solution Requirements

We seek a security mechanism that provides the following
properties for the broadcast traffic:

• Confidentiality: The broadcast data should be kept secret
from eavesdroppers. Confidentiality cannot be guaranteed
if one or more nodes in the network are physically com-
promised.

• Authenticity: Messages not originating from the base-
station should be discarded (ensuring source authenticity),
as should messages that have been tampered with (ensur-
ing data authenticity, also known as message integrity).

• Freshness: Packets that have been captured and replayed
at a later time should be ignored by the sensor nodes.

• Semantic security: Even if the broadcast messages are
chosen from a small finite set, the encryption should pro-
duce ciphertext that does not give information to an in-
truder on which of these messages was sent.

• Dynamic data: The sequence of broadcast messages need
not be known before-hand in its entirety by the base-
station.

• Delay Tolerance: No time synchronisation should be re-
quired in the system.

• Incremental processing: Each packet must be verifiable
without having to wait for additional data.

C. Prior Proposals

We are not aware of any prior work that specifically addresses
confidentiality of broadcast traffic in a wireless sensor network.
However, we briefly mention some relevant schemes for uni-
cast encryption and broadcast authentication.

TinySec [8] develops mechanisms for link-level encryption.
It is however not strong enough for broadcast traffic since the
encryption key would typically have a long lifetime and would
need to be shared by all parties, which is problematic when re-
ceivers are untrusted and could use the key to generate broad-
casts.

The µTESLA [4] protocol uses symmetric-key encryption
with time-varying keys. The base-station constructs a key chain
by repeatedly applying a hash function to an initial random
value, and the root-key is distributed to each node securely
based on a pre-distributed symmetric key. The chain construc-
tion allows nodes to verify that disclosed keys are authentic.
Loose time-synchronisation of the network into regular time in-
tervals is assumed, and the base-station uses a single key from
the key chain for the whole duration of a time interval. The key
is revealed by the base-station at a later time, when nodes can
verify that the key is a valid member of the chain, the message
authentication codes (MACs) of stored packets are correct, and
that the time delay is such that only the base-station could have
constructed the received pages.

Secured Deluge [5] adds security to the Deluge network pro-
gramming protocol by using a hash-chain to verify authenticity
of packets. The base-station sends the code update in a se-
quence of packets, each of which includes the hash of the next
packet to be sent. A node receiving the broadcast stores this
hash value, and compares it to the hash of the next page when
it is received, allowing an immediate decision as to whether the
page is authentic and in sequence. The intial packet is signed so
the intial hash value is authenticated. Sluice [6] is very similar
to Secured Deluge except that the hash in the chain is computed
over pages rather than packets.

III. OUR APPROACH

The heart of our mechanism lies in the use of a chain of keys,
one key per packet, as described below.
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Figure 1: Key chain encryption of broadcast packets

A. The Procedure

The process by which our security mechanism works for a
single-hop system is depicted in Fig. 1, and described by the
steps below:

1. Key-chain generation: The base-station (BS) selects an
arbitrary random number sM , and from it generates a key
chain sM , sM−1, . . . , s1, s0, where si−1 is a hash (SHA1
or MD5) of si for i = 1, . . . , M (see Fig. 1). Further,
the length M of the chain can be arbitrary but no less than
the number of packets n that the base-stations wants to
broadcast (in this transaction).

2. Bootstrapping: The “root-key” s0 must be securely con-
veyed to each target sensor node. The root-key could be
programmed into the sensor nodes prior to deployment
(if the key-chain in the previous step is long enough to
be used for the lifetime of the node), or one of several
key management schemes [9] can generate dynamic keys
for secure distribution of the root key to all nodes. We
have chosen to use an authenticated Diffie-Hellman ex-
change to generate a secure channel for the root-key trans-
fer. The Diffie-Hellman exchange generates a symmet-
ric shared key between the base-station and a particular
node; the base-station uses this shared key to encrypt s0

for transmission to that sensor node. The dynamic na-
ture of the Diffie-Hellman exchange precludes capture-
and-replay attacks, while authentication via digital signa-
tures (using elliptic curve methods, discussed later) pre-
vents an intruder from masquerading as the base-station or
as a sensor node, and protects against man-in-the-middle
attacks.

3. Data transmission: Once all target sensor nodes have the
root key, the base-station creates a packet by concatenat-
ing the broadcast data and the successor key s1, and en-
crypts the message with a symmetric encryption technique
using key s0 (see Fig. 1). The encryption scheme must en-
sure that modification of the encrypted data also destroys
the key, i.e. that the encrypted data and encrypted key
are not separable in ciphertext. Such message integrity is

guaranteed, for example, by the offset code-book (OCB)
mode [10] of block cipher encryption. The encrypted
packet is then broadcast to all nodes.

4. Data reception: A receiver sensor node can decrypt the
message using key s0 to reveal the data as well as the suc-
cessor key s1. If the key s1 hashes to s0, authenticity and
integrity the packet is assured (by use of an appropriate
block cipher mode) and the packet is accepted (see Fig.
1). The key s0 is now discarded by the node and the new
key s1 stored in its place.

5. Iterate: Steps 3 and 4 are repeated for successive packets,
using key si−1 in lieu of s0, and si in lieu of s1, till all
broadcast packets have been successfully received by all
target nodes. Care must be taken that successive packets
are transmitted at a rate which gives nodes sufficient time
to extract the data payload and prepare for the next packet.

B. Discussion

Our use of a key chain is similar to the scheme used by
µTESLA [4], with some differences: our scheme uses the keys
for encrypting data, while µTESLA uses the keys for com-
puting message authentication codes (MACs) to validate the
data. µTESLA discloses keys some time after the data has been
transmitted (requiring storage of packets), whereas we send
the key to decrypt a packet in the preceding packet. Lastly,
unlike our scheme, µTESLA uses network-wide loose time-
synchronisation, with a single key from the key chain being
used for the whole duration of a time interval, while our scheme
changes the key from packet to packet.

The schemes proposed in [5, 6] hash chain the data for au-
thentication. We do not include hash chains for two reasons:
first, construction of the hash chain requires a priori knowledge
of the sequence of broadcast data, which may not be available
in dynamic situations. Second, though our key chain is con-
structed independently of the data, it does, in a single-hop net-
work, authenticate the entire packet, since the successor key in
the packet is non-forgeable.

A feature common to all the above broadcast security pro-
tocols is an initial commitment step: the signed first packet in
[5] or first page in [6] commits to a data hash chain, while the
root-key in µTESLA and our scheme commits to a key chain.
Confidentiality of the broadcast data requires the initial com-
mitment to be transmitted secretly by the base-station to each
target node individually. While this is computationally expen-
sive, we note that this operation can be overlapped in nodes so
that for large networks, the time to carry out the initialisation
step is limited by communication time requirements rather than
the computational load.

Our choice of authenticated Diffie-Hellman for the boot-
strapping phase (communicating the root-key to each node)
is based on its dynamic nature (i.e., choice of different ran-
dom number in each attempt) that protects against replay at-
tacks. A simple asymmetric encryption of the root-key by the
base-station using the target node’s public key is susceptible
to capture and replay by an adversary at a later time. Authen-
ticated Diffie-Hellman exchange is implemented via elliptic-
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curve public-key cryptographic operations, which have been
show to be feasible for resource-constrained sensor nodes [11].

C. Extension to Multiple Hops

In a single-hop scenario in which all nodes can directly hear
all base-station transmissions, our scheme assures authenticity
of the broadcast message by entangling the validity of the data
with the validity of the key. However, in a multi-hop network,
a compromised transit node, instead of relaying the messages
it receives, can disentangle the keys from the data, use these
valid keys to encrypt malicious data, and forward these packets
into the remaining network. Though there are several ways in
which our scheme can be extended to ensure authenticity in
multi-hop networks with compromised nodes, none seems to
preserve all desired properties listed in section B..

One approach is to use a data hash-chain similar to [5, 6],
whereby the hash of the next packet is included in each packet
before encryption. In fact the hash might even be used as the
encryption key. However, such an approach requires all the
broadcast data to be know a priori, which is not suitable for
applications in which the data is dynamic.

Another approach is to ensure that a broadcast packet has
been received by all nodes before the next one is transmitted
by the base-station (say by having the underlying broadcast
mechanism provide packet-by-packet reliability) or by with-
holding transmission of the next packet for a fixed period of
time, at which time the key contained in the current packet
loses validity. Unfortunately, this approach requires some form
of network-wide synchronisation, similar to µTESLA [4]. A
more thorough exploration of multi-hop extensions is deferred
to future work.

IV. IMPLEMENTATION AND EXPERIMENTATION

We prototyped our security scheme as an extension to the Del-
uge network programming protocol [2] that is distributed with
TinyOS. Deluge uses broadcast to efficiently distribute a new
program to multiple target sensor nodes. Internally it divides
the program into pages of 1104 bytes each; a page is transmit-
ted in 48 packets, each containing 23 bytes of data payload. A
target sensor node upon successful receipt of a page stores it
in flash memory. Deluge works over multiple hops, and guar-
antees reliable in-order delivery of packets. It however lacks
in-built security mechanisms, which we implement using the
scheme proposed in this paper.

The security scheme in this work was implemented using in-
dustry standard cryptographic primitives and parameters. We
set the symmetric key size to 8 bytes, to be compatible with the
RC5 encryption algorithm implementation in TinySec [8]. For
ease of implementation we chose to use the available RC5 in
TinySec even though its CFB (cipher feedback) mode does not
sufficiently protect against tampering of the encrypted data. A
more sophisticated block cipher scheme like OCB mode which
does offer tamper protection has comparable time complexity
[10], and will be investigated in our future implementations.
Our key chain was generated by hashing the key using the
SHA1 algorithm. Of the 20-byte value generated by SHA1,
only the lower 8 bytes were used as the RC5 encryption key.
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Figure 2: Transfer time from Base-Station to one node

The packet structure of Deluge was modified so that in addition
to the 23 bytes of data, 8 bytes of key was included correspond-
ing to the successor key in the key chain, and the packet was
encrypted with the current key using RC5. The additional 8
bytes per packet constitutes an overhead of 384 bytes per page.

Our platform for testing comprised a PC (running the cyg-
win environment on Windows XP) acting as a base-station and
TelosB motes (commerically available from Crossbow Tech-
nology Inc.) as target sensor nodes. The base-station was im-
plemented in Java using the BouncyCastle JCE provider [12].

The bootstrap phase of our security scheme involves estab-
lishing the initial shared key (the root-key) between the base-
station and each target node. We implemented an authenticated
Diffie-Hellman key exchange to securely share the root-key, us-
ing primitives from the TinyECC package [13] for implement-
ing EC-DSA (Elliptic Curve Digital Signature Algorithm), and
the EccM package [11] for the ECDH (Elliptic Curve Diffie-
Hellman). We note that at the moment we have not optimised
our cryptographic operations for performance. Currently our
code requires 42 KB of ROM space (which is around 22 KB
more than raw Deluge) and 4 KB of RAM for data storage
(around 3 KB more than raw Deluge), and these fit comfort-
ably within the memory available in the TelosB motes (48 KB
of ROM program space, 10 KB of data storage, and 1 MB of
flash storage).

In our first experiment, we profile the time taken for up-
grading a single node with a new image using Deluge and our
security-enhanced version of Deluge. Fig. 2 shows the up-
grade time for six program images (supplied as samples in the
TinyOS distribution) of varying sizes: Blink (6 KB), Oscillo-
scope (9 KB), Pong (11 KB), TinyECC (23 KB), secure-Deluge
(39 KB), and a dummy program (46 KB). Each experiment was
performed several times and found to have consistent timing
results, so error-bars are not shown. The bottom curve shows
the time taken for the upgrade when original Deluge is used,
namely without any security mechanisms. The curve above it
corresponds to our scheme whereby the data is encrypted using
the key-chain but the root-key has been pre-shared. It shows
that the time required grows proprotionally to the image size,
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but stays within twice that required by Deluge, an acceptable
price to pay. The top curve shows the time taken for the up-
grade including the initial dynamic root-key exchange phase.
This phase adds approximately 150 seconds to each image up-
grade operation, and as expected, is independent of the size of
the code image.

In our second experiment we measure the time taken by our
security-enhances Deluge to upgrade multiple nodes (note that
the vertical scale in this plot starts at 150 seconds). Fig. 3
shows that upgrading each additional node incurs a small ad-
ditional cost, emphasising that the advantages of broadcast are
retained by our security mechanism.

V. CONCLUSIONS AND FUTURE WORK

Critical wireless sensor networks deployed in defence and
resource management applications require confidentiality of
broadcast traffic in addition to protection against attacks. In this
paper we develop efficient mechanisms to meet these stringent
requirements in a single-hop setting. Our scheme uses low-
complexity symmetric-key cryptographic techniques to guar-
antee confidentiality, authenticity, freshness, and semantic se-
curity of data, while allowing it to be dynamic and incremen-
tally processed. We implemented a prototype of our mecha-
nism as an add-on to the Deluge network reprogramming pro-
tocol in off-the-shelf TelosB motes running TinyOS. Our ex-
periments show that the time required to broadcast an image
confidentially and securely to multiple nodes using our scheme
is no more than twice needed by the standard Deluge, with an
additional 150 seconds for the initial bootstrap phase. We be-
lieve this is an acceptable price to pay for ensuring confiden-
tiality and security of wireless sensor network broadcasts.

Our future work will address the multi-hop scenario where
nodes may be compromised. We also intend to evaluate alter-
native methods for the root-key establishment.
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