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Abstract

Broadcast is used in wireless sensor networks for operations such as software updates, net-
work queries, and command dissemination. Though authentication of broadcast messages
is probably the most critical primitive, certain applications such as battlefield control and
natural resource management also require the broadcast data to be kept secret from eaves-
droppers. In this paper we design, implement, and evaluate anovel scheme that meets the
requirements of secrecy, authenticity, integrity, and freshness of broadcast messages in the
context of a single-hop wireless sensor network. Our contributions are three-fold: first, we
propose the use of time-varying keys (based on a key-chain) for broadcast encryption, em-
phasising advantages such as non-forgeability, protection against old-key compromise, and
allowance for dynamic data. Second, we extend the basic key-chain mechanism to incorpo-
rate limited protection against key loss, allowing legitimate receivers to recover even if they
have lost a small number of keys. Third, we prototype our scheme by incorporating it into
Deluge, the network programming protocol distributed withTinyOS, and quantify its cost
in terms of time, space, and power consumption on a TelosB mote platform. Our scheme
represents a practical, efficient and scalable means of delivering broadcast data secretly to
a large number of low-power sensor nodes.
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1 Introduction

Broadcast is an essential feature in any sensor network for critical operations such
as network query, software updates, time synchronisation,and network manage-
ment. Given its importance, there is growing interest in addressing broadcast secu-
rity [1]. Much of the research literature has focused onauthenticityof the broad-
cast source and data; we refer the reader to a recent article [2] that summarises
the challenges of broadcast authentication in resource constrained wireless sensor
networks. In this paper, we considersecrecy(also refered to asconfidentialityor
privacy) of the broadcast data. Several critical applications warrant secrecy, such
as command and control signaling in the battlefield. The application that motivates
this paper is a project undertaken by our organisation, the Commonwealth Scien-
tific and Industrial Research Organisation (CSIRO), to build a Water Resources Ob-
servation Network (WRON) [3] to assist in managing and controlling the national
water resources of Australia. CSIRO has developed sensor nodes called Flecks [4]
which are candidates for deployment at sites such as farms, rivers, lakes, dams, and
catchment areas. Secrecy of various broadcast data and control messages is im-
portant in such a scenario: for example, the sensory parameters (such as sampling
periods and thresholds) that would from time-to-time be updated using broadcast
mechanisms need to be kept secret, and software upgrades need to be kept confiden-
tial to prevent exploitation of code weaknesses. This paperdevelops mechanisms
that operate within the resource constraints of sensor nodes to ensure secrecy of
such broadcast data, while also guaranteeing authenticity, integrity, and freshness
of the broadcast messages.

Several schemes, for example [5–9], have been proposed in the literature for broad-
castauthentication, but to the best of our knowledge there exists only one other pro-
posal [10] that can providesecrecyof broadcast data in wireless sensor networks.
We emphasise that our work was undertaken independently andconcurrently to the
work in MiniSec [10], and our approaches have fundamental differences . While
MiniSec uses a fixed key (known to all parties) with a time-varying initialisation
vector (IV), our approach uses a time-varying key (derived from a key-chain). As
explained later, our method, though restricted in this workto single-hop networks
(we have subsequently extended our scheme to multi-hop networks), provides au-
thentication which is robust to key compromise unlike MiniSec. Lastly, we note
that though several of the existing authentication schemescan be leveraged to in-
corporate secrecy, they either entail high storage requirements (e.g. [5]) or are cost-
effective only for bulk data transfers (e.g. [6–9]) but not for sporadic transmission
of broadcast data.

In this work we propose, design, prototype, and evaluate a practical method for
incorporating secrecy, authenticity, integrity, and replay protection (aka freshness)
of broadcast data in a wireless sensor network. Our work in this paper is restricted
to single-hopnetworks. There are two reasons for this:
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• First, broadcast secrecy is a very challenging problem. Symmetric encryption
based on a static shared key requires all parties to know the key, which is prob-
lematic since receivers should only be able to verify but notoriginate valid broad-
casts. Asymmetric encryption (which does not require all parties to share a key)
is impractical on a per-packet basis due to high computationand communication
overheads. New solution techniques are required, and to contain the complex-
ity this paper considers the relatively simpler scenario ofa single-hop network
(as we will soon see solutions for even this restricted scenario are non-trivial).
Our subsequent work in [17,18] has extended our solution technique to multi-
hop networks, with corresponding increase in solution complexity (discussion of
which is beyond the scope of the current paper).

• Second, single-hop transmission suffices in many application scenarios, particu-
larly in hierarchically organised networks. For example, in a battlefield scenario
it would not be uncommon for a satellite or unmanned aerial vehicle (UAV) to
directly (i.e. single-hop) broadcast command and control messages to all soldiers
in a troop unit. Likewise in a natural resource monitoring application a mobile
base-station could periodically broadcast a set of instructions to all sensor de-
vices in a region in a single-hop fashion. In such networks multi-hopping may
not even be desirable (for possible reliability and energy reasons). So there is
indeed value in developing security solutions that apply tosuch single-hop net-
works.

Our novel approach to broadcast secrecy in this paper uses symmetric encryption
but changes the encryption key on a per-packet basis using the known concept of a
“key-chain”, namely a set of successive keys derived from repeated one-way hash-
ing of an initial key. For ourfirst contribution we show how a key chain can be
used for encrypting broadcast messages to ensure secrecy, authenticity, replay pro-
tection (freshness), and high message entropy (i.e. cipher-messages do not repeat
even if the plain-text messages do). We also highlight several natural advantages of
our approach, such as the ability to accommodate dynamic data, as well as protec-
tion against compromised keys (we note that the latter is notavailable in MiniSec
[10]). For oursecondcontribution we enhance the key-chain based scheme to in-
corporate limited resilience to key losses. With our methoda node that has lost
some keys gets a probabilistic opportunity (that diminishes with the number of lost
keys) to recover the missing keys from the key chain, and the rate at which this
opportunity diminishes can be adjusted system-wide to balance a node’s recovery
ability against an intruder’s window of opportunity to compromise the key chain.
As ourthird contribution we prototype our mechanism for secret broadcasts in the
context of the network reprogramming protocolDelugeincluded in TinyOS, and
present experimental results which quantify the associated time, space, and power
overheads in a TelosB mote based single-hop network.

The rest of this paper is organised as follows: Section 2 defines the problem setting,
solution requirements, and prior approaches from the literature. In Section 3 we
describe our solution and discuss its properties, while Section 4 extends it to allow
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recovery from key losses. Section 5 describes our prototypeimplementation, with
experimental results presented in Section 6, and the paper concludes in Section 7
with pointers to future work.

2 Problem Overview and Prior Solutions

This section defines the operating environment and threat model, outlines the so-
lution requirements, and discusses relevant prior work in wireless sensor network
broadcast security.

2.1 Operating Environment and Threat Model

We assume a single-hop wireless sensor network in which a single source of broad-
cast data, called the base-station, can directly communicate with all sensor nodes.
Single-hop topologies arise in applications ranging from battlefield command and
control operations between a command centre (e.g. satellite or unmanned aerial
vehicle) and deployed soldiers, to emerging body area networks for continuous
health monitoring [11]. We assume that the base-station hasabundant computation
and energy resources, and cannot be compromised.

If the application warrants confidentiality of the broadcast data, the sensor nodes
are expected to be protected against physical compromise. The sensor nodes in the
WRON (water resources observation network) initiative developed at CSIRO are
expected either to be physically inaccessible to attackers(e.g. in secured areas), or
hardened by incorporation of tamper-resistant hardware such as a Trusted Platform
Module (TPM) [12]. TPMs provide highly secure storage of cryptographic keys,
along with secure hash storage for attestation and integrity verification of platform
configuration, ensuring that physically captured nodes cannot be made to reveal
cryptographic keys or have their software altered without detection. If one or more
nodes in the network are not compromise-resistant, confidentiality of the broadcasts
is unavoidably put at risk, though authenticity of all broadcastscanstill be ensured.

The wireless medium is by nature broadcast and hence a passive eavesdropper can
listen to all transmissions. An active intruder can transmit arbitrary messages, or
replay a valid captured message at a later time. We make no assumptions about the
number of intruders, their locations, their radio range, orthe degree of collusion
amongst them. In the case where nodes are not hardened against physical compro-
mise, no assurances on data confidentiality can be given if anintruder can extract
the cryptographic keys. Nevertheless, we assume it is an operational requirement
that authenticity of the broadcast source and data not be sacrificed even if one or
more sensor nodes are compromised. We assume that the intruder does not have
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the capability to block reception of packets at an uncompromised node; such “jam-
ming” will allow the intruder to act as an intermediary between the base-station
and a receiver, in effect making the network multi-hop whichis beyond the scope
of this paper. Finally, we do not explicitly address denial-of-service or battery-drain
attacks.

2.2 Solution Requirements

We seek a security mechanism that provides the following properties for broadcast
traffic in a single-hop wireless sensor network:

(1) Confidentiality: The broadcast data should be kept secret from eavesdrop-
pers. As noted earlier, confidentiality cannot be guaranteed if one or more
nodes in the network are physically compromised.

(2) Authenticity: Messages not originating from the base-station should be dis-
carded (ensuring source authenticity), as should messagesthat have been tam-
pered with (ensuring data authenticity, also known asmessage integrity).
Note again that authenticity should be guaranteed even if one or more sen-
sor nodes in the network are compromised.

(3) Freshness:Packets that have been captured and replayed at a later time should
be discarded by the sensor nodes.

(4) Semantic security:Even if the broadcast messages are chosen from a small
set, the encryption should produce ciphertext that does notgive information
to an intruder about which of these messages was sent.

(5) Dynamic data: The scheme should be cost-effective even when the content of
the sequence of broadcast messages is not known in its entirety before-hand
by the base-station. For example, the scheme should be efficient not just for
broadcast file transfers (e.g. a new code image), but also forshort dynamic
broadcast messages (e.g. battlefield commands).

(6) Delay Tolerance:No time synchronisation should be required in the system.
(7) Incremental processing:Each received packet must be immediately verifi-

able without having to wait for additional data.
(8) Resilience to loss:A receiver that loses a small number of packets should be

able to receive and read subsequent broadcast messages.

In section 3.2 we will discuss how our proposed scheme meets the above require-
ments.

2.3 Prior Proposals

We now briefly summarise exisiting schemes for broadcast security in wireless sen-
sor network that are relevant to the curent work.
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We are aware of only one existing scheme, MiniSec [10], that provides for secrecy
of broadcast (and indeed of unicast) messages in wireless sensor networks. MiniSec
broadcast requires the sender and all recipients of the broadcast to hold a shared key
K. Further, time is divided into “epochs” and all broadcast participants have clocks
that are loosely synchronised to within an epoch. A broadcast message payloadM
is appended with a nonce (which is a combination of the packetcounter and the
epoch number), and then encrypted using offset code-book (OCB) mode [16] of
block cipher encryption. OCB encryption essentially makesthe payload and nonce
non-separable in cipher-text, and a receiver can thus verify authenticity of the mes-
sage by checking that the nonce obtained post-decryption matches the expected
counter value. The use of OCB therefore provides both secrecy and authenticity in
MiniSec. The loose time-synchronisation in MiniSec poses some concerns about
replay attacks within an epoch, and these are addressed via use of Bloom filters
to detect and discard such replayed packets. Though MiniSecoperates in general
multi-hop networks, we believe its fundamental weakness (when applied to broad-
cast) lies in the assumption that the shared key can be kept safe at all nodes. Even
if one node in the network were to be physically compromised by an intruder to
obtain the shared key, they could forge messages that would pass the authenticity
tests at other nodes. In other words, MiniSec does not satisfy the second desirable
property listed in the previous subsection, which requiresauthenticity of broadcast
messages to be guaranteed even if one or more nodes in the network are compro-
mised.

We now summarise a few relevant broadcast authentication schemes (that do not
provide secrecy). TinySec [13] develops mechanisms for symmetric-key encryption
of data at the link-layer of the communication protocol. Though TinySec does not
mandate how the encryption key is derived, the expectation is that the key would
have a long lifetime and would be shared by all parties involved in the communi-
cation. As mentioned earlier, this is problematic for broadcasts, since receivers are
untrusted and can potentially use the shared key to forge broadcast messages.

TheµTESLA [5] protocol overcomes the above problem by using symmetric-key
encryption with time-varying keys. The base-station constructs a key chain by re-
peatedly applying a hash function to an initial random value, and the root-key
(the last hash value obtained) is distributed to each node securely based on a pre-
distributed symmetric key. The chain construction allows nodes to verify that dis-
closed keys are authentic. Loose time-synchronisation of the network into regular
time intervals is assumed, and the base-station uses a single key from the key chain
for the whole duration of a time interval. The key is disclosed by the base-station
at a later time, when nodes can verify that the key is a valid member of the chain,
the message authentication codes (MACs) of stored broadcast packets are correct,
and that the time delay is such that only the base-station could have constructed the
received packets. Some of the drawbacks of this scheme are the need for network-
wide (loose) time synchronisation, and the high storage requirement (of potentially
malicious or vacuous packets) at each node until the authenticity of the packets can
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be verified (i.e. after the relevant key is disclosed).

Several schemes have been proposed recently [6–9] for authentication of broad-
cast messages in the context of network programming. A network programming
protocol called Deluge [14], which is included by default inthe TinyOS distribu-
tion, allows multi-hop broadcast dissemination of new codeimages on mote-based
platforms. In the absence of authentication, an arbitrary node under Deluge could
broadcast new versions of the software, disseminate malicious packets, program
any number of nodes, and take over the operation of the entirenetwork. In [6],
the authors of Deluge have extended their scheme to incorporate authentication of
the program image. Their scheme, which we termSecDeluge, uses a hash-chain
to verify authenticity of received packets. The base-station sends the code update
in a sequence of packets, each of which includes the hash of the next packet to be
sent. A node receiving the broadcast packet stores this hashvalue, and compares
it to the value obtained from hashing the next received packet, thus making an im-
mediate decision as to whether the packet is authentic and insequence. The initial
packet is digitally signed so the initial hash value is authenticated.Sluice[7] is very
similar to SecDeluge except that the hash in the chain is computed over “pages”
rather than packets (where a page typically carries around1KBytes of the program
image). Denget. al. [8] also employ a signed hash scheme, but use a tree structure
that allows packet verification even when packets arrive out-of-order. A recent ex-
tension calledSelugein [9] further enhances security in Deluge to address various
DoS attacks.

3 Our Scheme for Secret Broadcasts

In this section we describe and discuss our scheme for guaranteeing secrecy and
authenticity of broadcast messages in single-hop wirelesssensor networks.

3.1 The Procedure

As stated earlier, our scheme relies in the use of a chain of keys, one key per packet,
as depicted in Fig. 1, and described by the steps below:

(1) Key-chain generation: The base-station (BS) selects an arbitrary random
key kM , and from it generates a key chainkM , kM−1, . . . , k1, k0, where
ki−1 = H(ki) for i = 1, . . . , M , whereH(.) denotes a hash operation (such
as SHA1 or MD5). The lengthM of the chain can in principle be arbitrarily
large (allowing the chain to be used for broadcasting as manyasM data pack-
ets), but practical designs should bear in mind that the key-width (i.e. number
of bits in the key) will limit the number of unique keys obtained by hashing
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Fig. 1. Key chain encryption of broadcast packets

– successive hashing will ultimately yield repeated keys inthe chain, which
should be avoided to prevent key reuse. One should also bear in mind that a
larger key chain lengthM also necessitates larger processing time and storage
space at the base station.

(2) Bootstrapping: The key commitmentk0, which we term the “root-key”, needs
to be securely conveyed to each target sensor node. The root-key could be
programmed into the sensor nodes prior to deployment (if thekey-chain in the
previous step is long enough to be used for the expected lifetime of the node),
or one of several key management schemes [15] can generate dynamic keys
for secure distribution of the root key to each individual node. The mecha-
nism for root-key distribution is very application specific, and we outline our
approach in Section 5 in the specific context of a network programming ap-
plication.

(3) Data transmission:Once all target sensor nodes have the root key, the base-
station creates the first broadcast packet by concatenatingthe broadcast data
and the successor keyk1, and encrypts the entire message with a symmetric
encryption technique using keyk0 (see Fig. 1). The encryption scheme must
ensure that the encrypted data and encrypted key are not separable in cipher-
text, so that any modification of the encrypted data also destroys the key. Such
message integrity is guaranteed, for example, by the offsetcode-book (OCB)
mode [16] of block cipher encryption. The encrypted packet is then broadcast
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to all nodes.
(4) Data reception:A receiver sensor node can decrypt the message using keyk0

(which it already holds) to reveal the broadcast data as wellas the successor
key k1. It then tests whetherH(k1) = k0: if so, authenticity and integrity of
the packet’s source and data is assured and the packet is accepted (see Fig.
1). The keyk0 is now discarded by the node and the new keyk1 stored in its
place.

(5) Iterate: Steps 3 and 4 are repeated for successive broadcast packets,using key
ki in lieu of k0, andki+1 in lieu of k1 for i = 1, 2, . . .. Care must be taken that
successive packets are transmitted at a rate which gives nodes sufficient time
to extract the data payload and prepare for the next packet. OnceM broadcast
packets have been sent, thereby using up all theM available keys, the base
station will have to return to step 1 to generate a new key chain before it can
continue to send broadcast messages securely.

3.2 Discussion

As described above, the key chain in our scheme serves the dual purpose of ensur-
ing both secrecy and authenticity of the broadcast data. Thenon-forgeability of the
successor key in a received packet derives from the authenticity of the contents of
that packet - this necessitates the more sophisticated OCB block cipher encryption
that prohibits any part of the broadcast message from being modified without also
modifying the part that holds the successor key. In spite of its increased complexity,
the advantage of this approach is that the authentication mechanism is decoupled
from the actual broadcast data itself, which is particularly useful in scenarios where
the broadcast data is not known before-hand. By contrast, the broadcast authenti-
cation schemes proposed in [6–9] compute a hash of the broadcast data itself, with
the initial hash being digitally signed. While such an approach is acceptable for
bulk data transfer applications (such as network programming), where the cost of
initial secure key exchange can be amortised over the broadcast, it is not efficient
for applications that require dynamic or short broadcast messages to be sent at reg-
ular or irregular intervals, as may occur in battlefield control and asset monitoring
applications.

Our approach for guaranteeing secrecy (in conjunction withauthenticity) is fun-
damentally different from that of MiniSec [10]. Though bothschemes rely on
the use of OCB to make the payload and nonce non-separable in cipher-text, the
difference in choice of nonce leads to different properties. MiniSec uses an in-
crementing counter (the packet number concatenated with the epoch number) as
nonce; this is simple, allows multi-hop transmission (provided there is loose time-
synchronisation in the system), and is resilient to loss. However, it does not preserve
message authenticity if a node is physically compromised yielding the shared key
and counter. Our scheme, by contrast, uses the predecessor key of the key chain
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as the nonce. This makes authentication slightly more complex (since the received
nonce has to be hashed and then matched against the stored key), but provides
strong guarantees on message authenticity even if one or more shared keys are com-
promised, since a key is never reused. This additional property of our scheme comes
at an expense: extension to multi-hop networks requires more complex solutions,
as we outline in [17,18], and recovery from key loss also requires a more elaborate
mechanism (described in section 4). Nevertheless, we believe our approach is more
suited to networks where authenticity is vital even if secrecy is compromised (e.g.
battlefield applications), whereas MiniSec may better suitdeployments in which
secure key storage is guaranteed and key compromise is therefore not a concern.

Our use of a key chain is most similar to the scheme used byµTESLA [5]. How-
ever, there are some major differences sinceµTESLA is designed for authentica-
tion only while our scheme provides secrecy as well. Our scheme uses the keys for
encrypting data, whileµTESLA uses the keys for computing message authentica-
tion codes (MACs) to validate the data.µTESLA discloses keys some time after
the data has been transmitted (requiring storage of packets), whereas we send the
key to decrypt a packet in the preceding packet and hence do not require storage
of any (potentially malicious) packets. Lastly,µTESLA uses network-wide loose
time-synchronisation, with a single key from the key chain being used for the whole
duration of a time interval, while our scheme completely eliminates key reuse by
changing the key from packet to packet.

All the proposed broadcast security protocols require an initial commitment step:
the signed first packet or page in SecDeluge, Sluice, and Seluge commits to a
data hash chain, while the root-key inµTESLA and in our scheme commits to a
key chain. Confidentiality of the broadcast data requires the initial commitment to
be transmitted secretly by the base-station to each target node individually. While
this may be computationally expensive (unless the root-keyis pre-deployed at all
nodes), it is unavoidable if secrecy is required by the application. We do however
note that the bootstrapping operation can be time-overlapped in nodes so that for
large networks, the time needed by the initialisation step is limited by communica-
tion time requirements rather than the computational load.

Our scheme does not guarantee authenticity in a multi-hop network if one or more
sensor nodes are compromised. This is because a compromisedtransit node in a
multi-hop network can hold back several packets, extract the keys, and use them to
generate broadcast packets containing malicious data but valid keys, which would
be accepted by receivers downstream. The extension of our scheme to multi-hop
networks is beyond the scope of this paper, and is being addressed by our current
research in [17,18] by use of multiple one-way key chains.
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4 Recovering from Key Losses

A drawback of using the key chain approach above is that a receiver which misses
even one broadcast packet is effectively excluded from all future broadcast mes-
sages: this happens because the key contained in the missingpacket is needed to
decrypt the subsequent packet, which in turn contains the key to the next packet,
and so on. This is not a problem in applications that perform reliable delivery of
broadcast data (e.g. network programming protocols like Deluge), since lost pack-
ets will be retransmitted as part of the protocol and lost keys recovered therein.
However, there are applications in which reliable deliveryof broadcast data is un-
necessary or prohibitive in cost. For example, consider a group of soldiers each of
whom is equipped with a communication device receiving broadcast command and
control data from a base-station (say a satellite or unmanned aerial vehicle). In such
an application it is infeasible to make the broadcast reliable since the base-station
may not know how many receivers are reachable at any time (some receivers may
be inoperational or out of range), and moreover, it may be unwise to have receivers
reveal their location by transmitting requests for missingdata. In such unreliable
broadcast scenarios, the loss of data in the packet may not bevery crucial (for
example the base-station can periodically repeat the data), but the loss of the key
contained in the packet is a problem (our scheme prohibits key reuse for fear of
replay attacks). We believe a scheme that allows a receiver to recover from one or
more lost keys should have the following important properties:

(1) The recovery scheme should balance a receiver’s abilityto recover against the
overall vulnerability of the system. Specifically, it should assist a receiver that
has lost one or a few keys to recover at sufficiently low computational cost,
but it should limit the ability of an attacker, who has obtained a previous (old)
key, to decrypt ongoing broadcast messages.

(2) The recovery scheme should scale well to large numbers ofheterogeneous re-
ceivers. In other words receivers should be able to make independent decisions
on the effort they want to invest in recovery, and should alsonot individually
request assistance in recovery (thereby keeping their location secret).

With these requirements in mind, we propose an extension to our basic key chain
scheme above that allows recovery from packet loss. Recall that the base-station
in each broadcast packetPi sends dataDi and the successor keyki+1, together en-
crypted using the current keyki. In addition, we include in packetPi the following
“recovery information” (see Fig. 2): the next keyki+1, an integerm ≥ 1, and the
hash digestH(ki+1|m), the entire recovery information being encrypted with an
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older key ki−m of the chain. The idea is of course to allow a node that has missed
m previous broadcast packets to use its old key to jump forwardin the chain and
recover the next key to be used.

// current keydenotes the node’s last correct key
1. decryptdata field of Pi usingcurrent keyto obtaindataandextractedkey
2. if extractedkeyhashes tocurrent key// no packets missed
3. replacecurrent keywith extractedkey
4. processdata
5. else// packets may have been missed
6. decryptrecoveryfield of Pi usingcurrent keyto obtainki+1|m andrecoveryhash
7. if hash ofki+1|m matchesrecoveryhash
8. separateki+1|m into extractedkeyandm

9. hashextractedkeym + 1 times and store intrial key
10. if trial keymatchescurrent key
11. replacecurrent keywith extractedkey
12. elsediscard packet //cannot authenticate key
13. elsediscard packet //decryption unsuccessful
14.end

Fig. 3. Operations performed by node upon arrival of broadcast packetPi

Fig. 3 shows formally what a node does upon receipt of packetPi. Steps1-4 de-
scribe regular packet processing in the absence of packet loss. If the key chain
validity check in step2 fails, the node could have potentially lost previous broad-
cast packets, and recovery is attempted in steps5-13. The node does not know
which old key in the chain is used by the base-station for encrypting the recovery
information (since it neither knows the number of packets ithas missed, nor the
numberm chosen by the base-station); consequently the decryption in step6 that
uses the node’s stored key may be unsuccessful (i.e. yield nonsense), and step7 is
needed to verify this by checking the contained hash. If correct, the successor key
ki+1 is authenticated by hashing itm + 1 times (step9) to verify (in step10) that
it belongs to the key chain, and is then accepted (step11), at which point the node
has successfully reattached to the broadcast session. The packet is discarded if the
key does not authenticate (step12) or if the decryption was unsuccessful (step13),
which happens when the base-station has used a different keyfor encryption than
the key held by the receiving node, or when the packet is malicious.

The above scheme allows a receiver that has missedm packets (since its last suc-
cess) to reattach using the recovery information containedin the received broadcast
packet, only if the base-station uses the same numberm in constructing the recov-
ery information contained in the packet (otherwise the receiver cannot decrypt the
recovery information). An important question therefore concerns the choice ofm
that the base-station should make, given absence of any knowledge of how many
packets each of the (potentially large number of) receivershas missed (in fact a re-
ceiver itself may not know how many packets it has lost). Ifm is chosen as a small
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constant, a node that has lostj > m packets can never reattach, since its last key
ki−j cannot decrypt the recovery information in packetPi or any subsequent packet.
If m is chosen to be a large constant, a node that has lostj � m packets either has
to wait for m − j subsequent broadcast packets to pass before it can reattach, or
spend much computational effort in trying to decrypt the recovery information in
packetPi by trying keyki−j and previous keyski−j−1, . . . , ki−m (that it can derive
by successive hashing). No single choice ofm is therefore equally effective across
receivers that have missed different number of broadcast packets.

Instead of fixingm, the base-station can varym in a randomised way from packet
to packet. We propose that the base-station choosem according to a geometric
distribution given by(1 − p)m−1p for a chosen parameterp ∈ (0, 1) (discussed
further below) – the base-station can implement this choiceeasily by simulating
a (biased) coin toss. With such a choice ofm by the base-station, a receiver that
has missedk > 1 broadcast packets can successfully decrypt (step6) the recovery
information in the received packet if and only ifk = m, which happens with prob-
ability (1−p)m−1p. This scheme meets the requirements enumerated earlier in this
subsection:

• A receiver’s ability to reattach to the broadcast session falls exponentially with
the number of broadcast packets it has missed since the last time it was attached.
This allows a smooth trade-off between the network’s resilience to losses and its
vulnerability to attackers: a trusted receiver that has lost some packets has the
opportunity to reattach, but an attacker has limited time tocompromise a key in
the chain and attach to the network (since old keys become exponentially less
useful with time).

• The parameterp ∈ (0, 1) that determines the range over which recovery is most
effective can be adjusted system-wide to choose the desiredtrade-off point be-
tween network resilience and attack resistance. Ifp is large, receivers that have
lost one or a few packets can recover quickly, but the chancesof recovery for
a node that has missed many broadcast packets becomes vanishingly small. To
take an example, consider a largep = 0.5 and a smallp = 0.1. A node that has
missed only1 packet has a chance of recovery0.5 and0.1 respectively for the
large and smallp values above, whereas a node that has lost10 packets has prob-
ability 0.1% and3.9% respectively for the large and smallp values above, thus
showing that smallp improves loss resilience at the expense of increasing the
vulnerability of the system to compromised keys. The operator of the network
can choose an appropriate trade-off point depending on application requirements
and expected operating conditions.

• The recovery scheme does not penalise receivers that do not need recovery (be-
yond the cost of receiving the recovery field), and receiverswhich require recov-
ery spend a computation time linear in the number of missed packets, as seen
in Fig. 3. A receiver that has the most recently used key (i.e.has not missed the
previous packet) will satisfy the check in step2 and ignore the recovery infor-
mation, hence paying no performance penalty. A receiver that has lostm > 1
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packets, or receives a malicious packet, has to perform the normal decryption
and hash check in steps1-2, as well as the decryption and hash check in steps
6-7. Malicious packets, as well as packets that will not aid in recovery, will fail
the check in step7 and be discarded. Packets containing usable recovery infor-
mation will have the key validated (step8) in time proportional to the number of
lost packets (this step protects against a sophisticated attacker who uses an old
compromised key).

• Our recovery scheme requires local computation at the receivers but no radio
transmissions; this makes the scheme scaleable to a large number of receivers,
and is also attractive in scenarios where node location is required to remain hid-
den.

We believe the recovery scheme described above is amenable to implementation
in applications where secrecy and authenticity of broadcast data is important but
where reliable broadcast delivery is infeasible or undesirable.

5 Secrecy for Code Image Broadcasts: An Implementation

We undertook a first prototype implementation of our scheme in the context of net-
work programming, namely for broadcasting new code images from a base-station
to multiple target sensor nodes. Our implementation is based on the Deluge net-
work programming protocol [14] that is distributed with TinyOS. Deluge divides
a program image into pages (typically of size1104 bytes each), and each page is
transmitted in multiple packets (typically48). A page when successfully received
is stored in flash memory by each target sensor node. The lack of security is a well-
known shortcoming in Deluge, and prior schemes such as SecDeluge [6], Sluice [7],
and Seluge [9] mentioned earlier have extended Deluge to incorporate code image
authentication. None of these proposals however ensure privacy of the code image
broadcast. Our scheme, which we callPrivCIB (PrivateCode ImageBroadcast),
implements privacy and authentication of Deluge packet transmissions. We em-
phasise to the reader that at present our scheme is limited tosingle-hop systems
where the base-station broadcasts new code images directlyto all sensor nodes;
extension to the true multi-hop “epidemic” dissemination mechanism of Deluge is
deferred to future work. We also note that the key loss recovery mechanism out-
lined earlier in section 4 above is unnecessary in this application since Deluge has
in-built mechanisms for reliable packet delivery.

Our implementation platform comprised a PC (running thecygwinenvironment on
Windows XP) acting as a base-station and TelosB motes [19] (commercially avail-
able from Crossbow Technology Inc.) running TinyOS as target sensor nodes. The
base-station was implemented in Java using the BouncyCastle JCE provider [20].
The key size for symmetric key encryption was chosen as8 bytes; even though real
deployments would use larger keys for high security, we chose the key size in our
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implementation to be compatible with the RC5 encryption algorithm available in
TinySec [13]. In the first step the base-station creates the key chain: it chooses an
initial 8-byte random number and hashes it using the SHA1 algorithm (with the
lowest8 bytes of the20-byte result being used as the next key). The hashing was
repeated to create a chain of length4000, which is sufficient for transfering the
program images we considered. New Java classes were createdfor the key-chain
establishment, and the Deluge Java toolchain code in the fileDelugeImageInjec-
tor.javawas modified for the data transmission operations.

We did not assume that the root-key is pre-shared between thebase-station and all
sensor nodes; instead a bootstrap phase was implemented to use public-key cryp-
tography to convey the root-key securely. The base-stationholds a public/private
key pair, of which the public key is known to all sensor nodes.Each sensor node
also holds a public/private key pair, and the base-station knows the public key of
each sensor node that is to receive the broadcast data. Note that the public keys are
required only during bootstrapping to establish initial trust; thereafter shared sym-
metric keys are used for data encryption. The bootstrappingphase is implemented
using elliptic-curve public-key cryptographic operations, which have been show to
be feasible for resource-constrained sensor nodes [21].

A simple way for the base-station to deliver the root-key to aparticular target sensor
node would be for it to use the target’s public key to encrypt the root-key. However,
this is susceptible to capture and replay by an adversary at alater time, poten-
tially allowing the attacker to revert the sensor nodes to anearlier code image. To
protect against this, we implement an authenticated Diffie-Hellman exchange first
to generate a secure channel, and then to use that channel forthe root-key transfer.
The base-station initiates the Diffie-Hellman exchange by sending a digitally signed
message containing its ephemeral key component, and the target node responds cor-
respondingly with its own signed ephemeral key component. The shared ephemeral
key is then generated by each side by combining the received key component with
its own key component. This shared key allows secure transfer of the root-keyk0

via symmetric encryption. The ephemeral nature of the shared key protects the
Diffie-Hellman exchange against capture-and-replay attacks, while authentication
via digital signature prevents an intruder from masquerading as the base-station or
as a sensor node, and protects against man-in-the-middle attacks. We implemented
the ECDH (Elliptic Curve Diffie-Hellman) using primitives from the EccM package
[21] from Harvard University, while the EC-DSA (Elliptic Curve Digital Signature
Algorithm) was taken from the TinyECC package [22] developed at North Carolina
State University. The entire procedure is repeated by the base-station for each target
node of the broadcast.

Once the root-key has been sent to all nodes, the actual broadcast data transfer
can begin. We used the RC5 encryption algorithm available from the TinySec [13]
implementation, and incorporated it into Deluge’s NesC fileDelugePageTrans-
ferM.nc. The packet structure of Deluge was modified so that in addition to the
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Fig. 4. ROM and RAM usage of Deluge, SecDeluge, Sluice, Seluge, and PrivCIB.

23 bytes of data in the packet,8 bytes of key was included corresponding to the
successor key in the key chain. The additional8 bytes per packet constitutes an
overhead of384 bytes per page (which contains1104 bytes of the program image).

We did not optimise our cryptographic routines for efficiency and performance.
Fig. 4 compares the memory usage of our scheme PrivCIB (whichperforms both
authentication and encryption) to prior schemes SecDeluge, Sluice, and Seluge
(which perform only authentication). Our scheme requires approximately19KB
more program memory than Deluge, and approximately3KB more RAM data stor-
age space than Deluge. The ROM and RAM requirements of our scheme are only
slightly higher than the other schemes, which is an acceptable price to pay for
keeping the broadcast data secret. Our prototype is intended as a proof-of-concept;
a production implementation would reduce both the ROM and RAM requirements
by removing duplication in the ECC routines between the EccMand TinyECC
packages, and will be addressed by our future work.

6 Experimental Results

This section profiles our PrivCIB scheme in terms of the time taken as well as the
energy consumed for transfering program images of various sizes. Our first experi-
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Image Size Deluge PrivCIB

name (pages) Time (sec) Energy (mJ) Time (sec) Energy (mJ)

Blink 3 10.1 756 19.7 2032

Oscilloscope 9 20.2 2024 49.1 4549

Pong 11 25.6 2506 59.2 5317

TinyECC 23 47.7 4787 116.7 10471

PrivCIB 39 79.7 7940 180.3 17531
Table 1
Program images and transfer time / energy using Deluge and PrivCIB
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Fig. 5. Transfer time from Base-Station to one node

ment considers a single target sensor node. The time taken for the various steps was
measured by incorporating program code to switch the three LEDs on the motes on
or off at various stages of the algorithm, and timing such changes manually with
a stopwatch. Energy consumption was obtained by integrating the product of the
voltage and current used by the sensor node during the image transfer, measured
using a USB connected PC oscilloscope manufactured by Cleverscope [23].

Table 1 shows measurements for the transfer of five program images (four of which
are supplied as examples in the TinyOS distribution) of sizes ranging from3 to 39
pages (recall that each page holds1104 bytes of data). The time taken for the image
transfer when using Deluge and when using our PrivCIB scheme(with and without
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the root-key distribution phase) is shown in Fig. 5, while the corresponding energy
consumption is plotted in Fig. 6. The experiments were repeated several times and
found to give consistent results, so error-bars are not shown.

Several observations can be made from these plots: first, thetime and energy re-
quirements under both schemes grow linearly with program image size, since the
operations performed by the nodes are largely repetitive from page to page. Sec-
ond, the time/energy costs of PrivCIB (excluding the root-key distribution phase)
are generally a factor of2-2.5 that of Deluge; this represents the price penalty for
having secrecy of the program image broadcast. Third, the dynamic distribution
of the root-key (involving the authenticated Diffie-Hellman exchange) in PrivCIB
requires a constant time of approximately180 seconds which is independent of the
program image size, and this is reflected in the constant vertical distance between
the top curve (that includes root-key distribution) and themiddle curve (that as-
sumes a pre-shared root-key) showing the time/energy requirements of PrivCIB in
the plots.

One would expect the computational cost of PrivCIB to be substantially higher
compared to Deluge (due to the encryption and hash operations), and the commu-
nication costs to be only marginally higher (approximately35%, corresponding to
the additional8 bytes per packet of23-byte payload). Since in general, computation
is expected to use much less energy than communication [24],it is surprising that
the energy requirement of PrivCIB shown in Fig. 6 grows at a similar rate to its time

18



 0

 20

 40

 60

 80

 100

 120

 140

 0  5  10  15  20  25  30  35

P
ow

er
 (

m
W

)

Time (sec)

Fig. 7. Power consumption trace when transfering program “Pong” using Deluge.

requirement shown in Fig. 5. Investigation revealed that this is because the radio in
the sensor node is never put into sleep mode. The high base load energy consump-
tion rate of the radio even in idle mode masks the incrementalpower consumed by
the processor when performing the cryptographic operations in PrivCIB. Modify-
ing the MAC protocol to incorporate sophisticated duty-cycling techniques to put
the radio in sleep mode is beyond the scope of this paper; instead, we resorted to
closer analysis of the power traces obtained while the protocol was in operation in
order to identify the regions where energy consumption increases. We present here
traces obtained during the transfer of the “Pong” image, which is 11 pages long,
with and without our secrecy enhancement.

Fig. 7 shows the trace of the power consumed by the target sensor mote when using
Deluge for the transfer, while Fig. 8 shows the power consumption when using
our PrivCIB scheme. The voltage and current supplied to the sensor node were
sampled at approximately65 KHz using the Cleverscope USB oscilloscope. To
reduce plot size each data point of the plot is the average of10 successive samples.
Both figures show an initial region of increased power consumption (in the range
4-5.5 sec for Deluge in Fig. 7 and6-7.5 sec for PrivCIB in Fig. 8), where the
new program image is advertised/requested as part of the dissemination protocol.
Thereafter, there are exactly11 regions in either plot that show a marked increase
in power usage: these correspond to the11 pages that are transferred as part of the
“Pong” image. Each of these11 regions of activity involves successive reception of
48 packets, followed by a write operation of the entire page to flash memory. Table
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Fig. 8. Power consumption trace when transfering program “Pong” using PrivCIB.

2 shows the time and energy required for transfering each of the 11 pages of the
“Pong” image under either scheme, computed from the above traces. As expected,
PrivCIB requires more time for the transfer of each page, taking2.41 sec on average
compared to0.88 sec in Deluge. Correspondingly the average energy consumption
per page with PrivCIB is215.1 mJ compared to91.4 mJ in Deluge. The increased
time and energy requirements in PrivCIB are attributable tothe need for packet
decryption (RC5) and key verification (SHA1) on a per-packetbasis, and also the
larger packet size itself due to the need to include the successor key. Nevertheless,
the time and energy cost for incorporating secrecy and authenticity via our scheme
is within a factor2.5 of standard Deluge without any security.

We also profiled the bootstrap phase that uses the authenticated Diffie-Hellman ex-
change to distribute the root-key: Table 3 lists the time andenergy costs of the
various steps involved. As can be seen, the majority of the time and energy is spent
in creation and verification of the digital signatures. While earlier proposals like
SecDeluge, Sluice, and Seluge require the first packet of every image transfer to
be digitally signed, our scheme can easily amortise that cost over several image
transfers (or indeed any arbitrary broadcast message transmissions) by using a suf-
ficiently long key chain.

Finally, we also tested and profiled our PrivCIB scheme for upgrading a software
image on multiple nodes in a single-hop topology. Fig. 9 compares the time taken
for upgrading1, 2, 4, and10 nodes (note that the vertical scale in this plot starts
at200 seconds), and emphasises that upgrading each additional node incurs only a
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Program Deluge PrivCIB

page number Time (msec) Energy (mJ) Time (msec) Energy (mJ)

1 847.1 86.2 2399.7 215.5

2 893.3 93.9 2433.6 217.4

3 838.1 88.4 2433.6 216.9

4 904.0 93.6 2387.7 213.1

5 914.6 94.2 2442.4 217.0

6 914.7 94.5 2431.8 216.6

7 836.3 85.7 2433.6 216.2

8 870.2 88.8 2421.1 215.3

9 1060.5 109.6 2355.6 209.2

10 838.1 86.5 2431.8 216.7

11 804.3 83.5 2376.5 212.1

Average 883.7 91.4 2413.4 215.1
Table 2
Time and Energy for each page of “Pong” under Deluge and PrivCIB

Task Time (sec) Energy (J)

Creation of ECC keys 53.2 3.25

Verification of digital signature 59.8 5.54

Creation of digitally signed message 35.7 3.58

Sending message to base-station 3.7 0.38

Waiting period 1.3 0.12

Diffie-Hellman key exchange 5.5 0.57

Decryption of root-key 9.7 0.79

Sending message to base-station 3.6 0.33

Total 172.5 14.56
Table 3
Root-key distribution steps and their time / energy usage

small additional cost, thus preserving the advantages of broadcast.
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7 Conclusions and Future Work

Critical wireless sensor networks deployed in defence and resource management
applications will require broadcast data to remain confidential. In this paper we de-
veloped a practical and efficient mechanism that uses low-complexity symmetric-
key cryptography with a time-varying key derived from a key-chain in order to
guarantee confidentiality, authenticity, freshness, and semantic security of broad-
cast data, while allowing the broadcast data to be dynamic and incrementally pro-
cessed. We also proposed a scalable extension to the scheme that allows receivers to
recover from loss of one or a few keys, with an associated penalty in system vulner-
ability to compromised keys as well as processing and communication costs, that
can be adjusted system-wide. Finally we implemented a prototype of our mecha-
nism as an add-on to the broadcast-based Deluge network reprogramming proto-
col in off-the-shelf TelosB motes running TinyOS. Our experiments show that the
time and energy required to broadcast a page of a program image confidentially
and securely to multiple nodes using our scheme is within a factor of three of that
needed by standard Deluge, with an additional180 seconds for the initial bootstrap
phase. This cost of the bootstrap can be amortised over a potentially large number
of broadcast message transfers. We believe this is an acceptable price to pay for
ensuring confidentiality and security of wireless sensor network broadcasts.

There are several directions for future work: we have undertaken further work
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[17,18] to extend our scheme to multi-hop networks where transit nodes may be
susceptible to physical compromise. We have also extended,prototyped and anal-
ysed our scheme [25] for recovery from lost keys. Finally, weare prototyping our
scheme for broadcast applications in which the data is dynamic, unlike the network
programming application considered in this paper wherein the bulk data is known
before-hand.
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