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Abstract

Broadcast is used in wireless sensor networks for opesatiooh as software updates, net-
work gueries, and command dissemination. Though auttegiaic of broadcast messages
is probably the most critical primitive, certain applicats such as battlefield control and
natural resource management also require the broadcastoda¢ kept secret from eaves-
droppers. In this paper we design, implement, and evaluateyel scheme that meets the
requirements of secrecy, authenticity, integrity, anglireess of broadcast messages in the
context of a single-hop wireless sensor network. Our doutions are three-fold: first, we
propose the use of time-varying keys (based on a key-chaiirjrbadcast encryption, em-
phasising advantages such as non-forgeability, proteetjainst old-key compromise, and
allowance for dynamic data. Second, we extend the basichkaiyr mechanism to incorpo-
rate limited protection against key loss, allowing legiim receivers to recover even if they
have lost a small number of keys. Third, we prototype oursehby incorporating it into
Deluge, the network programming protocol distributed withyOS, and quantify its cost
in terms of time, space, and power consumption on a TelosE piatform. Our scheme
represents a practical, efficient and scalable means okdielg broadcast data secretly to
a large number of low-power sensor nodes.
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1 Introduction

Broadcast is an essential feature in any sensor networkifmat operations such
as network query, software updates, time synchronisaéind,network manage-
ment. Given its importance, there is growing interest inradsing broadcast secu-
rity [1]. Much of the research literature has focusedamthenticityof the broad-
cast source and data; we refer the reader to a recent aictbdt summarises
the challenges of broadcast authentication in resourcsti@ned wireless sensor
networks. In this paper, we considsgcrecy(also refered to asonfidentialityor
privacy) of the broadcast data. Several critical applications avd@rsecrecy, such
as command and control signaling in the battlefield. Theiegipbn that motivates
this paper is a project undertaken by our organisation, trar@onwealth Scien-
tific and Industrial Research Organisation (CSIRO), todbaiWater Resources Ob-
servation Network (WRON) [3] to assist in managing and adglfitrg the national
water resources of Australia. CSIRO has developed sensi@snzalled Flecks [4]
which are candidates for deployment at sites such as fawess rlakes, dams, and
catchment areas. Secrecy of various broadcast data anelcorssages is im-
portant in such a scenario: for example, the sensory paeas@tuch as sampling
periods and thresholds) that would from time-to-time beated using broadcast
mechanisms need to be kept secret, and software upgrademrmekept confiden-
tial to prevent exploitation of code weaknesses. This pdpeelops mechanisms
that operate within the resource constraints of sensorstwlensure secrecy of
such broadcast data, while also guaranteeing authentitigégrity, and freshness
of the broadcast messages.

Several schemes, for example [5-9], have been proposed iitdtature for broad-
castauthenticationbut to the best of our knowledge there exists only one otteer p
posal [10] that can provideecrecyof broadcast data in wireless sensor networks.
We emphasise that our work was undertaken independentlgarairrently to the
work in MiniSec [10], and our approaches have fundamentérénces . While
MiniSec uses a fixed key (known to all parties) with a timeyuag initialisation
vector (1V), our approach uses a time-varying key (derivednfa key-chain). As
explained later, our method, though restricted in this workingle-hop networks
(we have subsequently extended our scheme to multi-hoponiet)y provides au-
thentication which is robust to key compromise unlike MegSLastly, we note
that though several of the existing authentication scheztaase leveraged to in-
corporate secrecy, they either entail high storage reopgngs (e.qg. [5]) or are cost-
effective only for bulk data transfers (e.g. [6-9]) but not $poradic transmission
of broadcast data.

In this work we propose, design, prototype, and evaluateaatisal method for
incorporating secrecy, authenticity, integrity, and agpbrotection (aka freshness)
of broadcast data in a wireless sensor network. Our workignpihiper is restricted
to single-hopnetworks. There are two reasons for this:



e First, broadcast secrecy is a very challenging problem.r8gimc encryption
based on a static shared key requires all parties to knowepenkich is prob-
lematic since receivers should only be able to verify butonigfinate valid broad-
casts. Asymmetric encryption (which does not require allipato share a key)
is impractical on a per-packet basis due to high computatimhcommunication
overheads. New solution techniques are required, and ticothe complex-
ity this paper considers the relatively simpler scenaria sfngle-hop network
(as we will soon see solutions for even this restricted sterse non-trivial).
Our subsequent work in [17,18] has extended our solutiomnigce to multi-
hop networks, with corresponding increase in solution deity (discussion of
which is beyond the scope of the current paper).

e Second, single-hop transmission suffices in many appbicatenarios, particu-
larly in hierarchically organised networks. For exampteaibattlefield scenario
it would not be uncommon for a satellite or unmanned aerihloke (UAV) to
directly (i.e. single-hop) broadcast command and contedsages to all soldiers
in a troop unit. Likewise in a natural resource monitoringlagation a mobile
base-station could periodically broadcast a set of instras to all sensor de-
vices in a region in a single-hop fashion. In such networkdtirhopping may
not even be desirable (for possible reliability and enegpsons). So there is
indeed value in developing security solutions that applguoch single-hop net-
works.

Our novel approach to broadcast secrecy in this paper usessiyic encryption
but changes the encryption key on a per-packet basis usgrigithwn concept of a
“key-chain”, namely a set of successive keys derived fropeated one-way hash-
ing of an initial key. For ouffirst contribution we show how a key chain can be
used for encrypting broadcast messages to ensure seardognacity, replay pro-
tection (freshness), and high message entropy (i.e. ciplessages do not repeat
even if the plain-text messages do). We also highlight s¢vetural advantages of
our approach, such as the ability to accommodate dynamag datwvell as protec-
tion against compromised keys (we note that the latter isvailable in MiniSec
[10]). For oursecondcontribution we enhance the key-chain based scheme to in-
corporate limited resilience to key losses. With our methagbde that has lost
some keys gets a probabilistic opportunity (that diminssivéh the number of lost
keys) to recover the missing keys from the key chain, and dke at which this
opportunity diminishes can be adjusted system-wide tonoala node’s recovery
ability against an intruder’'s window of opportunity to coramise the key chain.
As ourthird contribution we prototype our mechanism for secret brosigda the
context of the network reprogramming proto&@lugeincluded in TinyOS, and
present experimental results which quantify the assati@tee, space, and power
overheads in a TelosB mote based single-hop network.

The rest of this paper is organised as follows: Section 2 éetime problem setting,
solution requirements, and prior approaches from thealitee. In Section 3 we
describe our solution and discuss its properties, whil¢i@®d extends it to allow



recovery from key losses. Section 5 describes our protatypéementation, with
experimental results presented in Section 6, and the papetudes in Section 7
with pointers to future work.

2 Problem Overview and Prior Solutions

This section defines the operating environment and threaemoutlines the so-
lution requirements, and discusses relevant prior workineless sensor network
broadcast security.

2.1 Operating Environment and Threat Model

We assume a single-hop wireless sensor network in whichgéessiource of broad-
cast data, called the base-station, can directly commienweigh all sensor nodes.
Single-hop topologies arise in applications ranging fraattlbfield command and
control operations between a command centre (e.g. satelliunmanned aerial
vehicle) and deployed soldiers, to emerging body area nm&snvor continuous
health monitoring [11]. We assume that the base-statiombasdant computation
and energy resources, and cannot be compromised.

If the application warrants confidentiality of the broadodata, the sensor nodes
are expected to be protected against physical comprontigesdnsor nodes in the
WRON (water resources observation network) initiativeadeped at CSIRO are
expected either to be physically inaccessible to attadleegs in secured areas), or
hardened by incorporation of tamper-resistant hardwask as a Trusted Platform
Module (TPM) [12]. TPMs provide highly secure storage ofptographic keys,
along with secure hash storage for attestation and inyeggitfication of platform
configuration, ensuring that physically captured nodesxocibe made to reveal
cryptographic keys or have their software altered withaitédtion. If one or more
nodes in the network are not compromise-resistant, cortfalgy of the broadcasts
is unavoidably put at risk, though authenticity of all broastscanstill be ensured.

The wireless medium is by nature broadcast and hence a pa&ssiesdropper can
listen to all transmissions. An active intruder can tranisarbitrary messages, or
replay a valid captured message at a later time. We make nmasiens about the
number of intruders, their locations, their radio rangetha degree of collusion
amongst them. In the case where nodes are not hardenedtgggisgal compro-
mise, no assurances on data confidentiality can be givenirftarder can extract
the cryptographic keys. Nevertheless, we assume it is aratqeal requirement
that authenticity of the broadcast source and data not bédisad even if one or
more sensor nodes are compromised. We assume that theeinttoels not have



the capability to block reception of packets at an uncomgecthnode; such “jam-
ming” will allow the intruder to act as an intermediary beemethe base-station
and a receiver, in effect making the network multi-hop whikbeyond the scope
of this paper. Finally, we do not explicitly address dermgbkervice or battery-drain
attacks.

2.2 Solution Requirements

We seek a security mechanism that provides the followinggnttes for broadcast
traffic in a single-hop wireless sensor network:

(1) Confidentiality: The broadcast data should be kept secret from eavesdrop-
pers. As noted earlier, confidentiality cannot be guarahteene or more
nodes in the network are physically compromised.

(2) Authenticity: Messages not originating from the base-station should $e di
carded (ensuring source authenticity), as should mes#Haggdsave been tam-
pered with (ensuring data authenticity, also knownnasssage integrity.

Note again that authenticity should be guaranteed evenafasrmore sen-
sor nodes in the network are compromised.

(3) FreshnessPackets that have been captured and replayed at a latetioulels
be discarded by the sensor nodes.

(4) Semantic security:Even if the broadcast messages are chosen from a small
set, the encryption should produce ciphertext that doeginetinformation
to an intruder about which of these messages was sent.

(5) Dynamic data: The scheme should be cost-effective even when the content of
the sequence of broadcast messages is not known in itstgrte®re-hand
by the base-station. For example, the scheme should besaffioot just for
broadcast file transfers (e.g. a new code image), but alsshimt dynamic
broadcast messages (e.g. battlefield commands).

(6) Delay Tolerance:No time synchronisation should be required in the system.

(7) Incremental processing:Each received packet must be immediately verifi-
able without having to wait for additional data.

(8) Resilience to lossA receiver that loses a small number of packets should be
able to receive and read subsequent broadcast messages.

In section 3.2 we will discuss how our proposed scheme mketaliove require-
ments.

2.3 Prior Proposals

We now briefly summarise exisiting schemes for broadcastrggin wireless sen-
sor network that are relevant to the curent work.



We are aware of only one existing scheme, MiniSec [10], thatiges for secrecy
of broadcast (and indeed of unicast) messages in wirelassiseetworks. MiniSec
broadcast requires the sender and all recipients of thelbasato hold a shared key
K. Further, time is divided into “epochs” and all broadcastipgants have clocks
that are loosely synchronised to within an epoch. A broadoassage payloatl/

is appended with a nonce (which is a combination of the packenter and the
epoch number), and then encrypted using offset code-bo@Bj@®node [16] of
block cipher encryption. OCB encryption essentially makespayload and nonce
non-separable in cipher-text, and a receiver can thuspauihenticity of the mes-
sage by checking that the nonce obtained post-decryptidohes the expected
counter value. The use of OCB therefore provides both sgened authenticity in
MiniSec. The loose time-synchronisation in MiniSec posase concerns about
replay attacks within an epoch, and these are addressedeiafuBloom filters
to detect and discard such replayed packets. Though MiroBerates in general
multi-hop networks, we believe its fundamental weaknesge(wapplied to broad-
cast) lies in the assumption that the shared key can be kispasall nodes. Even
if one node in the network were to be physically compromisgaib intruder to
obtain the shared key, they could forge messages that waslksl the authenticity
tests at other nodes. In other words, MiniSec does not gdhisfsecond desirable
property listed in the previous subsection, which requangthenticity of broadcast
messages to be guaranteed even if one or more nodes in therkeine compro-
mised.

We now summarise a few relevant broadcast authenticatioenses (that do not
provide secrecy). TinySec [13] develops mechanisms fonsgtric-key encryption
of data at the link-layer of the communication protocol. Tigb TinySec does not
mandate how the encryption key is derived, the expectasidhat the key would
have a long lifetime and would be shared by all parties ir#dlin the communi-
cation. As mentioned earlier, this is problematic for brxasts, since receivers are
untrusted and can potentially use the shared key to forgedioest messages.

The 4 TESLA [5] protocol overcomes the above problem by using stnitrkey

encryption with time-varying keys. The base-station cartss a key chain by re-
peatedly applying a hash function to an initial random vakmed the root-key
(the last hash value obtained) is distributed to each noclersly based on a pre-
distributed symmetric key. The chain construction allowdes to verify that dis-
closed keys are authentic. Loose time-synchronisatiohehetwork into regular
time intervals is assumed, and the base-station uses & &egfrom the key chain
for the whole duration of a time interval. The key is disclbdy the base-station
at a later time, when nodes can verify that the key is a valithber of the chain,

the message authentication codes (MACSs) of stored brobapaekets are correct,
and that the time delay is such that only the base-statiold ¢@ve constructed the
received packets. Some of the drawbacks of this schemeearetdd for network-
wide (loose) time synchronisation, and the high storageirement (of potentially

malicious or vacuous packets) at each node until the authitgrdf the packets can



be verified (i.e. after the relevant key is disclosed).

Several schemes have been proposed recently [6—9] forrdigéggon of broad-
cast messages in the context of network programming. A m&twmgramming
protocol called Deluge [14], which is included by defaultie TinyOS distribu-
tion, allows multi-hop broadcast dissemination of new ciogigges on mote-based
platforms. In the absence of authentication, an arbitragenunder Deluge could
broadcast new versions of the software, disseminate roagpackets, program
any number of nodes, and take over the operation of the emtingork. In [6],
the authors of Deluge have extended their scheme to inctgauthentication of
the program image. Their scheme, which we té@stDelugeuses a hash-chain
to verify authenticity of received packets. The base-stasiends the code update
in a sequence of packets, each of which includes the hasle aiekt packet to be
sent. A node receiving the broadcast packet stores thisvash, and compares
it to the value obtained from hashing the next received gatkes making an im-
mediate decision as to whether the packet is authentic apeluence. The initial
packet is digitally signed so the initial hash value is antloated Sluice[7] is very
similar to SecDeluge except that the hash in the chain is ctedpover “pages”
rather than packets (where a page typically carries aralBytes of the program
image). Denget. al.[8] also employ a signed hash scheme, but use a tree structure
that allows packet verification even when packets arriveoburder. A recent ex-
tension calledselugan [9] further enhances security in Deluge to address variou
DoS attacks.

3 Our Scheme for Secret Broadcasts

In this section we describe and discuss our scheme for giegiag secrecy and
authenticity of broadcast messages in single-hop wirelessor networks.

3.1 The Procedure

As stated earlier, our scheme relies in the use of a chainyst ka&e key per packet,
as depicted in Fig. 1, and described by the steps below:

(1) Key-chain generation: The base-station (BS) selects an arbitrary random
key k,;, and from it generates a key chaiy;, ky_1, ..., k1, ko, Where
ki1 = H(k;) fori = 1,..., M, whereH(.) denotes a hash operation (such
as SHA1 or MD5). The lengtii/ of the chain can in principle be arbitrarily
large (allowing the chain to be used for broadcasting as raany data pack-
ets), but practical designs should bear in mind that theviielyh (i.e. number
of bits in the key) will limit the number of unique keys obtathby hashing
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Fig. 1. Key chain encryption of broadcast packets

— successive hashing will ultimately yield repeated keygherchain, which
should be avoided to prevent key reuse. One should also b@aind that a
larger key chain length/ also necessitates larger processing time and storage
space at the base station.

Bootstrapping: The key commitment,, which we term the “root-key”, needs

to be securely conveyed to each target sensor node. Thé&egateuld be
programmed into the sensor nodes prior to deployment (kélyechain in the
previous step is long enough to be used for the expecteohidaif the node),

or one of several key management schemes [15] can genersendykeys

for secure distribution of the root key to each individualeoThe mecha-
nism for root-key distribution is very application specifamd we outline our
approach in Section 5 in the specific context of a network aogning ap-
plication.

Data transmission: Once all target sensor nodes have the root key, the base-
station creates the first broadcast packet by concaterntinigroadcast data
and the successor kdy, and encrypts the entire message with a symmetric
encryption technique using key (see Fig. 1). The encryption scheme must
ensure that the encrypted data and encrypted key are nobbépm cipher-
text, so that any modification of the encrypted data alsadgsthe key. Such
message integrity is guaranteed, for example, by the aftsdt-book (OCB)
mode [16] of block cipher encryption. The encrypted packéhen broadcast



to all nodes.

(4) Data reception: A receiver sensor node can decrypt the message using,key
(which it already holds) to reveal the broadcast data as agethe successor
key k;. It then tests whetheH (k;) = kq: if so, authenticity and integrity of
the packet’'s source and data is assured and the packet [gedt¢see Fig.
1). The keyk, is now discarded by the node and the new kegtored in its
place.

(5) lterate: Steps 3 and 4 are repeated for successive broadcast pasketsiey
k; in lieu of kg, andk; 1 in lieu of &, fori = 1,2, .... Care must be taken that
successive packets are transmitted at a rate which givessrsadficient time
to extract the data payload and prepare for the next packee U broadcast
packets have been sent, thereby using up allMhavailable keys, the base
station will have to return to step 1 to generate a new keynchefore it can
continue to send broadcast messages securely.

3.2 Discussion

As described above, the key chain in our scheme serves theulpase of ensur-
ing both secrecy and authenticity of the broadcast datandheorgeability of the
successor key in a received packet derives from the auditgrdf the contents of
that packet - this necessitates the more sophisticated Q&R bipher encryption
that prohibits any part of the broadcast message from beodjfrad without also
modifying the part that holds the successor key. In spitesohcreased complexity,
the advantage of this approach is that the authenticatiarnamésm is decoupled
from the actual broadcast data itself, which is particyladeful in scenarios where
the broadcast data is not known before-hand. By contrasttbadcast authenti-
cation schemes proposed in [6—9] compute a hash of the asdata itself, with
the initial hash being digitally signed. While such an agmtois acceptable for
bulk data transfer applications (such as network progrargjniwhere the cost of
initial secure key exchange can be amortised over the basadtis not efficient
for applications that require dynamic or short broadcastigages to be sent at reg-
ular or irregular intervals, as may occur in battlefield cohand asset monitoring
applications.

Our approach for guaranteeing secrecy (in conjunction waitthenticity) is fun-
damentally different from that of MiniSec [10]. Though batkhemes rely on
the use of OCB to make the payload and nonce non-separabigherdext, the
difference in choice of nonce leads to different propertMsiSec uses an in-
crementing counter (the packet number concatenated watleploch number) as
nonce; this is simple, allows multi-hop transmission (jded there is loose time-
synchronisation in the system), and is resilient to lossvéler, it does not preserve
message authenticity if a node is physically compromisettijng the shared key
and counter. Our scheme, by contrast, uses the predecessof the key chain



as the nonce. This makes authentication slightly more cexn(since the received
nonce has to be hashed and then matched against the stopedkeprovides
strong guarantees on message authenticity even if one ershared keys are com-
promised, since a key is never reused. This additional ptyppéour scheme comes
at an expense: extension to multi-hop networks requiregmomplex solutions,
as we outline in [17,18], and recovery from key loss also iregua more elaborate
mechanism (described in section 4). Nevertheless, weveadigr approach is more
suited to networks where authenticity is vital even if segns compromised (e.g.
battlefield applications), whereas MiniSec may better dafiloyments in which
secure key storage is guaranteed and key compromise i$ateen®t a concern.

Our use of a key chain is most similar to the scheme usedTSLA [5]. How-
ever, there are some major differences sin€&SLA is designed for authentica-
tion only while our scheme provides secrecy as well. Ourseheses the keys for
encrypting data, while TESLA uses the keys for computing message authentica-
tion codes (MACs) to validate the dat@TESLA discloses keys some time after
the data has been transmitted (requiring storage of pgckdiereas we send the
key to decrypt a packet in the preceding packet and hence deqoire storage
of any (potentially malicious) packets. LastlyTESLA uses network-wide loose
time-synchronisation, with a single key from the key chaimig used for the whole
duration of a time interval, while our scheme completelynatiates key reuse by
changing the key from packet to packet.

All the proposed broadcast security protocols require @rmirtommitment step:
the signed first packet or page in SecDeluge, Sluice, andy&etammits to a
data hash chain, while the root-key iiTESLA and in our scheme commits to a
key chain. Confidentiality of the broadcast data requiresnitial commitment to
be transmitted secretly by the base-station to each taagks mdividually. While
this may be computationally expensive (unless the rootikgye-deployed at all
nodes), it is unavoidable if secrecy is required by the apgibn. We do however
note that the bootstrapping operation can be time-oveeldp nodes so that for
large networks, the time needed by the initialisation s¢dpnited by communica-
tion time requirements rather than the computational load.

Our scheme does not guarantee authenticity in a multi-htweank if one or more
sensor nodes are compromised. This is because a comprotrassd node in a
multi-hop network can hold back several packets, extrack#dys, and use them to
generate broadcast packets containing malicious dataatidtkeys, which would
be accepted by receivers downstream. The extension of benseto multi-hop
networks is beyond the scope of this paper, and is being sslelleby our current
research in [17,18] by use of multiple one-way key chains.
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4 Recovering from Key Losses

A drawback of using the key chain approach above is that avesoghich misses
even one broadcast packet is effectively excluded fromuaillré broadcast mes-
sages: this happens because the key contained in the mpssikgt is needed to
decrypt the subsequent packet, which in turn contains tiedkéhe next packet,
and so on. This is not a problem in applications that perfehalole delivery of
broadcast data (e.g. network programming protocols likei@®), since lost pack-
ets will be retransmitted as part of the protocol and lostskeycovered therein.
However, there are applications in which reliable delivefyproadcast data is un-
necessary or prohibitive in cost. For example, consideoaof soldiers each of
whom is equipped with a communication device receiving 8caat command and
control data from a base-station (say a satellite or unndhaagal vehicle). In such
an application it is infeasible to make the broadcast ridiabnce the base-station
may not know how many receivers are reachable at any timegseagivers may
be inoperational or out of range), and moreover, it may beismw have receivers
reveal their location by transmitting requests for missiiaga. In such unreliable
broadcast scenarios, the loss of data in the packet may neérnyecrucial (for
example the base-station can periodically repeat the ,datajhe loss of the key
contained in the packet is a problem (our scheme prohibitsr&ese for fear of
replay attacks). We believe a scheme that allows a recawvecbver from one or
more lost keys should have the following important projestti

(1) The recovery scheme should balance a receiver’s atolitycover against the
overall vulnerability of the system. Specifically, it shdalssist a receiver that
has lost one or a few keys to recover at sufficiently low corapomal cost,
but it should limit the ability of an attacker, who has ob&dra previous (old)
key, to decrypt ongoing broadcast messages.

(2) The recovery scheme should scale well to large numbédrstefogeneous re-
ceivers. In other words receivers should be able to makgemntent decisions
on the effort they want to invest in recovery, and should alsoindividually
request assistance in recovery (thereby keeping theititocaecret).

With these requirements in mind, we propose an extensionitdasic key chain
scheme above that allows recovery from packet loss. Rdtllthe base-station
in each broadcast packgt sends datd); and the successor key, |, together en-
crypted using the current key. In addition, we include in packet, the following
“recovery information” (see Fig. 2): the next kéy,,, an integern > 1, and the
hash digest (k;.1|m), the entire recovery information being encrypted with an
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olderkey k;_,, of the chain. The idea is of course to allow a node that haseaiss
m previous broadcast packets to use its old key to jump forwatbe chain and
recover the next key to be used.

Il currentkeydenotes the node’s last correct key
1. decryptdatafield of P; usingcurrentkeyto obtaindataandextractedkey
2. if extractedkeyhashes te@urrentkey// no packets missed

3. replacecurrentkeywith extractedkey

4, processlata

5. else/l packets may have been missed

6. decryptrecoveryfield of P; usingcurrent keyto obtaink;, ,|m andrecoveryhash
7. if hash ofk; ,|m matchesecoveryhash

8. separaté;  ;|m into extractedkeyandm

9. hashextractedkeym + 1 times and store itrial _key
10. if trial_keymatchesurrentkey

11. replacecurrent keywith extractedkey

12. elsediscard packet £annot authenticate key

13. elsediscard packet Mecryption unsuccessful

14.end

Fig. 3. Operations performed by node upon arrival of brosdpacket?;

Fig. 3 shows formally what a node does upon receipt of patkebtepsl-4 de-
scribe regular packet processing in the absence of packst lbthe key chain
validity check in step fails, the node could have potentially lost previous broad-
cast packets, and recovery is attempted in step3. The node does not know
which old key in the chain is used by the base-station forygorg the recovery
information (since it neither knows the number of packetsas missed, nor the
numberm chosen by the base-station); consequently the decryptistep6 that
uses the node’s stored key may be unsuccessful (i.e. yielsemse), and stépis
needed to verify this by checking the contained hash. Ifemttyithe successor key
k; .1 is authenticated by hashingrit + 1 times (ste®) to verify (in step10) that

it belongs to the key chain, and is then accepted (st¢pat which point the node
has successfully reattached to the broadcast session.atketps discarded if the
key does not authenticate (ste&p) or if the decryption was unsuccessful (ste}),
which happens when the base-station has used a differeribkepncryption than
the key held by the receiving node, or when the packet is makc

The above scheme allows a receiver that has misspdckets (since its last suc-
cess) to reattach using the recovery information contam#uk received broadcast
packet, only if the base-station uses the same numhearconstructing the recov-
ery information contained in the packet (otherwise theix@seannot decrypt the
recovery information). An important question thereforeoerns the choice of
that the base-station should make, given absence of anyl&dgesof how many
packets each of the (potentially large number of) receiliassmissed (in fact a re-
ceiver itself may not know how many packets it has lostju lis chosen as a small
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constant, a node that has Igst- m packets can never reattach, since its last key
k;_; cannot decrypt the recovery information in packedr any subsequent packet.

If m is chosen to be a large constant, a node that hag lestn packets either has
to wait for m — j subsequent broadcast packets to pass before it can reaitach
spend much computational effort in trying to decrypt theokeey information in
packetP; by trying keyk;_; and previous keys,_;_i, ..., k;_,, (that it can derive

by successive hashing). No single choicerois therefore equally effective across
receivers that have missed different number of broadcagigts

Instead of fixingm, the base-station can vany in a randomised way from packet
to packet. We propose that the base-station cheesecording to a geometric
distribution given by(1 — p)™~!p for a chosen parameter € (0,1) (discussed
further below) — the base-station can implement this cheasly by simulating

a (biased) coin toss. With such a choicenofoy the base-station, a receiver that
has missed > 1 broadcast packets can successfully decrypt (te¢pe recovery
information in the received packet if and onlykif= m, which happens with prob-
ability (1 — p)™~!p. This scheme meets the requirements enumerated earliésin t
subsection:

e A receiver’s ability to reattach to the broadcast sessitia &ponentially with
the number of broadcast packets it has missed since thantesit tvas attached.
This allows a smooth trade-off between the network’s resde to losses and its
vulnerability to attackers: a trusted receiver that has $asne packets has the
opportunity to reattach, but an attacker has limited timeampromise a key in
the chain and attach to the network (since old keys becomenexpially less
useful with time).

e The parametep € (0, 1) that determines the range over which recovery is most
effective can be adjusted system-wide to choose the detsadd-off point be-
tween network resilience and attack resistance.i$f large, receivers that have
lost one or a few packets can recover quickly, but the chaatescovery for
a node that has missed many broadcast packets becomesivglyisimall. To
take an example, consider a lange- 0.5 and a smalp = 0.1. A node that has
missed onlyl packet has a chance of recoveéry and0.1 respectively for the
large and smalb values above, whereas a node that hasllogiackets has prob-
ability 0.1% and3.9% respectively for the large and smallvalues above, thus
showing that smalp improves loss resilience at the expense of increasing the
vulnerability of the system to compromised keys. The opmeratf the network
can choose an appropriate trade-off point depending oncapipin requirements
and expected operating conditions.

e The recovery scheme does not penalise receivers that deadtracovery (be-
yond the cost of receiving the recovery field), and receiwdneh require recov-
ery spend a computation time linear in the number of misse#qia, as seen
in Fig. 3. A receiver that has the most recently used keyl{es.not missed the
previous packet) will satisfy the check in ste@nd ignore the recovery infor-
mation, hence paying no performance penalty. A receivdritaa lostm > 1
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packets, or receives a malicious packet, has to perform dhmal decryption
and hash check in steps2, as well as the decryption and hash check in steps
6-7. Malicious packets, as well as packets that will not aid cokery, will fail
the check in steff and be discarded. Packets containing usable recovery infor
mation will have the key validated (st&pin time proportional to the number of
lost packets (this step protects against a sophisticatadkaer who uses an old
compromised key).

e Our recovery scheme requires local computation at the wexebut no radio
transmissions; this makes the scheme scaleable to a langleenwf receivers,
and is also attractive in scenarios where node locatiorgired to remain hid-
den.

We believe the recovery scheme described above is amemabitglementation
in applications where secrecy and authenticity of broaddata is important but
where reliable broadcast delivery is infeasible or unddsa.

5 Secrecy for Code Image Broadcasts: An Implementation

We undertook a first prototype implementation of our schemtheé context of net-
work programming, namely for broadcasting new code images & base-station
to multiple target sensor nodes. Our implementation is dbasethe Deluge net-
work programming protocol [14] that is distributed with ¥DS. Deluge divides
a program image into pages (typically of size)4 bytes each), and each page is
transmitted in multiple packets (typical8). A page when successfully received
is stored in flash memory by each target sensor node. The fagcority is a well-
known shortcoming in Deluge, and prior schemes such as $eg®gs], Sluice [7],
and Seluge [9] mentioned earlier have extended Deluge typocate code image
authentication. None of these proposals however ensuragyrof the code image
broadcast. Our scheme, which we dativCIB (Private Code ImageBroadcast),
implements privacy and authentication of Deluge packetsirassions. We em-
phasise to the reader that at present our scheme is limitsthdte-hop systems
where the base-station broadcasts new code images ditecly sensor nodes;
extension to the true multi-hop “epidemic” disseminatioaamanism of Deluge is
deferred to future work. We also note that the key loss regoreechanism out-
lined earlier in section 4 above is unnecessary in this egfiin since Deluge has
in-built mechanisms for reliable packet delivery.

Our implementation platform comprised a PC (runningdhgwinenvironment on
Windows XP) acting as a base-station and TelosB motes [D&jifeercially avail-
able from Crossbow Technology Inc.) running TinyOS as tasgasor nodes. The
base-station was implemented in Java using the BouncysCHSHE provider [20].
The key size for symmetric key encryption was chose® lages; even though real
deployments would use larger keys for high security, we eltbe key size in our
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implementation to be compatible with the RC5 encryptioroetgm available in
TinySec [13]. In the first step the base-station creates #¢lyeckain: it chooses an
initial 8-byte random number and hashes it using the SHA1 algorithitin (ve
lowest8 bytes of the20-byte result being used as the next key). The hashing was
repeated to create a chain of lengihD0, which is sufficient for transfering the
program images we considered. New Java classes were cfeatbe@ key-chain
establishment, and the Deluge Java toolchain code in th®&lagelmagelnjec-
tor.javawas modified for the data transmission operations.

We did not assume that the root-key is pre-shared betwedrage station and all
sensor nodes; instead a bootstrap phase was implementsd public-key cryp-
tography to convey the root-key securely. The base-stétodtds a public/private
key pair, of which the public key is known to all sensor nodegsch sensor node
also holds a public/private key pair, and the base-statrmws the public key of
each sensor node that is to receive the broadcast data.hédtéé public keys are
required only during bootstrapping to establish initialstr;, thereafter shared sym-
metric keys are used for data encryption. The bootstrappiage is implemented
using elliptic-curve public-key cryptographic operasowhich have been show to
be feasible for resource-constrained sensor nodes [21].

A simple way for the base-station to deliver the root-key padicular target sensor
node would be for it to use the target’s public key to encrigptroot-key. However,
this is susceptible to capture and replay by an adversarylaeatime, poten-
tially allowing the attacker to revert the sensor nodes teatier code image. To
protect against this, we implement an authenticated Difeiman exchange first
to generate a secure channel, and then to use that chantie fmot-key transfer.
The base-station initiates the Diffie-Hellman exchangedoyling a digitally signed
message containing its ephemeral key component, and ge tevde responds cor-
respondingly with its own signed ephemeral key compondmg.shared ephemeral
key is then generated by each side by combining the recemgddmponent with
its own key component. This shared key allows secure tran$fihe root-keyk
via symmetric encryption. The ephemeral nature of the shkey protects the
Diffie-Hellman exchange against capture-and-replay lkstachile authentication
via digital signature prevents an intruder from masque@ds the base-station or
as a sensor node, and protects against man-in-the-middt&sit We implemented
the ECDH (Elliptic Curve Diffie-Hellman) using primitivesdfm the EccM package
[21] from Harvard University, while the EC-DSA (Elliptic @ue Digital Signature
Algorithm) was taken from the TinyECC package [22] devetbaeNorth Carolina
State University. The entire procedure is repeated by the-Btation for each target
node of the broadcast.

Once the root-key has been sent to all nodes, the actual casiadata transfer
can begin. We used the RC5 encryption algorithm availabi@ fthe TinySec [13]
implementation, and incorporated it into Deluge’s NesC bielugePageTrans-
ferM.nc The packet structure of Deluge was modified so that in amiditd the
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Fig. 4. ROM and RAM usage of Deluge, SecDeluge, Sluice, Seland PrivCIB.

23 bytes of data in the packet,bytes of key was included corresponding to the
successor key in the key chain. The additiopddytes per packet constitutes an
overhead 0B84 bytes per page (which contaih$04 bytes of the program image).

We did not optimise our cryptographic routines for efficigraaxd performance.
Fig. 4 compares the memory usage of our scheme PrivCIB (whecforms both
authentication and encryption) to prior schemes SecDel8géce, and Seluge
(which perform only authentication). Our scheme requinggreximately 19KB
more program memory than Deluge, and approxim&ikl more RAM data stor-
age space than Deluge. The ROM and RAM requirements of o@nselare only
slightly higher than the other schemes, which is an accéptatice to pay for
keeping the broadcast data secret. Our prototype is inteasla proof-of-concept;
a production implementation would reduce both the ROM and/R&quirements
by removing duplication in the ECC routines between the E@M TinyECC
packages, and will be addressed by our future work.

6 Experimental Results

This section profiles our PrivCIB scheme in terms of the tialeeh as well as the
energy consumed for transfering program images of variaas sOur first experi-
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Image Size Deluge PrivCIB

name (pages)| Time (sec)| Energy (mJ)| Time (sec)| Energy (mJ)
Blink 3 10.1 756 19.7 2032
Oscilloscope| 9 20.2 2024 49.1 4549
Pong 11 25.6 2506 59.2 5317
TinyECC 23 47.7 4787 116.7 10471
PrivCIB 39 79.7 7940 180.3 17531

Table 1

Program images and transfer time / energy using Deluge an@IBr

400 T I ; r
Deluge —+—
PrivCIB (root-key pre-shared ) ---x<---
PrivCIB (root-key distributed) ------ X

350 |- B

300 | % _
i _
200 + - _

150 - .

Time taken for image broadcast (seconds)

100 | .

0 5 10 15 20 25 30 35 40
Program image size (pages)

Fig. 5. Transfer time from Base-Station to one node

ment considers a single target sensor node. The time takémefgarious steps was
measured by incorporating program code to switch the thEdad on the motes on
or off at various stages of the algorithm, and timing suchngea manually with

a stopwatch. Energy consumption was obtained by integyatie product of the

voltage and current used by the sensor node during the innagsfér, measured
using a USB connected PC oscilloscope manufactured by Glewee [23].

Table 1 shows measurements for the transfer of five prograages(four of which
are supplied as examples in the TinyOS distribution) ofssramging frons to 39
pages (recall that each page holds4 bytes of data). The time taken for the image
transfer when using Deluge and when using our PrivCIB schantle and without
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Fig. 6. Total energy consumption on target node for imagestea

the root-key distribution phase) is shown in Fig. 5, while torresponding energy
consumption is plotted in Fig. 6. The experiments were regokeseveral times and
found to give consistent results, so error-bars are not show

Several observations can be made from these plots: firstinigeand energy re-
guirements under both schemes grow linearly with prograagersize, since the
operations performed by the nodes are largely repetitme fpage to page. Sec-
ond, the time/energy costs of PrivCIB (excluding the roey-Kistribution phase)
are generally a factor &f-2.5 that of Deluge; this represents the price penalty for
having secrecy of the program image broadcast. Third, tmamtyc distribution
of the root-key (involving the authenticated Diffie-Hellmaxchange) in PrivCIB
requires a constant time of approximatéf) seconds which is independent of the
program image size, and this is reflected in the constanteaédistance between
the top curve (that includes root-key distribution) and thieldle curve (that as-
sumes a pre-shared root-key) showing the time/energynegents of PrivCIB in
the plots.

One would expect the computational cost of PrivCIB to be wrtimlly higher
compared to Deluge (due to the encryption and hash opesatiand the commu-
nication costs to be only marginally higher (approximat#9o, corresponding to
the additionaB bytes per packet &f3-byte payload). Since in general, computation
is expected to use much less energy than communicationif2gdsurprising that
the energy requirement of PrivCIB shown in Fig. 6 grows atbdlar rate to its time

18



140

120

100

[e]
o

Power (mW)

[o2]
o
T
1

40 | -

20 - ,

Time (sec)

Fig. 7. Power consumption trace when transfering prograomgP using Deluge.

requirement shown in Fig. 5. Investigation revealed thigtithbecause the radio in
the sensor node is never put into sleep mode. The high bagehsagy consump-
tion rate of the radio even in idle mode masks the incremeruakr consumed by
the processor when performing the cryptographic operaitioiPrivCIB. Modify-
ing the MAC protocol to incorporate sophisticated dutyloyg techniques to put
the radio in sleep mode is beyond the scope of this papeeddstve resorted to
closer analysis of the power traces obtained while the podtwas in operation in
order to identify the regions where energy consumptiongases. We present here
traces obtained during the transfer of the “Pong” imagectvig 11 pages long,
with and without our secrecy enhancement.

Fig. 7 shows the trace of the power consumed by the targetiserate when using
Deluge for the transfer, while Fig. 8 shows the power congdionpvhen using
our PrivCIB scheme. The voltage and current supplied to émsa node were
sampled at approximatelyp KHz using the Cleverscope USB oscilloscope. To
reduce plot size each data point of the plot is the average sficcessive samples.
Both figures show an initial region of increased power corgion (in the range
4-5.5 sec for Deluge in Fig. 7 and-7.5 sec for PrivCIB in Fig. 8), where the
new program image is advertised/requested as part of teerdigation protocol.
Thereafter, there are exactly regions in either plot that show a marked increase
in power usage: these correspond to theages that are transferred as part of the
“Pong” image. Each of thesd regions of activity involves successive reception of
48 packets, followed by a write operation of the entire pageastfilmemory. Table

19



120 | 1

100

80 |

60 - 1

Power (mW)

40 + .

20 -

Time (sec)

Fig. 8. Power consumption trace when transfering prograam® using PrivCIB.

2 shows the time and energy required for transfering eacheof t pages of the
“Pong” image under either scheme, computed from the abacesr As expected,
PrivCIB requires more time for the transfer of each pagentpk 41 sec on average
compared td@.88 sec in Deluge. Correspondingly the average energy consompt
per page with PrivCIB i215.1 mJ compared t01.4 mJ in Deluge. The increased
time and energy requirements in PrivCIB are attributabléhtoneed for packet
decryption (RC5) and key verification (SHA1) on a per-padiagis, and also the
larger packet size itself due to the need to include the ssocey. Nevertheless,
the time and energy cost for incorporating secrecy and atithigy via our scheme
is within a factor2.5 of standard Deluge without any security.

We also profiled the bootstrap phase that uses the authieatibéfie-Hellman ex-
change to distribute the root-key: Table 3 lists the time andrgy costs of the
various steps involved. As can be seen, the majority of the ind energy is spent
in creation and verification of the digital signatures. \@halarlier proposals like
SecDeluge, Sluice, and Seluge require the first packet of eéwege transfer to
be digitally signed, our scheme can easily amortise that @osr several image
transfers (or indeed any arbitrary broadcast messageanissisns) by using a suf-
ficiently long key chain.

Finally, we also tested and profiled our PrivCIB scheme fagragding a software
image on multiple nodes in a single-hop topology. Fig. 9 carap the time taken
for upgradingl, 2, 4, and10 nodes (note that the vertical scale in this plot starts
at 200 seconds), and emphasises that upgrading each additicshaimzurs only a
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Program Deluge PrivCIB
page number Time (msec)| Energy (mJ)| Time (msec)| Energy (mJ)
1 847.1 86.2 2399.7 215.5
2 893.3 93.9 2433.6 217.4
3 838.1 88.4 2433.6 216.9
4 904.0 93.6 2387.7 213.1
5 914.6 94.2 2442.4 217.0
6 914.7 94.5 2431.8 216.6
7 836.3 85.7 2433.6 216.2
8 870.2 88.8 2421.1 215.3
9 1060.5 109.6 2355.6 209.2
10 838.1 86.5 2431.8 216.7
11 804.3 83.5 2376.5 212.1
Average 883.7 914 2413.4 215.1

Table 2

Time and Energy for each page of “Pong” under Deluge and FBivC

Task Time (sec)| Energy (J)
Creation of ECC keys 53.2 3.25
Verification of digital signature 59.8 5.54
Creation of digitally signed message 35.7 3.58
Sending message to base-station 3.7 0.38
Waiting period 1.3 0.12
Diffie-Hellman key exchange 5.5 0.57
Decryption of root-key 9.7 0.79
Sending message to base-station 3.6 0.33
Total 172.5 14.56

Table 3

Root-key distribution steps and their time / energy usage

small additional cost, thus preserving the advantagesoafdmast.
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7 Conclusions and Future Work

Critical wireless sensor networks deployed in defence asdurce management
applications will require broadcast data to remain confidérin this paper we de-
veloped a practical and efficient mechanism that uses laonwptexity symmetric-
key cryptography with a time-varying key derived from a l&hain in order to
guarantee confidentiality, authenticity, freshness, amastic security of broad-
cast data, while allowing the broadcast data to be dynandaramrementally pro-
cessed. We also proposed a scalable extension to the sdierafldws receivers to
recover from loss of one or a few keys, with an associatedlfyenaystem vulner-
ability to compromised keys as well as processing and conatian costs, that
can be adjusted system-wide. Finally we implemented a fyqo¢oof our mecha-
nism as an add-on to the broadcast-based Deluge networgrepnming proto-
col in off-the-shelf TelosB motes running TinyOS. Our expants show that the
time and energy required to broadcast a page of a prograneimagfidentially
and securely to multiple nodes using our scheme is withirctfeof three of that
needed by standard Deluge, with an additidrsal seconds for the initial bootstrap
phase. This cost of the bootstrap can be amortised over at@ihelarge number
of broadcast message transfers. We believe this is an atdepirice to pay for
ensuring confidentiality and security of wireless senstwoek broadcasts.

There are several directions for future work: we have umdteri further work
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[17,18] to extend our scheme to multi-hop networks wherasitanodes may be
susceptible to physical compromise. We have also extenqutethtyped and anal-
ysed our scheme [25] for recovery from lost keys. Finally,axe prototyping our
scheme for broadcast applications in which the data is disyamlike the network
programming application considered in this paper wheteenbulk data is known
before-hand.
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