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Abstract

Certain popular wireless sensor network applications,
including disaster recovery, battlefield communication and
athlete monitoring, are characterized by extensive node
mobility, intermittent contact between nodes and a highly
dynamic network topology. Traditional routing protocols and
security schemes are designed for essentially static networks
and do not perform well in this case. This has given rise
to a new multi-hop routing paradigm, that of ”mobility-
assisted” routing in which nodes make strategic data store-
and-forward decisions on a per-hop basis. In this paper we
discuss the security challenges relevant to mobility-assisted
routing and propose a scheme to secure data communica-
tion between nodes in highly mobile sensor networks. Our
solution utilizes symmetric-key encryption to ensure data
confidentiality and varies encryption key in a verifiable,
non-forgeable manner to allow easy authentication. This
scheme also provides data freshness, semantic security and
per-hop encryption to enable secure data aggregation. To
validate our basic assumptions and fine-tune our scheme,
we collect and analyze link connectivity statistics from
a dynamic sensor network application, athlete monitoring
during a first-division university soccer club match. We
show that our scheme is well-suited for certain dynamic
environments and serves as an effective first step towards
securing communications for mobile sensor networks.

1. Introduction

Wireless sensor networks (WSNs) have evolved from tra-
ditional isolated applications (habitat monitoring, preventive
maintenance) to take on a more people-centric focus (body
sensor networks, vehicular networks) and this has led to new
challenges in network design. Securing sensor networks is a
popular research area and there is a plethora of mechanisms
which address various aspects of network vulnerability. Al-
most all these schemes, however, operate on the assumption
that sensor nodes are stationary and network topology is
static for the most part. This assumption is contrary to
certain high profile and highly dynamic applications that
include disaster recovery, healthcare, athlete monitoring and

battlefield communications where node mobility is essential
to the application.

We envisage a scenario where sensor nodes are highly
mobile within the network and only come in intermittent
contact with other nodes. Link connectivity is sparse and
routes are constantly changing. Complete paths from source
to sink do not exist most of the time. Traditional routing
mechanisms are highly inefficient when faced with unpre-
dictable route changes and network splits and joins. In the
domain of ad hoc networks, this has motivated proposals for
a new routing paradigm, that of ”mobility-assisted” routing
[1] which operates on the principle that end-to-end paths-
over-time may exist from source to destination and data can
be effectively delivered by making local store-and-forward
decisions at the nodes themselves. Messages could be sent
over one link and stored at the next hop till another link
comes up in the path and then forwarded and so on till
the destination is reached. Securing communication over this
underlying routing mechanism poses a research challenge.

A highly active zone such as a disaster recovery site
[2] is a good example of a dynamic network application:
wireless sensor devices would be worn by first responders,
firefighters, etc. to monitor their vital signs and transmit
essential information, e.g. location [3]. Sensors would also
be deployed on the injured for triage purposes. Paramedics
could carry PDAs or hand-held devices to function as mobile
base-stations. The network would be in a constant state of
flux, most nodes would not know of definite routes to the
sinks, they would transmit data to the nearest nodes in range
which would buffer and forward it on in turn.

There is a strong trend towards securing privacy in real
world applications, especially in the case of medical data.
The need for security is also apparent if one considers a
battlefield deployment where data is of critical importance
and the potential for attack on the network is far greater.
If military personnel are equipped with WSN devices on
the field to monitor condition, location or simply enable
communication, it would be reasonable to assume a high
level of activity and unpredictable link connectivity.

Athlete monitoring [4] similarly presents a highly dy-
namic network application. There have been efforts to de-
ploy miniature devices to remotely monitor sports such as
cycling [5] and rowing [6]. To motivate our security solution,



we take up the example of a soccer game in which players
wear small wireless sensor devices. These devices, worn
on the soccer field, form a network and use multiple hops
to route vital information, such as player heart rate, body
temperature, velocity, etc. back to the base-station where it
can be viewed in real time. This data is invaluable for ath-
lete training, monitoring player performance and preventing
injury.

This scenario presents considerable security challenges.
Players would be moving very fast and there will be frequent
falls and physical contact. Network routes would last for
mere seconds before being disrupted. Per-link encryption
keys clearly cannot be used. A global key, shared by all
nodes, addresses data confidentiality, but is hard to protect
and allows nodes to impersonate as others. Implementing
pairwise keys between nodes requires a neighbour-discovery
protocol for communication and restricts the node to uni-
cast encryption and limits routing efficiency. Giving nodes
unique keys which they share with the base-station for end-
to-end encryption does not permit data aggregation and
exposes the network to battery-drain attacks.

In our scheme, every device in the network essentially
uses symmetric key cryptography with time-varying keys
from a one-way key-chain to enable per-hop encryption
of data. Encrypting the data ensures confidentiality and
the inherent one-way structure of the key-chain enables
authentication: new keys can be verified by receivers as
to their source on the basis of older ones in the chain, but
cannot be forged. Encrypting on per-hop basis allows nodes
to verify and aggregate incoming data thereby limiting
attacks and reducing wireless overhead. Additionally, by
exploiting the limited-broadcast nature of sensor networks,
our security scheme can be easily adapted to support more
advanced mobility-assisted routing mechanisms [7] such as
controlled flooding, single-copy [8], spraying techniques [9]
[10], etc.

The contributions of this paper are:

• we list operating assumptions a security scheme for dy-
namic wireless sensor networks must take into account
and support them with experimental results from a real
soccer match deployment

• we propose a scheme to enable secure communication
of data as an ambitious first step

• we demonstrate how our scheme can be tuned as per
application scenario using link-connectivity statistics

The rest of the paper is organized as follows: Section
2 details our soccer match deployment, the threat model,
solution requirements and summarizes previous work from
literature. We discuss our security solution in Section 3. In
Section 4, we analyze link connectivity statistics to show
how the scheme can be configured for different mobility
characteristics. We conclude in Section 5 with ideas for
future work.

2. Problem Overview and Related Work

This section discusses the setup for soccer player monitor-
ing, preliminary results, outlines the threat model, solution
requirements and summarizes related work from the litera-
ture.

2.1. Experimental Setup

We attached MicaZ motes using arm-straps to players
from the University of New South Wales Football Club
(UNSWFC) first division mens soccer team during a pre-
season trial match. The goal was to collect link connectivity
statistics to enable off-line application modeling (in our case,
soccer player monitoring). The game was played on a field
measuring 90m x 45m. Fig.1 and Table 2.1 depict player
positions. Eight base stations are mounted around the field
at regular intervals to act as sinks for the data.
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Figure 1: Player positions on the soccer field

Motes worn by the players acted as beacons and broadcast
their unique ID and a sequence number at the highest
available power level (1mW) once per second. A base-
station synchronized the entire network before game com-
mencement and, to prevent packet collisions, each mote
was assigned a unique 90 ms slot per second for data
transmission.



Mote ID Position
B1 - B8 Base Stations

1 Centre Attacker
2 Back
3 Centre Midfield A
4 Left Back
5 Midfield
6 Left Wing
7 Right Wing
8 Centre Midfield B
9 Striker
10 Centre Back
11 Goal Keeper

Table 1: Table 1: Player Positions and Mote Numbers

Packet receipt was noted and time-stamped by all motes
and base-stations within range. From these results, we
compiled a record of node ‘encounters’, a time-line of
which mote can be heard at what time and by which entity.
Readings were collected over a 20 minute period (limited by
MicaZ onboard memory). The results of this experiment are
available for online viewing in a dynamic Java applet at [11].
We acknowledge that repeat trials will yield a different set
of results but that, over time, key characteristics and trends
can be identified, measured and anticipated.We present some
initial findings:

The number of neighbouring players reachable by a
certain player varies sharply over a given period of time.
We plot in Fig.2 the neighbour count for Node 10 (Centre
Back) over a period of 600 seconds and observe a high level
of variation.

The encounter duration between two nodes can be
defined as the maximal number of consecutive packets
transmitted by one node and received by the other. This
is equivalent to the time a pair of nodes are ‘connected’
(since each node transmits one packet per second). We plot
encounter duration over all pairs of nodes in Fig.3 and note
that almost 70% of encounter durations last 3 seconds or
less. These figures clearly indicate that the network is in a
constant state of flux. This is expected: sensor devices have
primitive radios, they are small and lightweight so as not to
restrict movement and the players move at great speed, there
are frequent falls, physical contact and sudden changes in
body orientation, all of which have a highly disruptive effect
on connectivity.

2.2. Operating Assumptions and Threat Model

We assume a simplistic one-step data transmission process
whereby a node simply broadcasts data in its allotted time-
slot. To keep communication minimal, there is no handshak-
ing or negotiation process with other nodes in the vicinity.
We format the packet structure in such a way that the
message can be processed by any of the other receivers in
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Figure 2: Number of Neighbours for Node 10 (Centre Back)
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Figure 3: Encounter Duration over All Pairs of Nodes

range. Such an approach allows for a transmitting node to
utilize multiple paths to the destination and facilitates data
aggregation and prioritization.

To bootstrap trust in the network, we assume pre-
distribution of keying material before the network initializes.
We specify details in the description of our scheme.

We assume our adversary engages in eavesdropping,
packet replay, data injection and flooding attacks. Allowing
per-hop encryption limits flooding and enables nodes to
identify the attack. However, if a node is captured, crypto-
graphic keys can be extracted. In this event, confidentiality
is compromised, but, our security scheme still guarantees
authenticity of the broadcast source. We assume the net-
work can defend against signal jamming by some form of
frequency hopping or spread spectrum techniques. In this
paper we do not expressly consider more advanced attacks
such as denial-of-service, wormhole attacks, etc.



2.3. Solution Requirements

We seek a security solution that provides the following
properties:

1) Confidentiality: Eavesdroppers cannot decipher the
data that the nodes transmit.

2) Authenticity: Nodes in the network are able to verify
the source of all messages they receive. A node should
not be able to masquerade as another.

3) Replay Protection: An attacker may capture legitimate
messages and inject them into the network at a later
time. Receivers should be able to identify and reject
captured and replayed messages.

4) Semantic Security: Encryption should sufficiently dis-
guise the content of the messages, so that an adversary
can not decipher them based on patterns in the cipher-
text.

5) Data Fusion: Allowing nodes to inspect and aggregate
whatever data they receive will significantly reduce
network traffic and cut down on power consumption
over the wireless link. Receivers would also be able
to prioritize traffic: e.g. in a disaster recovery sce-
nario, nodes would give higher priority to transmit-
ting medical alarms; nodes on the battlefield could
choose to transmit critical military intelligence over
lesser-priority data. On the soccer field, nodes could
prioritize data of certain players over others.

2.4. Prior Work

To the best of our knowledge, there is no prior scheme
that addresses the issue of security for resource-constrained
nodes in a highly dynamic wireless sensor network. A
security solution is typically implemented over an exist-
ing underlying routing mechanism; and efficient mobility-
assisted routing protocols have yet to be developed to meet
the unique operating challenges of dynamic sensor networks.

Security solutions are typically designed for stationary
networks with minimal route disruption and a fairly constant
set of neighbours. High node mobility is more characteristic
of mesh and ad hoc networks. To address routing and secu-
rity challenges, these networks typically maintain dynamic
routing tables and utilize route-discovery and synchroniza-
tion protocols. Neighbours are easily verified using digital
certificates and trusted third parties. Sensor network devices
are too resource-limited to permit easy adaptation of these
solutions: sensor nodes have radios with far less range, a
restriction on wireless usage and not enough resources to
maintain routing tables or use public-key cryptography.

Of the common security strategies, using a global key
to secure the network (as in the case of the TinySec [12]
security architecture) would facilitate mobility but such a key
is difficult to safeguard in a large deployment, and it would

allow a hijacked node to masquerade as any other. Per-
link keys are explicitly meant for static networks and would
be very inefficient. Giving all nodes individual encryption
keys which they share with the base station is not very
effective. Data aggregation would not be possible, there
would be end-to-end encryption and a resourceful adversary
could flood the network with arbitrary data. Nodes would
be unable to differentiate it from legitimate traffic and
waste precious resources in forwarding it. Pairwise keys
between nodes would work for low mobility scenarios but
a handshake process would be required for communication
and nodes would not be able to multicast data.

Of popular security mechanisms, the µTesla [13] protocol
resembles our scheme in that it assumes a time-synchronized
network and utilizes a one-way key-chain to ensure source
authenticity of data. However, µTesla is a broadcast authen-
tication protocol expressly designed to authenticate base-
station transmissions. µTesla uses time-varying keys to com-
pute message authentication codes (MACs) on the data. The
issue of confidentiality is not addressed. Whatever messages
the node receives from the base-station, it buffers till key
disclosure. The network is time-synchronized and keys are
disclosed after a delay, allowing nodes to verify the MACs.
The key in question expires after it has been disclosed
rendering it useless to an attacker.

The MiniSec [14] communication architecture utilizes
OCB encryption to provide data confidentiality and au-
thentication. MiniSec has different modes for unicast and
broadcast communication. Unicast mode assumes that each
node possesses a pair of keys for bidirectional communica-
tion with another node. For broadcast communication, the
encryption key is a global shared key. Both these strategies
are not well-suited for mobility and carry with them the
risks mentioned earlier. MiniSec also assumes network time-
synchronization. Replay attacks are detected by demarcating
network lifetime into ‘epochs’ and implementing space-
efficient Bloom filters.

3. Our Solution

Nodes use successive keys from a one-way key chain to
encrypt and transmit data. Encryption keys are varied on a
per message basis. Considering our soccer game scenario,
this would translate to a new key being used every second.
The one-way nature of the key-chain ensures that receivers
can verify new keys from older ones but are unable to forge
them.

Packet structure is depicted in Fig.4. The Data Field,
Di contains the data to be transmitted, encrypted with the
current key, ki, from the chain. This current key is then itself
encrypted with a specific older key from the chain, denoted
as the ‘epoch-key’, kE , and put into the Key Field.

To provide a common reference point for nodes in inter-
mittent contact, we divide network lifetime into epochs. For
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Figure 4: Packet Structure

each transmitting node, an epoch is characterized by specific
epoch-keys in the chain which the node uses to encrypt the
Key Field for all packets transmitted in that epoch.

A detailed description of our scheme follows. We discuss
transmitter and receiver operations individually for clarity,
but it must be kept in mind that devices in the field perform
both functions.

3.1. The Procedure

1) Key-Chain Generation: Nodes build their encryption
key-chain prior to network initialization in one of two
ways: The receiver could be supplied a seed value,
ks from which it would generate a key-chain, ks,
ks−1,...,k1, k0, where ki−1 is obtained by hashing ki

for i = 1, ..., s (using SHA1 or MD5). Alternatively,
the entire key-chain could be constructed beforehand
and pre-programmed into the device prior to deploy-
ment. This key-chain should be long enough to last
the lifetime of the network.

2) Bootstrapping Trust: To initialize trust, each node is
provided a set of keys containing the initial ‘root-key’
(k0) for every other node in the network. This can
be pre-programmed or transmitted to the node using
a secure Diffie-Hellman exchange.

3) Transmitting Data: When a node has to transmit
data in its slot, it creates a packet consisting of a
Data Field and a Key Field as mentioned earlier. The
communication process is detailed in Fig.5: data to
be sent, Di is encrypted using the current key in the
chain, ki (step 1) and passed into the Data Field.
The current key, ki, itself is then encrypted using the
epoch-key, kE (step 2) and put into the Key Field. The
packet is then transmitted to the receiver (step 3).

4) Receiving Data: The receiver decrypts the Key Field
to extract the current key, ki using the transmitter’s
epoch-key kE (step 4). To authenticate, it hashes the
current key to see if it matches an older key the
receiver might possess belonging to the transmitter’s
chain (this could even be the epoch key itself, kE).
Once verified, the receiver uses this key to decrypt
the data Di (step 5).

5) Specifying epoch-keys: We assume the network ini-
tializes at j = 0s where j is a clock keeping track
of network time. The root-key serves as the very
first epoch-key. We designate a value, n, such that
every n − th key to follow in the chain is to be the
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Figure 5: Encryption and Decryption Operations

epoch-key for a later interval. As an example, we
choose n = 100. This means that, after the root-
key k0, the second epoch-key will be k100 which
will be disseminated by the transmitter at j = 100s.
Assignation of epoch-keys is described in Fig.6: the
root-key, k0, is used to encrypt all data for the first
epoch, which spans k0 to k200 (i.e. 201 seconds).
Network receivers already possess the transmitter’s
root-key (from the Bootstrapping Trust Phase) and
can decrypt this data. We assume that the transmitter
encounters every other node in the network at least
once in the interval , 100 < j < 200. Every node will
have then received a key, ki such that 100 ≤ i ≤ 200.
The receiver can hash this key back (i− 100) number
of times to yield k100, i.e. the next epoch-key. This
new epoch-key comes into effect when j = 201. The
first epoch lasts for 201s (which can be expressed as
2n + 1) out of necessity. Following epochs last 100s
each. Again, we can assume there is high probabil-
ity (quantified in the next section) that all receivers
receive a packet from the transmitter at least once
in the interval 200 < j < 300. This will enable
them to all possess a key that can be hashed to yield
the third epoch-key k200 that comes into effect at
j = 301s. Epoch-key updates follow this basic pattern.

kE 1
k k1 2 kE 2

kE 3
kE 4

kE 5

kE 1
kE 2

kE 3

Key Chain

Epoch Key
Lifetime

Figure 6: Assignment of Epoch Keys



However, if a node were to receive no packets from
the transmitter within an epoch, it would be unable
to decrypt future communication. This only applies to
direct communication. The node may still receive data
from the transmitter via multi-hop from other nodes.

6) Key Management: Receivers have to store and update
two keys for every node in the network, every node’s
epoch-key, kE and the last received key together with
time-stamps or count value. The epoch-key allows the
receiver to decrypt communication within the epoch.
The last received key minimizes the verification pro-
cess; the receiver does not have to hash ki all the way
back to the transmitter’s epoch key to verify it, it could
simply hash back to the more recent key, e.g. if the
receiver were in extended contact with the transmitter,
it would take only one hash operation to verify each
message received during that time.

3.2. Discussion

Our use of the key-chain is somewhat similar to µTesla in
that both schemes depend on the one-way nature of the key-
chain to provide source authentication. Time-synchronizing
the network also ensures key validity is bounded by time:
this protects against replay attacks. If an older packet is
replayed, the key for that has already expired, the verification
process will fail and the receiver discards the packet. Using
different encryption keys creates high message entropy and
provides semantic security. And the per-hop encryption
allows the benefit of data fusion.

The epoch-key itself varies over time to add an extra layer
of security to the network. If an attacker were to try to hack
the epoch-key, he would be restricted to doing so within
the window of the epoch itself, and in the next section we
describe a method for reducing epoch length to an optimal
value. And, even if he somehow procured the key, he could
decipher messages but, would not be able to generate future
keys and masquerade as the transmitter.

We note that maintaining long key-chains and key-tables
for other nodes can quickly overwhelm the memory re-
sources of the typical sensor device. For this reason, we
suggest that key-chains be kept short, and, if possible, be
coded into ROM rather than flash memory. In the case
of the soccer match, it would be feasible to use remote
programming software to re-key the network during breaks.

4. Analysis

In this section, we fine-tune the performance of our
scheme using link-connectivity statistics.

We define a receiver’s attachment probability, P, to be
the probability that the receiver can successfully decrypt
future messages from the transmitter. This success depends
on the receiver procuring at least one key per epoch. A
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Figure 7: Inter-Encounter Times over All Pairs of Nodes

receiver that typically has frequent communication with
the transmitter will consequently have a high attachment
probability.

Another strategy to increase attachment probability, P,
is to extend epoch lengths and maximize the chances of
the receiver and transmitter encountering each other. How-
ever, nodes that meet rarely within an epoch will have to
perform a larger number of verification operations on the
received message. We denote this metric as computation
cost. Smaller epochs will entail lesser computation cost in
packet verification, but the attachment probability will suffer.

Inter-encounter time can be used to compute appropriate
values of epoch length that represent a balance between
verification operations and attachment probability. Inter-
encounter time between nodes is a measure of the time
between encounters, or the maximal period of disconnec-
tivity. Revisiting our soccer game experiment, we plot the
Complementary Cumulative Distribution Function (CCDF)
for inter-encounter time over all pairs of nodes in Fig.7. The
result indicates that inter-encounter time values are surpris-
ingly low across the network. Almost 60% of encounters are
spaced 10s apart or so. The probability of inter-encounter
time being more than 100s is approximately 0.05. This
distribution clearly favors smaller epoch sizes.

Since the encryption key changes once every second,
the maximum computation a node would have to per-
form to verify a message would be if it were to receive
only the last message within an epoch. In this case it
would hash back an amount equivalent in seconds to the
epoch length. This one-to-one correspondence allows us to
plot inter-encounter time against epoch-length/maximum-
computation-cost. We invert the CCDF to yield the prob-
ability that nodes do not encounter each other and plot it
against epoch-length/maximum-computation-cost in Fig.8 in
log scale.
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The results bear out intuition: the greater the epoch length,
the higher the probability of attachment and the greater
the number of worst-case verification operations. However,
small epoch sizes yield a very high attachment probability:
an epoch length of 20s gives over a 70% chance of suc-
cessful attachment. An epoch of 30s takes the probability to
over 80%. We recall from earlier that smaller epochs provide
greater security but that could lead to nodes being isolated
from others permanently. Using link-connectivity statistics, a
network operator can tune epoch length as per requirements
to balance security and computation against probability of
disconnectivity.

5. Conclusion and Future Work

In this paper, we identified fundamental security chal-
lenges in highly dynamic wireless sensor networks and
highlighted network characteristics with results from a real
sensor network deployment, i.e. athlete monitoring during
a soccer match. We proposed a per-hop security solution
utilizing time-bound symmetric-key cryptographic mecha-
nisms to provide confidentiality, source authenticity, replay
protection, semantic security and data fusion capability.
We use link connectivity statistics to identify the optimal
epoch length that minimizes verification operations against
probability of attachment.

Our future work will focus on researching security mech-
anisms that allow greater scalability, extended network life-
time and dynamic node joining.
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