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Abstract

Symmetric encryption of data at the base-station using time-varying keys
has been proposed as an attractive method for securing broadcasts in wire-
less sensor networks: symmetric decryption keeps computational costs at
sensor nodes low, while time-varying group keys protect the network against
key compromise at any of the receivers. However, a significant problem is
that interference or disconnections may cause a receiver to miss broadcast
packets and the dynamic keys contained therein, rendering it unable to par-
ticipate in subsequent broadcasts. In this paper, we develop a scheme which
allows receivers to recover from key loss in a secure, efficient, and scalable
manner. Our scheme appends recovery information to each broadcast mes-
sage to help out-of-sync receivers re-attach probabilistically using an older
key. We analyze our scheme to quantify the recovery probability as a function
of system parameters, and deduce fundamental asymptotic bounds on recov-
ery. We further prototype our scheme on the MicaZ mote platform and show
that it is light-weight and efficient. Our solution offers a highly configurable,
efficient and scalable method for key recovery in large sensor networks that
require secure broadcasts.
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1. Introduction

Wireless sensor networks rely on network broadcast for a variety of ap-
plications that include software updates, command dissemination, time syn-
chronization and network management. Security of broadcast messages is a
fundamental concern, especially in scenarios where the data is of a critical
nature, e.g. military applications and resource monitoring.

It is easy to eavesdrop on all wireless traffic and inject false data into
the network. Traditional security solutions designed for point-to-point net-
works cannot be directly applied: sensor networks have severely constrained
resources and may consist of hundreds, even thousands of nodes. Simply
encrypting the data using symmetric cryptography gives rise to issues in
key distribution and authentication; were a node to be compromised, an in-
truder could spy on all traffic as well as impersonate as any other network
entity. On the other hand, asymmetric cryptography, suited for authenti-
cated exchanges in the form of digital signatures, is computationally inten-
sive and has high communication overhead. What is required is a lightweight
and scalable scheme which intelligently integrates symmetric and asymmetric
mechanisms, and minimizes the tradeoffs involved.

One approach is the use of time-varying keys. Successive broadcast
messages are encrypted with different keys from a ‘key chain’ before trans-
mission, ensuring confidentiality. The shared key, possessed by all nodes,
can be varied on a per message basis or after a select time interval.

A one-way function is used to generate this ‘key chain’ - a seed value is
repeatedly hashed to yield an array of ‘keys’ which are then used successively
in reverse order. This mechanism enables authentication: a receiver can
confirm a new key by hashing to see if it matches up with an older one in its
possession - this verifies that the key has indeed originated from the same
source. The one-way nature of the hash function ensures that the receiver
can validate the next key it receives, but not forge it.

In a typical scenario utilizing this approach it is assumed that trusted
receivers share a ‘root-key’ on the basis of which communication is initiated
(this key could be statically input into the receiver before deployment or
communicated using secure key management schemes). At the transmitter
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end, data to be sent is encrypted using the root-key and then dispatched
to the receiver. In the event of a key change, the transmitter sends the
new key to the receiver as part of the broadcast message. The receiver
decrypts the message using the root-key and verifies the new key by hashing
and comparing the checksum to the current key. Successive communication
proceeds on this pattern: the receiver decrypts each message using the key it
currently holds; from the message, it extracts and updates the key itself. A
receiver need only perform symmetric-key decryption and hashing operations
which are less resource-intensive than the asymmetric alternatives.

An eavesdropper would have a very restricted time-frame in which to
crack the key before the key itself got updated. Were he to physically capture
a receiver and extract the key, the attack would still be limited: he would be
able to decipher the communication but would not be able to reverse-engineer
forthcoming keys in the chain i.e. authentication would still be guaranteed.

There is an obvious shortcoming to this method: if a legitimate receiver
in the field were to miss a key update due to interference or disconnection,
it would be unable to decrypt future messages and be effectively shut out
of all subsequent communication. We assume a scenario where a receiver
does not transmit explicit message acknowledgements to the base-station.
This could be for any number of reasons: transmission might put a strain
on resources, the network might be too big for the base-station to service
individual key-requests, the receiver might want to keep its location secret,
etc.

The contributions of this paper are as follow:

• We describe a mechanism by which a receiver is able to recover lost
keys, and re-establish communication with the transmitter in a secure
manner

• We analyze in detail how this scheme can be configured for optimal
performance depending on application scenario

• We implement our scheme on the Crossbow MicaZ platform and com-
pare simulated results with real experimental performance

The rest of this paper is organized as follows: Section 2 lists the assump-
tions we make about our network and summarizes prior work in the area
of network broadcast. We detail the workings of our scheme in Section 3.
We analyze its performance in Section 4 and also discuss the limitations on
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recovery from key loss. In Section 5 we briefly describe our prototype imple-
mentation together with some practical results weighed against the earlier
analysis. We conclude in Section 6 and highlight once again the salient fea-
tures of our key loss recovery mechanism.

2. Assumptions and Broadcast Security Proposals

In this section, we delineate the scope of our work, we discuss the envi-
ronment within which we operate and examine the threat model. We also
provide an overview of some existing security schemes which implement net-
work broadcast and examine their strengths and weaknesses.

2.1. Operating Environment and Assumptions

We presume to work with a single-hop wireless sensor network consisting
of a base-station that is able to broadcast data directly to all sensor nodes
in the field. We restrict our work to single-hop networks at the moment for
two reasons:

First, broadcast security is a challenging problem and traditional solutions
cannot be directly applied. To contain complexity, this paper addresses the
relatively simpler scenario of a single-hop network (as we shall observe, even
for this restricted scenario, solutions are non-trivial). We defer investigation
for multi-hop transmission for future work.

Second, there is value in developing security solutions for single-hop net-
works, particularly in hierarchically organized networks. For example, in a
battlefield scenario, it would not be uncommon for a satellite or unmanned
aerial vehicle (UAV) to directly (i.e. single-hop) broadcast command and
control messages to all soldiers in a troop unit. Likewise in a natural resource
monitoring application, a mobile base-station could periodically broadcast in-
structions to all sensor devices in the region in single-hop fashion. In such
networks, multi-hopping might not even be desirable (for possible reliability
and energy reasons).

We assume that the base-station has sufficient computation and energy
resources and is secure against attack. We recommend that receiver nodes be
fitted with some form of tamper-resistant hardware, such as Trusted Platform
Module (TPM) [20], to ensure that cryptographic keys are securely protected.
In the event that physical security of the node cannot be guaranteed, data
will no longer be confidential. However, our scheme would still guarantee
authenticity.
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We note that sensor network nodes will generally possess limited resources
and will be similar in computation and communication capability to the cur-
rent generation of Berkeley MICA motes [2]. However, some nodes deployed
in the field may perform a more critical function in the network and, there-
fore, may be superior to other nodes in terms of hardware, available resources
and functionality. In the event of key loss, these nodes may have a higher
recovery priority than other nodes.

We assume that packet loss is unavoidable and unpredictable. Studies
have shown that radio connectivity is a complex phenomenon [4] even in
ideal settings and may differ considerably from node to node. Using error re-
covery algorithms for reliable communication can become fairly complicated
and would require extensive on-site testing. And in certain wireless sensor
applications (resource monitoring, espionage, etc.) sensor node placement
and site conditions may not be known beforehand or may be impractical
to model: the nodes may simply be scattered by hand or aerial craft and
self-organize into a functioning network.

The wireless channel is open and insecure and an adversary can eavesdrop
without detection, masquerade as another entity, inject false data into the
network and retransmit previously captured messages at a later time. In this
paper, we do not consider more advanced attacks such as denial-of-service,
wormhole attacks, etc. We assume the network can resist physical jamming
of signals or attacks on the MAC layer by employing frequency hopping,
spread spectrum techniques [14], etc. For the case where a receiver itself
has to broadcast to the network, we assume it follows the strategy suggested
in [13] where the receiver unicasts the message securely to the base-station
which then broadcasts it to the entire network.

In this paper, we do not address the issue of key-loss recovery for multi-
hop networks and leave it for future work.

2.2. Network Broadcast Schemes

There exist schemes in the literature which broadly address different as-
pects of network broadcast security using various mechanisms. We classify
them accordingly:

2.2.1. Shared-key Schemes for Secure Broadcast

TinySec [6] implements symmetric-key encryption of data at the link layer
of the communication protocol. The encryption-key in this case is a global
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key shared by all receivers and is assumed to have a long lifetime. An essen-
tially static communication key eliminates the need for a key loss recovery
mechanism but at the cost of security: an attacker could potentially crack
this key over time, and an untrusted or compromised receiver in the network
could easily forge messages. TinySec also has no inherent protection against
replay attacks.

MiniSec [11] borrows from TinySec and Zigbee [23] and improves on both
in terms of stronger security and significantly greater power savings. MiniSec
has different modes for unicast and broadcast communication. The latter,
MiniSec-B, uses OCB[17] encryption to provide data confidentiality and au-
thentication. The encryption key is again shared by all receivers and does
not change. Sequencing of packets is partially achieved by using a counter as
the initialization vector. MiniSec demarcates network lifetime into ‘epochs’
A received packet is first checked to see if it originated within the threshold
of the previous or current epoch. The receivers use space-efficient Bloom
filters to identify replayed packets. The drawbacks of this scheme include
network-wide loose-time synchronization and, as in the case of TinySec, hav-
ing a global shared key. The attacker model used by the authors of MiniSec
precludes scenarios where a receiver in the field might be physically compro-
mised.

2.2.2. Broadcast Authentication using Hash Constructions

Secure Deluge [3] secures the Deluge network programming protocol by
enabling receivers to verify authenticity of received packets. Deluge [5], in-
cluded by default in TinyOS, enables the network operator to disseminate
code images and issue software updates using wireless broadcast in multi-hop
networks. Without proper authentication, an attacker can easily reprogram
other nodes and hijack the entire network. Secure Deluge uses a hash chain
to enable source and data authentication. The code image is segmented and
each packet is sent out with a hash digest for the next packet to follow. On
receiving the next packet, the node computes the hash over the data field and
compares it with the hash value received earlier to verify authenticity and
packet sequence. A digital signature authenticates the very first hash value.
The issue of missing hash digests due to packet loss is mitigated because
Deluge itself has in-built mechanisms to ensure reliable and in-sequence dis-
tribution of data. However, this scheme does not address data confidentiality.

The Sluice [8] protocol operates in the same fashion except that hash
values are not computed on a per packet basis but over ”pages” (one page is
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typically 1 kB of program image).
Chang et.al propose an efficient broadcast authentication scheme [1] using

one-time signatures based on hash trees [12]. The transmitter segments the
data to be sent to construct a hash tree, the root of which is advertised across
the network as the transmitter’s ‘public’ key. Data items are periodically
broadcast allowing receivers to reconstruct the tree and confirm authenticity
of the data. Packet loss would halt the verification process because the node
would need to receive all the data to fully reconstruct the tree. To make the
process resilient to loss, the authors propose that data items be transmitted
along with their ‘authentication path’ to allow the receiver to traverse up
the tree without having all the data in possession. The authors include
mechanisms to optimize this process by effectively manipulating parameters
such as number of hash trees, depth of the tree, and include a suggestion for
re-keying. One restriction of this scheme is that all the data to be sent must
be known beforehand to construct the hash tree. This scheme, also, does not
address data confidentiality.

2.2.3. Broadcast Authentication using Time-Varying Keys

The µTesla protocol [13], uses time-varying keys to guarantee data au-
thentication. A key chain is generated using a hash function. The root-key
is distributed securely to all receivers by unicast. The network uses loose
time-synchronization to maintain regular time-intervals and keys are updated
per interval. Data integrity is ensured using message authentication codes
(MACs), generated using the secret key, appended to the data in the pack-
ets. The base-station only reveals the secret key for a time interval after the
interval has lapsed. Whatever messages the node has received during this
interval are buffered in memory until key disclosure. A node authenticates a
newly received key by hashing to see if it yields the previous key in its pos-
session. An attacker is unable to forge messages using revealed keys because
their lifetime has already expired. This scheme is not severely impacted if
a key is dropped: the receiver can use later keys to generate lost keys and
verify stored data. The drawbacks of this scheme include loose network-wide
time synchronization and buffer space to store received messages till they can
be authenticated. An attacker could flood the network with forged packets
forcing receiver buffers to overflow.

Multi-level µTesla [10] extends the capabilities of µTesla by simplifying
the key-distribution phase and introducing the concept of a multi-level key
chain generated using pseudo-random functions to greatly improve protocol
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efficiency. Multi-level µTesla reduces the need to re-initialize the network by
implementing multiple levels of key-chains, in which high-level keys are used
to communicate root-keys (or commitments) for low-level chains which are
used in turn for broadcast authentication as in standard µTesla. The chains
are further linked in that each root-key is derived from the corresponding
high-level chain using another pseudo-random function. Network lifetime is
extended many times over. This also significantly reduces authentication op-
erations for the receiver which would not have to cycle through a single long
chain in the event of multiple packet loss but could traverse entire chains in
single steps using the high-level keys. A problem would arise if a receiver were
to drop a commitment distribution message (CDM) initializing a new low-
level chain; it would be unable to verify any broadcast data received during
the entire lifetime of the chain itself. The data would still be verifiable even-
tually as the receiver could use any later commitment distribution message
to reconstruct all the lost high-level keys and the corresponding chains. This
would require significant computation and storage, and the the authors pro-
pose randomly timed retransmissions of commitment distribution messages
during each time interval to improve robustness to high-level key loss.

2.2.4. Secure Broadcast using Time-varying Keys

The Localized Encryption and Authentication (LEAP) protocol suite [22]
aims to support in-network processing of sensor data and restricting the im-
pact of a security breach to the immediate neighborhood of the compro-
mised node. For this purpose, LEAP implements four different keys on each
node, individual keys between sensor node and base-station, pairwise keys
between sensor nodes, a cluster key shared with multiple neighboring nodes
and a group key which is shared by all nodes. This group-key is used by the
base-station for global broadcast purposes and ensures data confidentiality.
The authors suggest frequent rekeying of the group-key and assume use of a
routing protocol (similar to the TinyOS beaconing protocol [7]) to securely
propagate the new key to individual nodes. To authenticate the data, LEAP
assumes the presence of a broadcast authentication protocol, such as µTesla.
This brings in the need for network-wide time synchronization and delayed
verification of broadcast data.

Earlier, we proposed a scheme [18] for confidential and secure broadcast
in single-hop wireless sensor networks that used time-varying keys. We de-
tail the operation of this scheme as a precursor to enhancing it for key loss
recovery:
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Figure 1: Key chain encryption of broadcast packets

The base-station generates a key-chain by successively hashing (SHA1 or
MD5) a seed value, kM , to yield a key chain kM , kM−1,...k1, k0. Where the
broadcast data is known beforehand, the key-chain length can be determined
in advance, equivalent to the number of packets to be broadcast. In dynamic
situations, the key chain can be of arbitrarily long length.

In the bootstrapping phase, we assume that, k0, the last key in the chain
is securely implanted in all receivers. This could either be programmed into
the nodes before deployment, else transmitted via an authenticated Diffie-
Hellman exchange. This only has to be performed once on network initial-
ization.

Once this step is successfully accomplished, the base-station proceeds to
create the broadcast packet. The structure of this packet consists of the data
to be sent, together with the successor key, k1. The packet is then encrypted
using key k0 and a suitable symmetric key cipher (RC5 [16], Skipjack [21],
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etc.). The encryption scheme must ensure that the data and key are not
separable in ciphertext, so that any modification of the encrypted data also
destroys the key. Such message integrity can be assured by using the OCB
mode [17] of block cipher encryption.

A receiver in the field decrypts this packet using k0 already in its pos-
session to extract the data and the next key, k1. It verifies authenticity by
checking if key k1 hashes to yield k0. The node can now process the data and
discard key k0 and update with k1. Using key k1, the node can now decipher
the next message that the base-station will transmit.

All other communication follows a similar pattern to the last two steps:
every message the base-station sends contains the key for the next message
to follow. The node decrypts each successive message using the key it already
has, authenticates the source and updates its key. This process is summarized
in Fig1.

The novelty of this scheme is that each packet is encrypted with a different
key and that the key itself contains the means of authentication. Nodes can
individually verify each key they receive but cannot forge the next key in the
chain on the basis of previously disclosed keys. An intruder has a very limited
window to mount a successful attack because the broadcast key expires with
every message transmitted. And even if the attacker were to obtain a valid
key and decipher all communication, authenticity would still be guaranteed:
the attacker would be unable to forge new keys and masquerade as the base-
station. A further layer of security could be adding by employing a suitable
block cipher mode (e.g. OCB [17]) to bind the key and the data in the
ciphertext at the base-station.

3. Key Loss Recovery

To illustrate our mechanism for key loss recovery, we extend our own
secure broadcast scheme described earlier in Section 2.2.4 and elaborated
upon in [18]. The principles are basic and can be applied to different schemes
with a little modification.

We extend the original scheme by appending a Recovery Field to the
original broadcast packet structure; this field contains information that would
help a receiver reattach to the network in the event of key loss. The Data
Field in our original scheme consists of a data segment, Di, and the next key
in the chain, ki+1; this field is encrypted using the current key in the chain,
ki. In the Recovery Field, we put the next key, ki+1, an integer value, m, and
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Figure 2: Packet structure enhanced to include recovery information

a hash digest of the concatenation of the two, H(ki+1|m), to allow receiver
to verify successful decryption; we encrypt this field with an older key from
the chain, ki−m. Fig.2 shows the modified packet structure. A receiver that
has lost m packets in succession can decrypt the Recovery Field using the
last key it holds, ki−m, and recover the next key, ki+1, which will enable it to
recover from the key loss and decipher future broadcast messages.

The basic algorithm for packet processing is spelt out in Fig.3: when a
node receives a packet, in step 1, it decrypts the Data Field to obtain the data
segment, Di and the next key, ki+1. In step 2, it performs a key verification
check. If the test is successful, the node processes the data accordingly. If
the test fails, it may possibly be due to packet loss and the node goes into
recovery mode, steps 5 to 14.

Only in this instance is the Recovery Field examined. The node uses
the last received key in its possession to decrypt this field (step 6). The
decryption may or may not be successful: the node has no way of knowing
how many keys it has missed nor which value of m the receiver might have
chosen. To check if the data decrypted successfully, step 7 hashes the fields,
ki+1|m and compares the result with the hash digest already contained in
the Recovery Field. If the two digests do not match, it means recovery was
unsuccessful and the packet is discarded (step 13). In the event the digests
match, the node extracts the key, ki+1, in step 8, and hashes it m+1 times
to authenticate it against the current key in its possession. If successful,
the new key is verified as having originated from the base-station; the node
subsequently updates its key (step 11). It is now in a position to be able to
decrypt future broadcast messages.

The immediate advantage of this scheme is that the receiver does not have
to transmit explicit requests to reattach to the network, thereby keeping
its location secret and conserving resources. Receivers that do not need
recovery will ignore the Recovery Field and do not have to pay any cost
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// current key denotes the node’s last correct key
1. decrypt data field of Pi using current key to

obtain data and extracted key
2. if extracted key hashes to current key // no key loss
3. replace current key with extracted key
4. process data
5. else // keys may have been missed
6. decrypt recovery field of Pi using current key

to obtain ki+1|m and recovery hash
7. if hash of ki+1|m matches recovery hash
8. separate ki+1|m into extracted key and m
9. hash extracted key m+ 1 times

and store in trial key
10. if trial key matches current key
11. replace current key with extracted key
12. else discard packet // cannot authenticate key
13. else discard packet // decryption unsuccessful
14. end

Figure 3: Operations performed by node upon arrival of broadcast packet Pi

(other than merely receiving the Recovery Field); and for nodes that have
lost keys, the tradeoff is in the time the receiver will take to recover and
the local computational effort involved. Here, too, in an attempt to recover,
unnecessary packets are dropped after a decryption (step 6) and hash (step
7) operation. And the computation effort spent in authenticating a recovery
key will, at most, be linear to the number of lost packets.

The choice of m is a fundamental concern, given that packet loss is unpre-
dictable and that the base-station has no way of knowing how many packets
each of the receivers has missed. If a small value of m is chosen, a node that
has lost a potentially larger number of packets, j , such that j > m, will be
unable to reattach to the network because the key it holds, ki−j will precede
ki−m in the key-chain for every value of i . Likewise, if m is a large value such
that m � j, the node will have to miss out on a large number of messages
before the keys align and it can reattach. Not only would this impair the
node’s performance in a dynamic network, but the node would also waste
resources in the large number of futile attempts at recovery.
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In view of this fact, rather than keep m as a constant value, the base-
station can choose to vary the value in randomized fashion from packet to
packet. This strategy would be effective in a large dynamic network where
different nodes have missed different numbers of broadcast packets. We pro-
pose the base-station select m using a geometric distribution of the form
(1 − p)m−1p for a fixed parameter p ∈ (0, 1]. We will show analytically in
Section 4 that there are fundamental asymptotic bounds on receiver recovery
and it is not possible to get better results with a different approach.

This scheme can be implemented easily by simulating a coin toss, the bias
of which corresponds to parameter p. Parameter p can be visualized as a
measure of newness : higher values of p would lead to more current keys being
used to encrypt the Recovery Field, and lower values of p would correspond
to older keys being used.

Having p as variable gives the scheme a high degree of configurability.
The network operator can control this value as per application requirements
or even environmental conditions: setting p at a high value will enable quick
recovery for critical applications but will likely not be suitable for very lossy
conditions; in this case setting p to a lower value will improve the chances of
the receiver to recover in the longer run.

We propose a further addition to this scheme: as we noted earlier, the
network nodes may not be identical in terms of computational resources
or application function. The operator may prefer certain nodes to recover
faster than others. In this event, a receiver could store up more than one
previous key with which it could attempt recovery. A node that stores, say,
M former keys, would have a greater chance of recovery. The tradeoff in this
case would be that the receiver would have to perform at most M times as
many computations in its attempts to recover as if there were only one key.
Some nodes may have sufficient processor power and battery life to make this
a feasible option. The receiver would maintain a buffer of M most current
received keys, stored in order; if recovery fails with the most recently received
key, the receiver tries decrypting the Recovery Field with the key it received
before that, and so on and so forth.

We highlight certain attractive features of this key recovery mechanism: it
complements the existing secure broadcast scheme and preserves its essential
strength. Encrypting the Recovery Field assures confidentiality. Supplying
the receiver with the value of m allows it to hash back that many times and
verify the source of the new key, guaranteeing authenticity. This scheme is
scalable to a very large number of receivers because the base-station does
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not have to service individual key recovery requests. There is no bidirectional
communication and all computation and verification is done at the receivers’
end. Configurability is another desirable feature. In mission-critical sce-
narios, it may be imperative that a node recover from key loss as soon as
possible (e.g. battlefield communication). In passive monitoring scenarios, a
longer delay may be permissible (e.g. monitoring non-critical resources, pre-
ventive maintenance, etc.) Environmental conditions might also vary greatly,
certain deployments may be more prone to packet loss than others. The net-
work operator can get desired results by fine-tuning the values of operational
parameters.

4. Analysis

4.1. Probability of Recovery

In this section we analyze the impact coin toss bias, p, and number of
older stored keys,M , have on the probability that a receiver will recover from
key loss. We define l to be the number of lost keys and, k , the number
of subsequent packet receipts (or recovery attempts) it takes the receiver to

successfully reattach. We denote P
(M)
l+k therefore as the probability that a

receiver that has lost l keys recovers on the k -th attempt on the basis of M
stored keys.

For the case where the receiver recovers with just one stored key (M =1),
using the very first packet (k=1) it receives after l lost packets, we note
that this occurs only if the Recovery Field for that particular packet was
encrypted using a key l keys back in the key chain. This corresponds to the
last key saved by the receiver before the packet loss. The probability that the
base-station chooses this particular key out of l possible keys is p(1− p)l−1.
For the sake of simplicity, we express (1 − p) as q, i.e. the probability that
the base-station does not choose the right key when encrypting the Recovery
Field. Therefore, we denote P

(1)
l+1, the probability that the node recovers on

the very first attempt,

P
(1)
l+1 = pql−1 (1)

This can be visualized as a sequence of Bernoulli trials and P
(1)
l+1 represents

the probability of achieving the first success after l− 1 failures. Generalizing
this for the kth case, we express the cumulative probability that the node
will have recovered by the next step (i.e. the k+1 attempt), to be
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(c) Stored keys M = 5
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(d) Stored keys M = 10

Figure 4: Ultimate recovery probability versus coin toss bias p for various number of lost
packets l and stored keys M

P
(1)
l+k+1 = P

(1)
l+k + (1− P (1)

l+k)pq
l+k−1 (2)

This indicates that a receiver recovers within k+1 steps if it has either
recovered already within k steps, (the probability of which being P

(1)
l+k), or,

if not, that it then recovers in the next step itself (the probability of which
is pql+k−1). This is a recursive expression and the initial condition in Eq.1

allows us to compute P
(1)
l+k for arbitrary k . In particular, we can deduce the

probability P (1) that the receiver will ultimately recover which is

P (1) = lim
k→∞

P
(1)
l+k (3)

Fig.4(a) expresses the probability of ultimate recovery, P (1), plotted against
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parameter p (on log scale) for various number of lost packets. We note that
recovery is only guaranteed for the special case of one lost key, where coin
toss bias p=1. This is because the transmitter will always use a key one step
back in the chain to encrypt the Recovery Field and, since the receiver has
lost only one packet, this particular key is the last key that the receiver has in
its possession. Reducing p however, has the effect of reducing the probability
of ultimate recovery, whereas for every other number of dropped packets, it
actually increases. This can be explained: as the value of p is reduced, the
base-station chooses older keys in the chain to encrypt the Recovery Field.
It becomes easier for the receiver that has lost packets to wait for keys to
eventually align and recover.

For the case where recovery is attempted on the basis of multiple stored
keys (M > 1), a receiver will first try to recover using the more current
key, the probability of which is pql−1; in case recovery does not succeed, the
receiver will then use the next key, the probability of success being pql, the
next with probability pql+1 and so on. The overall probability of recovering on
the very first received packet (k =1) is the sum of the individual probabilities
for each key,

P
(M)
l+1 = pql−1 + pql + pql+1 + ...+ pql+M−2 (4)

The expression can be simplified,

P
(M)
l+1 = pql−1[1 + q + q2 + ...+ qM−1] (5)

The geometric series can be summed up to yield

P
(M)
l+1 = ql−1(1− qM) (6)

Generalizing this expression, as we did for Eq.(2) , we deduce the proba-
bility that the receiver will recover by the next attempt (i.e. k+1) to be

P
(M)
l+k+1 = P

(M)
l+k + (1− P (M)

l+k )ql+k−1(1− qM) (7)

Solving recursively with initial condition in Eq.6, we plot recovery proba-
bility for multiple stored keys (M =1, 2, 5, 10) against parameter p for various
number of lost packets in Fig.4. Chances of ultimate recovery can clearly be
seen to improve with multiple stored keys. In fact, we observe in Fig.4(c), for
the case where a receiver with 5 stored keys, attempts recovery after one lost
packet, there is a slightly perceptible dip in probability of ultimate recovery
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Figure 5: Highlighting trend in recovery probability versus coin toss bias p for various
number of lost packets and M = 5 stored keys

for lower values of p. We highlight this result in Fig.5 which essentially rein-
terprets Fig.4(c) on linear scale and restricted axes and lesser variations of
lost keys l . This trend occurs for all cases of M > 2 stored keys and should
actually be interpreted as a rise in the probability of ultimate recovery as
the base-station selects older keys in the chain to encrypt the Recovery Field
and as the number of recovery attempts on the receiver’s part tends to the
infinite. This tendency is evident in the case of more than one lost key (l > 1)
where there is a steady increase as parameter p decreases. A receiver in this
scenario that has stored multiple keys has a better chance of recovery if the
base-station uses older keys to encrypt the Recovery Field rather than newer
ones.

4.2. Bounds On Recovery

In Fig.4, probability for ultimate recovery appears to converge for the
more general case of more than one lost packet (at P ≈ 0.632 for M = 1
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stored key, P ≈ 0.865 for M = 2 stored keys, etc.) There seems to be an
upper limit on a receiver’s probability for recovery. We justify this result
with some general proofs from the theory of infinite products:

For a receiver that has one stored key (M = 1) and has lost one packet
(l = 1), we note that the probability that it does not recover on the first

try, denoted as Q
(1)
1+1, is 1− p i.e. q; for non-recovery on the second attempt,

Q
(1)
1+2, the probability is q(1− pq), for the third, q(1− pq)(1− pq2). We can

express the probability that the node never recovers as an infinite product,

Q
(1)
1 =

∞∏
k=1

(1− pqk−1). (8)

Each term of this product is less than 1, so the probability that the
receiver never recovers actually falls with increasing recovery attempts. We
let S

(1)
1 be the sum of the corresponding infinite series

S
(1)
1 =

∞∑
k=1

pqk−1 (9)

Using observations from the theory of infinite products[15], we define
parameter ρ as the largest term in the series, i.e. ρ = max1≤k≤∞pq

k−1, and
specify a, such that

a = (1− ρ)−1/ρ (10)

and observe that the probability the receiver never recovers after losing
one key, is tightly sandwiched between two decaying exponential functions,

a−S
(1)
1 ≤ Q(1) ≤ e−S

(1)
1 . (11)

Conversely the probability that the node does recover from a single key
loss can be bounded:

1− e−S
(1)
1 ≤ P

(1)
1 ≤ 1− aS

(1)
1 (12)

If we evaluate parameter ρ for the case of our geometric distribution, the
receiver has the highest probability of recovery on the very first attempt,
i.e. ρ = p. And S

(1)
1 represents a summation of the masses of a discrete

probability density function:
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S
(1)
1 =

∞∑
k=1

pqk−1

=
∞∑
k=1

p(1− p)k−1

= p(1/p) = 1

Our bounds on recovery become

1− 1/e ≈ 0.632 ≤ P
(1)
1 ≤ 1− (1− p)1/p (13)

In Fig.6(a), we overlay these derived limits on our existing results for
probability of ultimate recovery for the particular case for a receiver that
has M = 1 stored key and l = 1 lost packets (Fig.4(a)) and observe that
the bounds are valid. Bounds for other cases can be similarly derived by
formulating expressions for non-recovery, Q, and computing values of a, ρ
and S and using the general expression

1− e−S ≤ P ≤ 1− a−S (14)

For the case where a receiver has lost more than one key (l > 1), the
probability of non-recovery can be expressed as an infinite product

Q
(1)
l =

∞∏
k=l

(1− pqk−1). (15)

The corresponding infinite series is

S
(l)
l =

∞∑
k=l

pqk−1 (16)

and can be computed

S
(l)
l = pql−1 + pql + pql+1 + ...

= pql−1[1 + q + q2 + ...]

= ql−1
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(a) Lost keys l = 1
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(b) Lost keys l = 2
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(c) Lost keys l = 4
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(d) Lost keys l = 10

Figure 6: Limits on probability of ultimate recovery for various number of lost keys for
the case of stored key M = 1

ρ can be expressed as pql−1, the maximal probability of recovery and a
can be deduced as per Eq.10.

The bounds on probability of recovery for the case of l lost keys are
therefore

1− e−(ql−1) ≤ P
(1)
l ≤ 1− a−(ql−1) (17)

We plot these limits across the range of p in Fig.6 over the results for
recovery probability presented earlier.

For the case where the receiver has M > 1 stored keys: in the event
of losing l packets, the probability that a node with multiple keys does not
recover on the very first packet it receives, Q

(M)
l+1 , is 1 − P

(M)
l+k , where P

(M)
l+k

is the sum of the individual probabilities of recovering with M keys in that
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attempt. For non-recovery on the second packet, Q
(M)
l+2 is (1 − P (M)

l+2 ). The
probability that a node with multiple keys never recovers after losing one
key is

Q
(M)
l =

∞∏
k=1

(1− P (M)
l+k ). (18)

The sum of the corresponding infinite series is

S
(M)
l =

∞∑
k=1

(P
(M)
1+k ) (19)

Each of these terms can be individually computed: ρ, the probability of
recovery on the very first step was already presented in Eq.6 which allows us
to compute a. S

(M)
l can be expressed as

S
(M)
l =

∞∑
k=1

(P
(M)
1+k )

= M
∞∑
j=l

pqj−1 −
M−1∑
j=1

(M − j)pql+j−2

(20)

The limits on recovery are

1− e−S
(M)
l ≤ P

(M)
l ≤ 1− a−S

(M)
l (21)

We plot the results for the case of M = 2 stored keys in Fig.7 to confirm
that the probability of recovery is indeed bounded as predicted.

These results indicate that using multiple stored keys can effect a massive
improvement in the receiver’s ability to recover from key loss: attempting
recovery with just two stored keys, P (2), gives the receiver an over 85% chance
of ultimate recovery; for three keys, the probability is 95%; with ten stored
keys, the receiver has a 99% chance of recovery. We validate these results by
comparing them with experimental findings in the Prototype Implementation
section.

The tradeoff is in the cost of the extra computation the receiver has to
perform locally: it the receiver stores two keys, it has to perform, at most,
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(a) Lost keys l = 1
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(b) Lost keys l = 2
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(c) Lost keys l = 4
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(d) Lost keys l = 10

Figure 7: Limits on probability of ultimate recovery for various number of lost keys for
the case of stored keys M = 2

twice as much work to recover, but recovery is likely faster and more certain.
We believe that the option of using multiple keys, in conjunction with the
ability to tune the value of parameter p, makes the network significantly
more robust to packet loss and gives the network operator a high degree of
configurability for specific applications and operating environments.

4.3. Recovery Time

A receiver’s recovery time can be quantified in terms of the number of
packets a receiver will need to receive before it recovers. Fig.8 gives an
indication of this relationship in which coin toss bias p is plotted against the
number of attempts required by the receiver for a 10% chance of recovery.
We try to find the lowest value of k for which Sk > 0.1 as a function of p.
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Figure 8: Attempts required for 10% chance of successful recovery versus p for various
number of lost packets

From the figure it is seen that as coin toss bias p decreases, more recovery
attempts (k) are required for a 10% chance of recovery.

Some curves terminate on the right, indicating that larger values of p
do not yield a 10% chance of ultimate recovery (the recovery probability is
actually higher as parameter p increases). It is clear, however, that increasing
the probability of ultimate recovery by reducing parameter p has a tradeoff
for the receiver in terms of increasing the number of attempts it takes to
recover. The network operator can adjust the value of p to balance the
two concerns depending on operating environment and specific application
scenario.
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5. Prototype Implementation

We prototyped our key loss recovery mechanism using a standard Pentium-
based computer acting as the base-station and MicaZ motes [2], running
TinyOS, acting as receiver nodes. We used Java for programming the base-
station and freely available crypto APIs, namely the RC5 and SHA1 modules,
from Legion of the Bouncy Castle [19]. On the receiver end, we implemented
corresponding RC5 and SHA1 modules borrowed from the TinySec[6] and
TinyECC[9] packages respectively. The program image of the receiver typi-
cally uses 17500 bytes of ROM and 1295 bytes of RAM; slight variations are
due to the receivers storing different values of stored keys, M .

The implementation itself can be summarized:

1. At the base-station, an initial 8-byte seed key is continuously hashed
to yield the ”key chain”. The SHA1 hash function originally yields
a 20-byte message digest, but we truncate this to 8-bytes so that the
key length matches our RC5 configuration (RC5-32/12/8); this also
keeps the overall packet size from exceeding the MicaZ CC2420 radio’s
maximum allowable packet length. This key size can be increased to
fit the security requirements of the deployment. This chain of 8-byte
keys is then successively used in reverse order to encrypt broadcast
messages.

2. Bootstrapping is done by securely programming the key into the nodes
before deployment. If this proves problematic or inconvenient, a Diffie-
Hellman key exchange can be used instead.

3. 3. The broadcast message is prepared based on the format described
earlier and depicted in Fig.2. The ’data field’ is 16-bytes long, the first
8-bytes consisting of ’data’ as such, and the next 8-bytes consisting
of the ’next’ key that will be used to encrypt the following message.
This whole is then encrypted using the RC5 symmetric cipher and the
’current’ key in the key chain.

4. A biased coin is simulated using the Math.random() method from
Java’s Math class which generates pseudo-random numbers in a uni-
form distribution in the range of [0.0,1.0). These values are then re-
peatedly compared to a select biased value (p) to simulate ’heads’ or
’tails’. The number of iterations it takes for a ’heads’ to appear is taken
as the value of the integer m.

5. The ’recovery field’ is also 16-bytes long. The first 8-bytes consist of
the ’next’ key, the same as in the data field. The next 2-bytes contain
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Figure 9: Comparison of experiments and analysis showing cumulative recovery probability
as a function of number of attempts for one lost packet and p = 0.5, 0.2, 0.1

the value of m. These two fields, taken together, are then hashed and
truncated to yield a 6-byte hash digest, which is added to the recovery
field to enable a check on message integrity. The recovery field is then
encrypted using a key m values back in the chain and the result is then
appended to the data field to yield the complete message.

6. The completed message is then transmitted. For our implementation,
we time broadcasts 150 ms apart.

7. To simulate a dropped packet for the motes, the transmitter intention-
ally suppresses packets at pre-programmed intervals.

8. The transmission concludes after 10,000 broadcast messages and the
recovery results are compiled.

Receiver nodes are differentiated according to the number of ’previous’
keys that they store on the basis of which they attempt to recover from packet
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Figure 10: Comparison of experiments and analysis showing cumulative recovery proba-
bility as a function of number of attempts for one lost packet, p = 0.05, and varied number
of stored keys M = 1, 2, 5, 10

loss. Previous keys are queued up in a buffer when they are received and
used accordingly i.e. when recovering from packet loss, the most recently
received key is tried first, then the one received before that, so on and so
forth. We perform the experiment with nodes that store 1, 2, 3, 4, 5 and 10
keys respectively.

For typical broadcast messages, decryption of the data field and key up-
date proceeds as outlined earlier. If the node drops a packet and is unable to
decrypt a message, it attempts to decrypt the recovery field by successively
applying previously stored keys.

For each packet loss/recovery, the node records how many attempts it
took to recover from the loss and which key it used from its buffer. Non-
recovery is logged as well. After the transmitter ceases broadcast, the nodes
then transmit results wirelessly to a receiver to be collected and analyzed.

In Fig.9, we plot cumulative probability of recovery, Pk against number
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of recovery attempts for parameter p = 0.1, 0.2, 0.5 to compare experimental
results and simulation based on eq.3. The experimental results match fairly
well with simulation and validate our analytical predictions.

In Fig.10, we plot experimental and analytical results of cumulative prob-
ability of recovery, P (M) for different number of receiver stored keys, M = 1,
2, 5 and 10 and fixed value of p = 0.05. Results again match with the analy-
sis: and, as expected, using multiple keys to recover from key loss manifestly
increases both a receiver’s chances of recovery and the speed with which it
recovers.

6. Conclusions and Future Work

Network broadcast schemes for wireless sensor networks that depend on
time-varying keys for security are susceptible to key loss due to the wireless
medium. In this paper we propose and analyze a key loss recovery mechanism
to boost network robustness. The scheme is lightweight, secure, scales easily
and is highly configurable. Receivers do not have to advertise their location
by transmitting explicit key requests and the base-station does not have to
individually service each receiver that has dropped keys. Confidentiality is
maintained and message authenticity is guaranteed. The network operator
has the option to tune the receiver’s probability of recovery against the time
it takes to recover and the local computational resources utilized in recovery.
We analyzed our scheme and examined these tradeoffs both in simulation
and on a MicaZ implementation. We believe our scheme has potential appli-
cation in sensor networks where sensor broadcast is dynamic and of critical
importance.
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