
An Experimental Study of Wireless Connectivity and
Routing in Ad Hoc Sensor Networks for Real-Time

Soccer Player MonitoringI

Vijay Sivaramana,∗, Ashay Dhamdherea, Hao Chena, Alex Kurusingala,
Sarthak Grovera

aSchool of Electrical Engineering and Telecommunications,
University of New South Wales,
Sydney, NSW, Australia 2052

Abstract

Live physiological monitoring of soccer players during sporting events can help
maximize athlete performance while preventing injury, and enable new applica-
tions for referee-assist and enhanced television broadcast services. However, the
harsh operating conditions in the soccer field pose several challenges: (a) body-
mounted wireless sensor devices have limited radio range, (b) playing area is
large, necessitating multi-hop transmission, (c) wireless connectivity is dynamic
due to extreme mobility, and (d) data forwarding has to operate within tight
delay/energy constraints. In this paper, we take a first step towards character-
ising wireless connectivity in the soccer field by undertaking experimental work
with local soccer clubs, and assess the feasibility of real-time athlete monitor-
ing. We make three specific contributions: (1) We develop an empirical profile
of radio signal strength in an open soccer field taking into account distance and
body orientation of the athlete. (2) Using data from several soccer games we
profile key characteristics of wireless connectivity, highlighting aspects such as
small power-law inter-encounters and link correlations. (3) We develop practi-
cal multi-hop routing algorithms that can be tuned to achieve the right balance
between the competing objectives of resource consumption and data extraction
delay. We believe our study is the first to characterise the wireless environment
for mobile sensor networks in field sports, and paves the way towards realisation
of real-time athlete monitoring systems.
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1. Introduction

Advances in sensing and communications technologies are enabling new low-
cost and lightweight devices that allow measurement and remote monitoring of
an individual’s vital physiological signs such as ECG, temperature and oxygen
saturation levels. Such technology, though designed primarily for the healthcare
industry, is being adapted to the massively popular and growing field of sports
science, specifically for the purpose of athlete monitoring.

Biomedical technology has long been used by professional coaches and train-
ers in striving to push their athletes’ bodies to the edge of its capabilities.
However, much of this examination of the body has been performed under lab-
oratory conditions where results attained in the artifical environment may not
parallel those observed in competition [1]. Devices are now starting to emerge
in the market that are making the leap from monitoring athletes in training
(e.g. SPI Elite [2] platform from GPSports) to monitoring them during com-
petition (e.g. e-AR [3], VxLog [4], and WiMu [5]). We are partnering with
Toumaz Technology Ltd. in the UK who are manufacturing a platform called
SensiumTM[6] that integrates low power wireless technology with miniaturised
sensors and lightweight flexible batteries [7]. This platform, weighing under 10
grams, will allow non-intrusive collection and real-time wireless transmission of
athlete physiological data during competition.

We seek to apply the above wearable platforms to monitoring athletes in
field sports, specifically soccer. Soccer is a hugely popular sport throughout the
world, and attracts large financial investment, particularly in Europe. Several
soccer clubs in the UK have expressed great interest in monitoring their ath-
letes on the field, predominantly to reduce the risk of injury and improve player
substitution decisions. Soccer organisers have also expressed interest in using
real-time position and impact information for referee-assist services, and televi-
sion channels are eager to augment live broadcasts with player parameters (e.g.
heart-rate during clutch events, speed and acceleration, impact levels during
collisions, etc.) so as to heighten the level of engagement for audiences.

While hardware platforms for athlete monitoring are maturing rapidly, there
is much research needed in developing communication protocols that can operate
under the unique conditions arising in the soccer field: (a) Rapid acceleration
and impact are part of the sport, and this restricts the monitoring device to be
small, lightweight, unobtrusive and non-protruding so that the players’ degree
of freedom is not limited. This is in contrast to devices tried in sports such
as rowing [8] or cross country skiing [9] that have form-factor akin to a mobile
phone. Consequently, monitoring devices for soccer can be expected to have ex-
tremely limited battery power and restricted radio range, placing severe energy
and reach constraints on the communication protocols. (b) The playing area
in soccer is very large at over 4000m2. Given the limited transmission range
of body-worn devices, coupled with attenuation effects arising from attachment
to the human body (profiled later in this paper), real-time extraction of player

2



data would require multi-hop routing. One-hop communication from the de-
vice to base-station, such as proposed for ice-hockey in [10], or the protocols
proposed in [11] for monitoring team-sports such as basketball and volleyball
having a small playing area, would not suffice for soccer. (c) Soccer players move
very rapidly in the field, and this makes the topology highly dynamic at short
time-scales (seconds). Designing routing mechanisms that can deliver data to
base-stations within stringent time and energy constraints over multiple hops
in this time-varying environment promises to be challenging.

To the best of our knowledge there is neither any prior work in characterising
the operating environment for a mobile body-worn wireless sensor network in a
soccer field, nor are there protocols in the literature that are suitable for real-
time athlete data extraction in such an environment. In this paper we undertake
experimental work in which we outfit several soccer clubs with sensor devices
and collect data on their movement and connectivity (with each other and with
base-stations around the field) over multiple games. Using the collected data
we make three contributions:

• Our first contribution develops an empirical model of the strength of
the radio signal emanating from an athlete’s body-worn device. Unlike
previous disk models that assume isotropic propagation, we show that the
signal strength varies with both angular orientation and radial distance
when the transmitter is worn against the body. Using our empirical data,
we derive an analytical fit that provides accurate characterisation of the
radio reach of an athlete’s sensor device. This characterisation will allow us
to generate the wireless topologies arising in the soccer field using empirical
data that tracks the location of players during the game.

• Our second contribution uses empirical data to provide a stochastic char-
acterisation of key aspects of the dynamic wireless topologies arising dur-
ing a soccer game, such as the number of wireless neighbours of a player
(indicating the number of alternate routes that may be available), distri-
butions of the encounter and inter-encounter times between players (in-
dicating the length of time for which routes may persist or vanish), and
correlations that exist amongst links (i.e. the presence of link between
one pair of players can positively or negatively affect the probability of
link between another pair). Using this characterisation, we develop a
novel mathematical model for generating dynamic topologies representa-
tive of real soccer games, that accurately depict the auto-correlation and
cross-correlation structure of links, from which derived metrics such as
inter-contact times and neighbourhood distribution follow. We believe our
model is the first in the literature to directly generate connectivity topolo-
gies for arbitrarily specified link (auto- and cross-) correlations, which has
general applicability beyond field sports.

• Our third contribution establishes, using connectivity traces measured in
real games as well as connectivity data inferred from player location, that
multi-hop routing has the potential to substantially reduce athlete data
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Figure 1: Equipment used in the experiments: Motes and GPS units for each player, and 8
base-stations with high-gain antennas

extraction delays compared to single-hop transmission from the body-
worn device to a base-station. We then develop a class of practical multi-
hop routing algorithms that can be tuned to achieve the desired trade-off
between energy performance and delay, showing that real-time monitoring
of athletes using a mobile wireless sensor network of ultra-light-weight
body-wearable devices is not a distant reality but very feasible in the near
future.

The rest of this paper is organised as follows: In Section 2 we describe
our experimental setup. Section 3 presents empirical data and a mathematical
model of radio signal strength from a sensor device mounted on an athlete’s
body. Using this model we perform, in Section 4, an extensive characterisation
of the dynamics of the wireless topology arising in soccer games, and develop
an analytical model that can generate such topologies. In Section 5 we show
that multi-hop routing is required for real-time data delivery, and develop prac-
tical multi-hop routing schemes that can trade-off energy performance for delay.
Section 6 concludes our work and presents directions for future research.

2. Experimental Setup

With the objective of gaining an understanding of wireless connectivity dur-
ing soccer games, we procured equipment including wireless sensor devices, GPS
units, and base-stations with high-gain antennas, as shown in Fig. 1. We then
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(a) Mote on right arm (b) GPS on left arm

Figure 2: Mounting of MicaZ mote and GPS unit on player

outfitted soccer club players with wireless monitoring devices and/or GPS de-
vices, as shown in Fig. 2, and collected data over six competitive league games
spanning two seasons (2008-2009 and 2009-2010). Animations from three of
these games can be seen on our project web-page [12]. We outfitted players
of the University of New South Wales Football Club (UNSWFC) first-division
men’s team for four games, and players of the Putney Rangers sixth-division
team for two games (in one of the latter games we were able to outfit players
from the opposing team as well). We wish to state here that getting perfect
data (from every player for the entire game) turned out to be very challenging,
due to the frequent impacts during the game that dislodged or damaged some of
the devices. Nevertheless, the data we were able to gather gives us a sufficiently
good picture of how wireless connectivity evolves during the soccer game. Space
constraints prevent us from discussing all the individual games we monitored,
so in the rest of this paper we will focus on two specific games (for reasons out-
lined next) when discussing specific measures, and generalise our observations
to include the other games where possible.

2.1. Game 1 (Feb 2009): Connectivity Data

The first game we focus on was played in February 2009 by the first-division
UNSW Football Club. The game was played on a full size field with dimensions
93m x 70m. Each of the 11 players wore a monitoring device on their arm, and
8 base-stations were positioned (at a height of about 1m from the ground) along
the sidelines of the playing area. We note that for this game the base-stations
used their standard quarter-wavelength dipole antenna (for subsequent games
we procured a bigger high-gain antenna). Fig. 3 shows the nominal playing
positions and associated node identification numbers. Unfortunately the devices
worn by players 2 (back) and 4 (left back) were damaged during play and we
could not obtain data from them, as was base-station B3 which got hit by the
ball.

The body-worn devices we used for this game were the MicaZ motes [13] from
Crossbow technologies. These are off-the-shelf devices operating in the 2.4GHz
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Figure 3: Player default positions (Game 1)

band that are readily available today. Though they were not designed for body-
worn applications, they have been used before for body health monitoring, such
as in Harvard’s Code Blue project [14], and in our own prior work [15] in profiling
the body channel for patients with chronic illnesses. We intend to replace these
with emerging platforms custom-built for body-area-networking as they become
available.

One of the foremost challenges we faced was in finding a good way to mount
sensor nodes on athletes. Taking into consideration aspects such as attenuation
of the wireless signal by the body, ease and stability of attachment, and pos-
sibility of damage to the device itself, we decided to go with an arm mounted
attachment using an arm-band. We also tried other mounting positions (e.g.
back), but found such mountings to either cast a larger “shadow” region of poor
signal, or create discomfort for the athlete due to clothing impediments or in-
creased chance of injury/damage during a fall. We therefore proceeded with an
arm-mounted position for all our subsequent studies. A detailed study of the
wireless propagation from the body-worn device will be presented in the next
section.

We implemented software on each of the body-worn devices such that it
broadcasts, once every second, at the highest available power level of 1mW
(0dBm), a packet containing its unique identifier and a sequence number. All
devices (body-worn as well as base-stations) that successfully receive this packet
record this event in their on-board memory. As the game proceeds, each
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node (and base-station) will be cataloguing which other nodes it could hear
at each time instant. To prevent collisions in-the-air, each second is divided
into 11 slots each of approximate duration 90ms, and each of the 11 body-
worn devices is given a unique such slot for transmission every second. Just
prior to commencement of the game, the master base-station sends a clock
synchronisation message to all nodes, upon receipt of which each node starts
recording connectivity data in on-board memory. Data collection stops after
25 minutes (due to limitation on on-board space for storing the connectiv-
ity data), and at the end of the game data from each node is extracted by
the master base-station for off-line analysis. A Java animation of the connec-
tivity we observed for this game can be seen at the project web-page http:

//www2.ee.unsw.edu.au/~vijay/athlete/game2009feb. Note that the play-
ers are static (at their default playing position) in this animation (which only
shows how connectivity changes), since we do not have location information
for the players. We recommend the reader to view the animation from 900s to
1500s, since we use data from that 10-minute interval for our analysis as there
were no substitutions and no play stoppages during that period.

2.2. Game 2 (Aug 2010): Location Data

The second game we focus on was played by the sixth-division Putney
Rangers team in August 2010. In this game we took a different approach and
outfitted all players from both teams with GPS tracking devices (in addition
to wireless sensor devices) for two reasons: (a) By knowing the location of all
players at all times, we have flexibility in reconstructing radio connectivity for
differing radio characteristics found in emerging body-wearable devices. For ex-
ample, the SensiumTM[6] has a maximum transmit power of −6dBm, which is
lower than the MicaZ mote’s default transmit power of 0dBm; therefore, using
the SensiumTMas the body-worn device would result in sparser wireless connec-
tivity than with the MicaZ mote. By having location information, the wireless
connectivity can be generated for given radio transmit strength, allowing flexi-
bility in study of real-time athlete monitoring for different device characteristics.
(b) The GPS units (BT-Q1300ST GPS sports recorder from QStarz [16]) are
smaller, lighter, and have better attachment (via a supplied arm-band) than the
wireless sensor nodes, so we did not lose any of the location data in this game
from device damage, unlike the more bulky MicaZ motes that we lost data from
for several players.

We have developed a tool that animates the player locations to show how the
game evolves, and super-imposes on it the wireless inter-connectivity amongst
players (computed using the model derived in the next section). A snapshot of
the tool is shown Fig. 4, and a web-version of the animation can be viewed at the
project web-page http://www2.ee.unsw.edu.au/~vijay/athlete/game2010aug.
Note that location sampling was done every second but we speed up the ani-
mation by a factor of 10 for ease of viewing (the speedup can be adjusted by
the viewer). Also note that due to substitutions not all players were playing at
all times. Unfortunately we do not have a way of tracking the ball during the
game.
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Figure 4: Animation tool snapshot showing player locations and inter-connectivity (Game 2)

Knowing the second-by-second location of all players during the game allows
us to contruct the wireless interconnectivity topology between players (and to
base-stations around the field) for given assumption on radio transmit power
from the body-worn device. This in turn lets us study the feasibility of real-time
extraction of athlete’s vital physiological signs during the game as a function
of device characteristics. Before we can do that, we need a realistic model of
signal strength propagation from a device worn by an athlete, which is the topic
of the next section.

3. Modeling Radio Propogation around the Athlete’s Body

The objective in this section is to develop a model of radio signal propagation
from a sensor device worn by an athlete, which can then be used to deduce inter-
connectivity amongst soccer players during the game, based on their location
and orientation. Unlike much of the prior work which assumes symmetric (disk-
shaped) radio signal strength in all directions from the source, we observed
in our experiments that the signal strength for body-worn devices is heavily
influenced by body orientation, due to absorption by the body.

There has been some prior work in evaluating the influence of the human
body on wireless signal propagation characteristics. For instance, [17] studies
the effect of the human body on WiFi propagation from portable computers,
and shows that there is a 25dB loss in signal strength when the human body is
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in the way. The propagation of radio signals in and around the body has been
studied extensively by Hall and Yao [18, 19]. Their study concentrates mostly
on on-body networks, where the transmitter and receiver are both on the same
body, and shows that absorption due to the water content of the human body
resulted in a 40dB path loss. We have not been able to find a characterisation
in the literature of radio signal strengths between a body-mounted transmitter
and an off-body receiver, and in what follows we develop such a model based
on empirical data, building on our recent work in [20].

3.1. Experimental Set-Up

We used MicaZ motes from Crossbow Technologies [21] running the TinyOS
operating system as our transmitter and receiver. As the transmitter repre-
sented the body-worn sensor device, it used a 1/4 wavelength dipole antenna
that comes standard with the Mica motes. The receiver represented a base
station (perhaps located on the periphery of the soccer field in an athlete mon-
itoring application), and therefore used a bigger high-gain (+12dBi) antenna
from TP-Link [22], mounted on a tripod.

Our objective was to characterize how the received signal strength varied
with the relative position between the transmitter and receiver. The transmitter
sent packets at a fixed rate of 4 packets per second, at a fixed power level of
1mW (0dBm). Upon successfully receiving a packet, the receiver computed the
Received Signal Strength Indicator (RSSI) of the received packet and sent this
value to a laptop computer over the serial port. In the micaZ motes the RSSI
value is an 8-bit number obtained by sampling the onboard ADC during packet
reception. The RSSI value was then converted to a dBm value by subtracting
45 [23]. Our experiments were performed in an open soccer field away from any
sources of interference.

3.2. Experimental Observations

We performed two experiments: in the first experiment, our objective was to
ascertain the propagation pattern in free space, so as to have a baseline against
which to compare the effect of the human body. The transmitter was mounted
at the top of a non-conducting pole at a height of 1.5m above ground level,
while the receiver remained stationary. We then increased the distance between
transmitter and receiver in steps of 1m, and recorded the RSSI reading at each
step. This was repeated until reliable reception could not be obtained (where
reception was considered reliable when there was no packet loss). We verified
that the signal strength was roughly isotropic (i.e. identical in all directions),
and show in Fig. 5 the 3-D contour plot of the measured signal strength high-
lighting that the RSSI depends only on distance and is not dependent on the
angle between the transmitter and receiver.

In the second experiment the transmitter was mounted on the right arm
of a test subject, as shown in Fig. 2(a). The subject rotated his body in 15
degree increments from 0◦ → 345◦ with respect to the receiver. The observed
signal strength measurements are shown as a 3D plot in Fig. 6(a). As expected,
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Figure 6: Signal strength around athlete’s body (experimental data)

the RSSI contours now show very significant reduction in signal strength when
the body is in the way. When the body is not blocking the signal, we observe
30m of uninterrupted range. On the other side, however, the range is only 2m
before reception drops completely. The highest recorded RSSI occurred at an
orientation of approximately 45◦, at a distance of about 1m.

3.3. Analytical Model

Using the empirical data, we now derive an analytical model to deduce the
signal strength as a function of distance from the transmitter and the orientation
relative to direct line-of-sight. Free-space models typically set the received signal
strength to fall with distance r as a power-law: RSSI = a ∗ r−b where b is close
to 2.5 and a is a proportionality constant incorporating effects of the antenna,
transmit power and environmental variables. We chose to keep our formulation
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consistent with this notation, where the a and b terms are now parameterises
by angle θ at which the receiver is orientated to the direct line-of-sight with the
body, and the RSSI for the body-worn scenario hence takes the form:

RSSI = aθ ∗ r−bθ (1)
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Figure 7: Polar plots of aθ and bθ and associated fits

The best-fit values of aθ and bθ for the various values of θ (at 15◦ increments)
obtained from the experimental data are shown as polar plots in Fig. 7(a) and
7(b) respectively. The figures also show anlytical fits to aθ and bθ from three
models: Fourier, Sum of Sines, and Gaussian. We evaluated each fitting method
on the basis of simplicity of the expression and goodness of the fit.

The power-law exponent bθ was fitted best by a second order Fourier series
of the following form (with R2 ≈ 0.9033):

bθ = 1.27 + 0.8086 ∗ cos(θ ∗ 0.9726) + 0.1851 ∗ sin(θ ∗ 0.9726)

−0.1396 ∗ cos(2 ∗ θ ∗ 0.9726)− 0.3049 ∗ sin(2 ∗ θ ∗ 0.9726) (2)

For parameter aθ it was found that fitting log10 aθ resulted in a better goodness
of fit (R2 ≈ 0.9603) for the same complexity of expression. The best fit was
obtained for a second order Fourier series of the following form:

− log aθ = 7.868− 1.551 ∗ cos(θ ∗ 0.9893)

−0.1774 ∗ sin(θ ∗ 0.9893) + 0.1882 ∗ cos(2 ∗ θ ∗ 0.9893)

+0.5404 ∗ sin(2 ∗ θ ∗ 0.9893) (3)

3.4. Validating the Model
We now validate the model by comparing its estimates with the experimental

data. Fig. 8(a) shows a 3D surface which was interpolated using data points
generated by substituting (3) and (2) into (1), while the dots in the figure
represent the experimental data points, and the match is found to be quite good.
In Fig. 8(b) we show a contour projection of the 3D surface, and comparing this
with Fig. 6(b), we see that the model predicts close to 40m of uninterrupted
coverage in the right hand direction, whereas the experimental result suggests
that a little over 30m range is possible.
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Figure 8: Signal strength around athlete’s body (from model)

3.5. Discussion

It is known that the human body absorbs radio signals at 2.4GHz. As a
result, we expect very high attenuation for orientations where the body signifi-
cantly shadows the signal (it has been further shown that at these orientations
the dominant component of the signal arises from creeping waves around the
body [19]). It should be noted that we are not measuring the signal directly on
the body, however, the above results are still significant especially at orientations
between 150 and 270 degrees.

Noting further that the aθ values denote the received signals at a distance of
1m from the transmitter, along a given orientation, we see that a180 (= 10−9.646)
is two orders of magnitude below a0 (= 10−7.028); this loss is consistent with
the loss experienced by a creeping wave traveling halfway around the human
body. Similarly, we compare the b values at different orientations. It is found
that at orientations between 90 and 270 degrees (where the wireless range is
significant), the b values lie in the range −1.2 to −2. While this is a higher
value than that for free space (leading to a slower decay), it is combined with a
much lower value of a, as compared to free space.

Our analytical model that estimates signal strength as a function of distance
and orientation of the receiver from the transmitter provides a realistic mecha-
nism for deriving connectivity between body-worn devices, something that has
not been reported in the literature before. In subsequent sections we will show
that our mechanism helps us characterise the wireless connectivity amongst
soccer players during a game using their location information, allowing us to
develop efficient protocols for real-time extraction of athlete data.

4. Profiling Dynamic Wireless Topologies in a Soccer Game

With a view towards designing communication protocols that are suited to
the soccer field, in this section, we profile the dynamics of the wireless topolo-
gies that arise in the soccer field. To the best of our knowledge no data or
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characterisation of real soccer games is available in the public literature today
(apart from our own preliminary characterisation in [24]), and our data, view-
able on our project web-page http://www2.ee.unsw.edu.au/~vijay/athlete,
can serve as useful input for other researchers studying field-sports.

Using data on connectivity (from body-worn MicaZ motes in Game 1) and
position (from GPS units worn in Game 2) from the soccer games, in this section
we make two new contributions: First, we provide a stochastic characterisa-
tion of key aspects of the topology, such as the number of wireless neighbours
of a player (indicating the number of alternate routes that may be available),
distribution of the flight length and inter-encounter times between players (indi-
cating the length of time for which routes may persist or vanish). Additionally,
we show that several links exhibit strong correlations with each other, i.e. the
presence of link between one pair of players can affect the probability (posi-
tively or negatively) of link between another pair. Second, we propose a novel
mathematical model for generating dynamic topologies that stochastically
match empirical traces. Our model explicitly considers the underlying auto-
correlation and cross-correlation structure of links, from which derived metrics
such as inter-contact times and neighbourhood distribution follow. Our model
is unique in being able to directly generate connectivity topology for arbitrarily
specified link (auto- and cross-) correlations, with potential application to areas
beyond field sports. Our study in this section sets the stage for developing new
routing mechanisms suited to soccer player monitoring in the next section.

4.1. Profiling Player Connectivity

Recall that we have second-to-second connectivity between (most of the)
player-worn devices from Game 1. For Game 2, we infer this connectivity (for
all players) by using the second-by-second GPS location of the players as follows:
for each time-step, we compute distance between each player and base-station
(or another player) using their positions, as well as their relative orientation
(from direction of movement deduced from change in position). We then apply
our propagation model of the previous section to compute the signal strength
in each direction; if the received signal strength is computed to be higher or
equal to the receiver sensitivity (set to −100dBm), the link is present at that
time-step, otherwise it is absent. Using the connectivity data thus obtained,
we now profile various aspects of player connectivity, such as the number of
neighbours and inter-encounter durations, as well as correlations amongst links.
Though we recognise that each soccer game is different and data acquired from
repeat trials would undoubtedly yield a different composition of results, our aim
is to highlight key common characteristics and trends associated with player
connectivity arising in real soccer games.

4.1.1. Number of Neighbours

In Fig. 9 we show the probability distribution of the number of neighbours
for selected nodes (i.e. number of nodes whose transmission can be heard by the
selected node). To give a flavour of the diversity we pick players from forward
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Figure 9: Neighbour distribution for base-stations and representative players in striker, mid-
fielder, and defender positions

(striker), middle (centre midfielder), and backward (defender or goalkeeper)
playing positions, as well as the base-stations (aggregated together). Some
interesting observations can be made from the figure:

• In general the average number of neighbours for a player is quite low,
predominantly due to small range of the body-worn device compared to
the playing area of the soccer field. In Game 1 the number of transmitters
within range of base-stations (aggregated) is also quite low (we did not use
high-gain antennas for the base-stations in this game), but this improves
significantly in Game 2 wherein we used high-gain antennas on the base-
stations. As we will show in the next section, improved connectivity to
the base-stations reduces delay in extraction of athlete data via single-hop
transmission, but not as much for players in the centre of the field, who
benefit from multi-hopping through other players.

• Connectivity to other players varies with playing position: for example,
in both games it can be seen that midfielders have better connectivity,
due to central location on the field, than the striker or goalkeeper who are
more likely to be at the extremes of the field. This information can be
exploited by routing algorithms.

4.1.2. Athlete Flight-Lengths and Speeds

We take a look at two aspects of player mobility that have a bearing on
their connectivity: flight-path length (i.e. distance for which a player moves
in roughly the same direction) and its relation to the athlete’s speed. There
has been recent evidence that humans follow a Levy Walk, namely the distance
people travel in roughly the same direction before pausing or changing directions
has a power-law distribution [25]. We seek to verify if this holds in a soccer game.
Using the second-by-second GPS location information we gathered in Game
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Figure 10: Distribution of flight-path length and its correlation with speed (Game 2)

2, we apply the rectangular box algorithm from [25] to determine the flight-
length, and plot its complementary cumulative distribution function (CCDF)
in Fig. 10(a). We find that the CCDF is nearly a straight line on log-linear
scale, implying that flight-path lengths are exponential rather than power-law
in a soccer game. Also, in Fig. 10(b) we plot the athlete’s speed (obtained from
change in athlete’s GPS location over each second) during the corresponding
flight-path, and find that there is a monotonic relationship, i.e. longer flight
are associated with greater velocity. Though we do not directly use flight-path
length and speed in this work, they are interesting metrics providing evidence
that movement on the soccer field has different fundamental characteristics to
regular human movement (which has been modeled by many authors in the
literature), and requires new models like the one we present later in this section.

4.1.3. Inter-Encounter Times

Another metric that is known to have an important bearing on the route-
selection algorithm in mobile ad-hoc networks is the inter-encounter time [26]
(also known as inter-meeting or inter-contact time) between nodes. Most prior
studies have relied on exponentially distributed inter-encounter times for tractable
anaysis of routing performance; however, recent studies such as [27] have shown
that non-exponential behaviour can lead to unbounded routing delays. To see
which model best fits the soccer field environment, in Fig. 11 we show the
distribution of the inter-encounter time amongst all pairs of nodes, as well as
between all transmitters and a specific receiver (midfielder, chosen for its rich
connectivity), for both games.

We found that the Complementary Cumulative Distribution Function (CCDF)
of the inter-encounter time did not follow an exponential distribution, and there-
fore we depict the inter-encounter time CCDF on log-log scale in the figure. We
find that the head of the inter-encounter delay curve is roughly linear on log-log
scale, indicative of power-law behaviour in that range. The power-law exponent
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Figure 11: Distribution of inter-encounter times for Game 1 and Game 2 on log-log scale

in this region is estimated at around α ≈ 1.6. Though [27] estimates analyti-
cally that α < 2 leads to unbounded routing delays, it does so by extrapolating
the inter-encounter delay tail to infinity as a power-law. Our experimental data
shows that the tail of the curve flattens out (on log-linear scale), and in this
region inter-encounters are better modelled as exponential. This combination of
power-law and exponential behaviour is consistent with reported mixtures [28]
seen in inter-meeting times for regular human activity, and result in bounded
routing delays unlike the pessimistic estimates in [27].

To characterise the encounter and inter-encounter distributions and their
auto-correlations in a succinct way (which we employ later in this section for
our model), we borrow a technique used for the analysis of long-range dependent
(LRD) traffic. Considering a link between a pair of nodes, at a given time step,
we use a 1 to depict presence of the link and 0 its absence. For this link,
we therefore have from our experimental data a time-sequence of 0s and 1s.
We consider this sequence in blocks of 2s samples, for given s, and for this
resulting sequence we compute the mean, variance, and coefficient-of-variation
β(s) (in effect these metrics are computed at time-scale 2s). Log-log plots of
β(s) versus s are routinely used in the literature to depict self-similarity and to
estimate the corresponding Hurst parameter H ∈ [0.5, 1). In Fig. 12 we show
such a plot for several links (we picked two links each from centre, forward, and
backward playing positions), and observe that the curves can be approximated
as straight-lines with slope −(1 − H), yielding a Hurst parameter H ≈ 0.75.
This single-parameter captures in a succinct way the link auto-correlations, and
will be used in the connectivity model we develop later in this section.

4.1.4. Link Correlations

Unlike many mobile ad-hoc networks in which we can reasonably assume that
users move independently, in a soccer game we would expect player movements
to have significant correlations. For example, when the team is attacking the
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opponent’s goal, several players in the forward and midfield positions can be
expected to move towards the opponent’s goal simultaneously, and conversely
when the home goal is being attacked the defenders and midfielders will likely fall
back towards the home goal to protect it. This leads to correlations amongst
links, an aspect which can have a significant impact on the performance of
routing algorithms.

Correlations are computed as follows: if xt is a binary variable that is 1 or
0 depending on whether link x is present or absent at time step t, then the
cross-correlation at time lag k between two links x and y is given by [29, Sec
12.1.2]:

ρxy(k) =
1
n

∑n−k
t=1 (xt − x̄)(yt+k − ȳ)

σxσy
, k = 0,±1,±2, . . . (4)

where n is the number of sample points, x̄ is the estimated mean and σx the
estimated standard deviation of x.

In Fig. 13(a) we depict some correlations from Game 1: specifically between
node 3’s (centre midfield A) and node 10’s (centre back) links to node 8 (the
centre midfield B) for lags in the range [−20, 20] seconds. Two things are note-
worthy from this plot: (a) the correlations are positive, meaning that when node
3 is close to node 8, node 10 is also likely to be close to node 8; this suggests
nodes 3 and 10 move in a co-ordinated way quite often, and (b) the correlations
are high (> 0.2) for lag close to 0, and decay rapidly as the lag moves away from
0. This is not surprising, because the fast nature of the game implies that the lo-
cations of the players can vary significantly from one minute to the next, making
them nearly independent. In Fig. 13(b) we show the correlation between node
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Figure 13: Correlation of (a) link 3 → 8 with 10 → 8 and (b) link 1 → 8 with 10 → 8, as a
function of lag (in seconds) from Game 1

1’s (centre attack) and node 10’s (centre back) with node 8 (centre midfield B).
This time we notice that the correlations are predominantly negative (< −0.2
for lags close to 0), which is understandable: when the team is attacking, the
midfielder is more likely to be close to the striker and far from the defender,
while the converse is true when the team is defending their own goal. Again we
notice that the anti-correlations decay with time due to the rapid movement of
players in the game.
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Figure 14: Correlations for Game 1 and Game 2 depicted via inter-connections

Having seen specific examples of correlated and anti-correlated links, we
now depict observed correlations amongst all pairs of links in Fig. 14. We
place all links as nodes on a circle in the figure, and draw a line between two
nodes if the corresponding links have significant correlation: blue lines depict
positive correlation while red lines depict negative correlation, and the higher
the correlation (or anti-correlation), the thicker the line. Also, links have been
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ordered on the circle so that the two directions of the link are adjacent to each
other (so that correlations between the two directions of a link do not clutter
the plot). To eliminate random chance of correlated values, we also estimate
the P-value [30] (used for statistical hypothesis testing) for each pair, and only
retain those that are statistically significant (i.e. have P ≤ 0.05).

In Game 1 we had only 60 links that had statistically significant ocurrence,
while Game 2 has many more links (since we got much more comprehensive
data from all players of the team), hence Fig. 14(b) has many more nodes than
Fig. 14(a). Nevertheless, we can see that in both games there are significant
correlations (both positive and negative) between links, even amongst links that
do not have a common endpoint.

4.2. A Connectivity Model for Soccer Players

We now develop a model that can generate synthetic dynamic topologies
with similar stochastic properties to those observed empirically. Such a model
would be useful in generating long traces to simulate the performance of different
routing strategies for soccer player monitoring, and also allow key parameters
such as link auto- and cross-correlations (which may depend on a team’s playing
style) to be varied to study their impact on routing performance.

One approach to modeling wireless connectivity is to model the movement
of players on the soccer field. Though mobility has been modeled in the liter-
ature for various contexts (see [31, 32] for a survey), ranging from individual
node mobility (e.g. Random Waypoint model, Levy Walk model [25], etc.) to
group mobility (e.g. Reference Point Group Mobility model and Pursue Mobil-
ity model), we found that none of these existing models were a good fit for our
data from soccer games. Moreover, we found that modeling mobility of players
was difficult unless we could also model mobility of the soccer ball, for which
we unfortunately do not have data since we had no way of tracking the ball in
our experiments. In this paper we therefore focus on modeling the connectivity
(aka wireless topology) between players, rather than inferring connectivity from
a mobility model. Only a handful of prior works have directly modeled connec-
tivity: one example is [33] that proposes a statistical encounter-based model in
the context of delay tolerant networks (DTNs). However, their model assumes
links to be independent, which is inadequate for capturing correlations that we
have shown to exist in team sports such as soccer. The model we present next
overcomes this important limitation.

4.2.1. Model Requirements

We seek a model that takes the following inputs: (a) Number of players,
base-stations, and links, (b) Mean and variance for each link (the link is binary
in each time-step: 0 if down and 1 if up), (c) Auto-correlation of the links (to
keep the model simple we assume that all links have similar auto-correlations),
specified via the Hurst parameter (section 4.1.3) or auto-regressive coefficients
(discussed in the next subsection), and (d) Cross-correlation between each pair
of links, specified as a covariance matrix.

19



Generate

Auto-correlated

Time Series 1 

Generate

Auto-correlated

Time Series W

Cross-correlate

the W Time Series

to generate a new

set of W correlated

Time Series

Convert Time Series 1

to Binary values

Generate

Auto-correlated

Time Series 2

Convert Time Series 2

to Binary values

Convert Time Series W

to Binary values

Figure 15: Flow diagram of our model for generating time-varying topology

The model should output for each successive time-step the connectivity
topology, i.e., the set of links that are up at that time-step. If an empirical
trace is available from which the input parameters were derived, then the gen-
erated topology should statistically match the empirical trace in the following
metrics: (a) for each link, the on/off (1/0) distribution, (b) the distribution of
the number of active links in the network, (c) the distributions of encounter du-
rations and inter-encounter times, and (d) the correlations between every pair
of links.

4.2.2. The Model

We use W to denote the total number of links (player-to-player as well as
player-to-base). The covariance matrix (which is an input to the model) is de-
noted by C, and is of dimension W ×W . Element Cij denotes the covariance
between the i-th and j-th links, and is related to the correlation defined in
Eq. (4) by Cij = σxσyρij(0) (note that to reduce complexity our model directly
incorporates correlation at lag 0 only; correlations at other lags will follow from
cross-correlations at lag 0 combined with the auto-correlations of the links).
Further, each diagonal entry Cii corresponds to the variance of the binary vari-
able associated with the i-th link. A valid covariance matrix is required to be
symmetric (i.e. Cij = Cji) and positive definite (i.e. C > 0).

The general flow of our model is shown pictorially in Fig. 15, and broadly
consists of three steps: step 1 generates independent random variables, one per
link, with the appropriate auto-correlation, step 2 mixes them to create the
correct cross-correlations, and step 3 converts them from continuous to discrete
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(binary) values so they correspond to links being up or down in each time-step.
These steps are elaborated next.

1. Generating Auto-Correlated Time Series: The first step is to gener-
ateW independent time-series of link variables with desired auto-correlation.
Different methods could be used for generating the time-series based on
how the auto-correlation is specfied. We try two methods based on anal-
ysis of the field data we collected. The first method uses the long-range
dependent characterisation of link connectivity we presented in Fig. 12.
In this approach the link auto-correlation can be specified very succinctly
by a single number: the Hurst parameter H, which for our experimental
data was H ≈ 0.75 across all links. We generate long traces of normalised
fractional Gaussian noise (fGn) (with zero mean and unit variance) for
this H, using the filtering method developed in [34]. The W fGn time-
series thus generated each have the requisite auto-correlation properties;
subsequent steps will cross-correlated them, and shift/scale them to have
the appropriate link-specific mean and variance.
The second method we use to generate the auto-correlated time-series
assumes a linear stationary auto-regressive (AR) model [29] of appropriate
order. An order p AR process derives the sample x(t) at time-step t as:

x(t) =

p∑
k=1

akx(t− k) + w(t) (5)

The auto-correlation in the above process stems from the fact that the
sample at time-step t is a weighted sum of the previous p samples, with
an additional random noise component that has zero mean and constant
variance. Based on the auto-correlation properties of links at different
lags, we estimated that an AR process of order p = 20 matched our
experimental data well. We then used the Yule-Walker method (aryule
in Matlab) to estimate the AR coefficients, which were then applied as
a filter to sequences of random white Gaussian noise to yield the desired
auto-correlated time-series.

2. Cross-Correlating the Time Series: Having generated W sequences
of independent variables with appropriate auto-correlations, this step in-
troduces the cross-correlations as per the specified covariance matrix C.
The general idea is to take appropriate linear combinations of the W in-
dependent random variables to generate a new set of W random variables
that have the desired cross-correlations. To this end we first determine
the Cholesky decomposition of the covariance matrix, i.e. find the lower-
triangular matrix L such that C = LLT where LT denotes the transpose
of L. The symmetric positive definite nature of C ensures that such de-
composition exists and can be computed relatively easily (using chol in
Matlab). However, for computation stability it is desirable to have L
as sparse as possible. To this end we tried several methods to permute
the rows and columns of C to make it more diagonally dominant, and
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Figure 16: Comparison of model output with experimental data

chose the symmetric approximate minimum degree permutation (symamd
in Matlab) to obtain the most sparse Cholesky decomposition L.
Given a vector ofW uncorrelated random variables x(t) = (x1(t) . . . xW (t)),
we generate a vector ofW correlated random variables y(t) = (y1(t) . . . yW (t))
with covariance as per matrix C using:

y(t)T = Lx(t)T (6)

where L is the Cholesky decomposition of C.

3. Converting to Binary Variables: Random variable yi(t) above corre-
sponds to link-i at time-step t, and already has requisite correlation with
yi(t

′) (i.e. auto-correlation) as well as with yj(t) (i.e. cross-correlation
with other links). In this step we convert continuous-valued yi(t) to corre-
sponding binary values zi(t) by comparing with threshold Ti, i.e. zi(t) = 1
if yi(t) > Ti, and 0 otherwise. The threshold Ti is chosen so that

P [yi(t) > Ti] = P [zi(t) = 1] (7)

The right side is the mean value E[zi(t)] of the link, which is available
as input to the model. Random variable yi(t) is a linear combination of
Gaussian variables xj(t), with weights known from the Cholesky decom-
position matrix and the fGn/AR parameters, and therefore yi(t) is also
Gaussian with known variance. Using tabulated values of the CDF of the
normal distribution, the threshold Ti in Eq. (7) can easily be computed,
and this threshold is then used for converting the model output to binary.

4.2.3. Validating the Model

To validate the model we compared its synthetic output with the empirical
traces obtained from our experiments. Parameters estimated from the empir-
ical trace from Game 1, such as mean and variance of each link, their auto-
correlations, and the covariance matrix, were fed as input to the model. The
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trace output by the model (i.e. binary time-series for each link) was subjected
to the Kolmogorov-Smirnov (K-S) “goodness of fit” test and found to match the
distribution seen in experiment for all links. Moreover, the statistical metrics
directly controlled by the model, such as link mean, variance, auto-correlations,
and cross-correlations, were found to match well.

We show that metrics that are by-products of the model (i.e. not directly
part of the input) corroborate well with experiment. One such important metric
is the inter-encounter time, which is a by-product of link auto-correlation. In
Fig. 16(a) we show that the CCDF of the inter-encounter time seen in model
trace data matches very well with the experimental dara from Game 1, confirm-
ing that our model has captured auto-correlations correctly. Another important
metric is the number of links in the topology at any time-instant, which in turn
is influenced by the cross-correlations amongst links. The PDF of the number of
links shown in Fig. 16(b) again shows that our model matches well with exper-
iment, affirming that the cross-correlations are also captured correctly by our
model. Several other metrics (such as node degrees) seen in our model output
were also found to match well with empirical data, and are omitted here for
brevity.

4.2.4. Using the Model

Our model is fairly general: it takes as input the mean and variance of indi-
vidual links, their auto- and cross-correlations, and outputs an arbitrary-length
time-series of dynamic topologies with desired stochastic properties in terms of
number of links, inter-encounter times, neighbour distributions, etc. Our model
does not make any assumptions specific to the operating environment, and as
such can be applied to model dynamic topologies arising in any mobile ad-hoc
or delay tolerant network studies.

Deducing the input parameters to the model, in particular the cross-correlations
between links, requires access to sufficient experimental data. Even then, esti-
mating the parameters can be tricky: for example, the same soccer team plays
each game differently depending on their strategy and their opponent. Never-
theless, we think reasonable approximations can often be made: for example,
we can expect that links between players in similar positions (e.g. defenders)
are more highly correlated with each other than with a link between players
in different positions (e.g. defender and forward), or that a midfielder’s link
to a left-wing player will generally be negatively correlated with his link to a
right-winger. We believe that capturing even a few key correlations (in a sparse
covariance matrix) can give us much more realistic dynamic topologies for rout-
ing studies as compared to using overly simplistic models that ignore correlation
effects altogether.

5. Multi-Hop Routing Algorithms for Real-Time Monitoring

Having understood the dynamics of the wireless topologies arising in the
soccer field, in this section we evaluate routing mechanisms for extraction of
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Figure 17: Comparison of delay values from Direct Delivery and Flooding (Game 1)

player data in real-time. In what follows we first argue that multi-hop routing
is necessary for real-time performance, and then develop a practical yet efficient
routing mechanism that achieves the desired trade-off between data delivery
delay and energy performance.

5.1. The Need for Multi-Hop Routing

Using data from the monitored games, we first show that multi-hop routing
has the potential to significantly reduce delays in extracting data from players
in the field. We assume that the player-worn devices generate a sample (of
physiological measures of the player such as heart-rate, ECG, oxygen saturation
levels, impacts, etc) every second, and that every device in the field is given
one transmission opportunity per-second (i.e. our MAC scheme is time division
multiplexed with a periodicity of one second to avoid the possibility of collisions).
We compare the 90-th percentile values of the delay in delivering a sample
from an athlete-worn device to any of the base-stations under two schemes:
(a) Direct delivery, whereby the player’s transmission is received directly by
a base-station, and (b) Flooding, whereby data from a player is forwarded
by all recipients, and information propagates by one hop in each second till
it reaches a base-station. Direct delivery has the lowest overheads (since it
does not require store-and-forward routing), but is expected to incur higher
delay, while flooding is delay-optimal (since all routing paths to base-stations are
tried simultaneously) though resource-expensive (and hence impractical). Direct
delivery and flooding therefore set upper and lower bounds on the achievable
delay.

For Game 1, we depict in Fig. 17 a box-plot of the delay values of deliv-
ering data from each player to a base-station for direct delivery and flooding.
In this experiment, we did not use high-gain antennas for the base-stations, so
the receive range of the base-stations was small and consequently Fig. 17(a)
shows that delays are large when we rely on direct delivery of data. It should
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not be surprising that direct delivery delays heavily depend on playing position
due to poorer radio connectivity at the centre of the field than the edges: for
example midfielders (player 3) incur high delay (mean, depicted by a star, of
about 220 seconds), defenders (e.g. player 10) lower delay (mean of about 40
seconds), while the goalkeeper (player 11) has close to zero delays. By contrast,
Fig. 17(b) shows that with flooding, data delivery delays are reduced substan-
tially, to within a mean of 20 seconds uniformly across all players. This clearly
demonstrates that multi-hop routing has the potential to enable real-time mon-
itoring of all players.
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Figure 18: Comparing 90-th percentile delays from direct delivery, flooding using one team,
and flooding using both teams (Game 2)

For Game 2, we recorded position information of all players (from both sides)
throughout the game, using which we generated wireless connectivity using our
model presented in section 3, as described earlier. This time we assumed that
the base-stations have 12dBi-gain antennas (and hence extended reach), but
we also assumed that the body-worn devices used transmit strength of −3dBm
(rather than the 0dBm strength available on the MicaZ motes) in-line with
the observation that true body-wearable platforms (such as the SensiumTM[6]),
being extremely small and lightweight, are limited in their transmit power.
Once the second-by-second connectivity is generated (amongst players and to
base-stations), we are able to evaluate data delivery delays as in the previous
example.

In Fig. 18 we plot the 90-th perecentile values of the delays for each player
obtained from direct delivery and from flooding (assuming first only one team,
and then both teams, are outfitted with the monitoring devices). Some interest-
ing observations can be made from the figure: (a) A midfielder (such as player
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8) benefits immensely from multi-hop routing, in this case bringing delay from
42 down to 20 seconds (when both teams are outfitted), which is significant
when considering a live broadcast of a soccer game to TV audiences. (b) The
goalkeeper (node 6) and defenders (e.g. node 3) do not require multi-hopping
of their data, since they are usually close enough to the edge of the field to have
direct connectivity with the base-station (which has high-gain antenna). (c) A
striker (e.g. node 10) benefits more from multi-hopping through the other team
than through his own team, which should not be suprising since the striker can
be expected to spend more time in the opponent’s half. To summarise, we note
that multi-hopping reduces delay significantly enough for some nodes (predomi-
nantly mid-fielders), and moreover makes delays more uniform across all nodes,
which is important if monitoring of soccer players has to be done in real-time.

5.2. Routing Protocol Requirements
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Figure 19: Mean number of transmissions per sample required by direct delivery and flooding
for (a) Game 1 and (b) Game 2.

As noted earlier, direct delivery gives an upper limit while flooding gives a
lower limit on delivery delays. Conversely, in terms of energy, direct delivery
is much more efficient than flooding. This is because direct delivery requires
fewer transmissions (bear in mind that multiple transmissions may still be re-
quired since the body device transmits data every second even if no base-station
is within hearing range) compared to flooding, which requires transmission of
many copies of each data item by many nodes. In Fig. 19 we plot the mean
number of transmissions required for each sample of each player to be extracted
using direct delivery and flooding. In Game 1 (small antenna base-stations),
flooding requires nearly two orders of magnitude more transmissions per sam-
ple than direct delivery, while Game 2 (base-stations have high-gain antennas)
shows about an order of magnitude difference in energy. This illustrates that
flooding can reduce data extraction delays, but comes at the cost of increased
energy requirements. In what follows, we develop a new multi-hop routing
mechanism that allows the trade-off between energy and delay to be explcitly
controlled.

In our prior work [35] we tried several single-copy and multi-copy routing
schemes, but found them to have fixed tradeoffs points between delay perfor-
mance and resource consumption. From an application viewpoint, we would
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like to be able to tune the performance of the scheme, either towards better
delay performance or lower resource consumption. To allow for good delay per-
formance, we begin with a flooding-based approach. A practical flooding-based
strategy must be able to limit both the memory requirements as well as the
transmission bandwidth. The tunable scheme we propose allows us to control
these parameters, and incorporates the following features.

5.2.1. Replication at the Source

In the proposed scheme, a player maintains a window of samples of length
W for itself in a FIFO manner; thus, a newly generated sample pushes out
the oldest sample in the window. During its slot, a player transmits its entire
window of samples. Thus, every sample is replicated W times by the source.
This guards against the case where a sample may be lost because no other player
(or base-station) is able to hear the transmitter at that time.

5.2.2. Replication at Intermediate Nodes

Further, every player also maintains a window of W samples for every other
player. In effect, this allows replication of the samples at every intermediate
hop. When player i is not transmitting, it listens to other players’ transmissions.
Packets heard from other players are then analysed for data. If a received packet
contains a more recent window of samples for player j, this data replaces the
contents of the window for player j held by player i.

5.2.3. Data Freshness

The above two steps limit the amount of data transmitted in any packet
to a N ∗ W matrix of samples (where N is the number of players). However,
we still have the issue of old data being forwarded within the network. This
may arise, for instance, when player i forwards its data to player j, and then
becomes disconnected from other players for an ensuing interval. In this case,
the data from player i may become obsolete (from an application point of view),
yet continue to be forwarded by player j and its neighbours.

To ensure data freshness, player j forwards data for player i only if the most
recent sample in its window for player i is less than A samples old. Thus,
each intermediate node filters the data it receives from surrounding players
before forwarding it on. The quantity A (denoting “age”) can be selected based
on the requirements of the application. For instance, for television broadcast
enhancement where players’ heart rate is streamed in real time, samples which
are more than 10 seconds old may become irrelevant, and A can be set to 10.

5.3. Operation of the Proposed Protocol

As opposed to the forwarding-based schemes, our flooding-based scheme will
actively drop a window of samples as they age beyond A. As a result, certain
samples may never get delivered to the base. Therefore, as compared to schemes
so far, we need to evaluate an additional parameter, the delivery ratio of this
scheme.
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Further, note that W controls the amount of replication at the source, while
A controls the amount of replication in the network. A smaller value of A means
that a given window of samples is likely forwarded through a smaller number
of hops, as it would hit the age threshold faster. Hence small values of A result
in lower delivery ratios (for players who are not well connected with the base
station) as the samples are dropped within the network before they hit the base.

Finally, note that the maximum time a sample can spend in the network
is W + A. Note that we have chosen to implement our algorithm in this form
(rather than take a more traditional approach in terms of hop counts) for two
reasons:

1. Using a window of samples for each player allows us to naturally control
another important parameter, the memory requirements of this scheme,
to a buffer of at most N ×W samples per player.

2. Given that every player maintains a buffer of W samples for every other
player, it is artificial to impose a hop count on every sample in that buffer.
Rather, it is simpler and more intuitive to impose a maximum age A on
the buffer, and to discard the entire buffer if the data is too old.

Finally, as with other schemes we assume that the base is able to inform a
player when its transmission is received, upon which the player erases its entire
window of samples.

5.4. Performance of our Protocol

We expect our tunable scheme to provide performance that can be varied
between the extremes of direct delivery and full flooding. We therefore evaluate
the delivery ratio, resource consumption and delay characteristics of our scheme,
for different settings of parameters window-size W and age A.

For Game 1, we show in Fig. 20 the packet delivery ratio, mean delay, and
resource consumption (i.e. mean transmissions per packet) for selected players
(space constraints prevent us from including plots for all players) for various
settings of the key parameters window-size W and age A of our algorithm.
Our first observation is that the Goalkeeper (and in general players who are
at the edges of the field and hence well-connected to the base-stations) have
little need for multi-hop routing, and thus their delivery ratio is insensitive to
A, and depends only on W . Similarly, their delay performance is insensitive to
A since they deliver most of their packets directly to the base. Further, their
resource consumption saturates with increasing W , since the buffer gets flushed
when the data reaches the base, and samples are typically not transmitted for
the entire duration of the window. By contrast, the figure shows that player
1 (Centre Midfielder) benefits from multi-hop routing: for small A (e.g. 5),
the burden of deliver falls on the source, and the delivery ratio is low. As
A increases, mean delay decreases and delivery ratio increases, showing that
forwarding load is balanced between the source and the network. The resource
consumption (mean packet transmissions per sample) increases roughly linearly
with W , with a slope determined by A, which determines the degree to which a
sample sent by the source is forwarded in the network. These results show that
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Figure 20: Performance for player 1 (Center Attack) and player 11 (Goalkeeper) in Game 1
as a function of W and A: (a) Delivery ratio, (b) Mean delay, and (c) Energy consumption

by adjusting the values of A and W , it is possible to achieve desired trade-off
between energy and delay performance.

Fig. 21 shows the performance of our routing scheme for various settings
of parameters W and A for Game 2. Due to space constraints, we only de-
pict results for Player 8 (Midfielder), who benefits well from multi-hop routing.
Fig. 21(a) shows that the delivery ratio increases monotonically with A, for a
given window size W , as the burden of delivery moves from the source to the
network. The delivery ratio also increases monotonically with the window size
W (for fixed A), since increasing replication by the source increases the likeli-
hood of the packet reaching the base, regardless of the forwarding contributions
from the network.

Fig. 21(b) shows the 90-th percentile values of the delays from our routing
scheme (only packets that are delivered are consider for this computation). We
note that if we set both W and A to be large enough (W = A = 35), the delivery
ratio is very high (over 98%), while delays are about 20 seconds (which is iden-
tical to the delay of 20 seconds obtained by flooding as shown in Fig. 18), while
resource consumption is about half that required by flooding (72 transmissions-
per-sample versus 133 transmissions-per-sample), as shown in Fig. 21(c). Not
only is our scheme much more efficient, but it also offers the flexibility to control
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Figure 21: Performance for Player 8 (Midfielder) in Game 2 as a function of W and A: (a)
Delivery ratio, (b) Mean delay, and (c) Energy consumption

the performance trade-offs. It’s resource consumption can be further restricted,
for example by reducing the values of W and A (say W = 10, A = 5); the trade-
off is that the delivery ratio will reduce to about 70%. Lastly, we note that there
are multiple combinations of A and W that have similar resource utilisation but
give different performance: for example for player 8, we can achieve the required
delivery ratio of 95% by increasing source replication W (W = 35, A = 5) or
by increasing network involvement (W = 25, A = 10). Using a higher A value
increases the resource consumption faster than using a longer window (in this
case, 30.5 transmissions-per-sample versus 36 transmissions-per-sample), since
it increases the flooding within the network. However, it may not always be
possible to achieve high delivery ratios using one parameter alone.

6. Conclusions and Future Work

Wireless sensor networks offer unprecedented ability to monitor athletes dur-
ing competitive sporting events, enabling new applications for injury reduction,
referee-assist, and enhanced TV broadcast services. This paper presents the first
study of the opportunities and challenges arising in monitoring soccer players
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during live games. Using experimentation with real soccer teams playing com-
petitive games, we have developed profiles of wireless connectivity in the soccer
field, characterising aspects such as neighbourhood, inter-contacts, and corre-
lations. Using these profiles we have shown that current and emerging body-
wearable platforms will not have adequate range for direct extraction of athlete
data in real-time, and multi-hop routing will be required. We develop a novel
yet practical routing scheme that allows the delay-energy performance trade-off
to be tuned between the two extremes of direct transmission and flooding. Our
work sets the foundation for future mobile sensor network systems for real-time
monitoring of athletes in field sports.

Several directions for future work can be envisaged. We could always benefit
from more data on mobility of players on the soccer field, including the position
of the ball. More extensive data would help us validate robustness of key pa-
rameters of our connectivity model (such as link auto- and cross-correlations)
across multiple games. We would also like to undertake experimental work
that replaces Crossbow motes with emerging truly wearable body-monitoring
devices (such as from Toumaz Technologies, VxSport, or RealTrack Systems)
as they become available. The routing protocols can then be implemented on
such body-worn devices to profile their real-time performance in live games.
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