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Devices
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Abstract—Medical data collected by wearable wireless sensor devices must be adequately secured. A prerequisite for mass
deployment of these secure systems is the capability of renewing cryptographic keys periodically without user involvement.
Recent work has shown that two communicating devices can generate secret keys directly from measurements of their common
wireless channel, which is symmetric but cannot be inferred in detail by an eavesdropper. These schemes may however yield
mismatching keys at the two ends, requiring reconciliation mechanisms with high implementation and energy costs, unsuitable

for resource-poor body-worn devices.

In this work we demonstrate a scheme for secret-key generation able to construct shared keys with near-perfect agreement,
thereby avoiding reconciliation costs. Our specific contributions are: (1) we identify non-simultaneous probing of the channel by
the link end-points as the dominant cause of channel measurement disagreement, (2) we develop a practical filtering scheme to
reduce this disagreement, dramatically improving signal correlation between the two ends without affecting key entropy, and (3)
we show that by restricting key generation to periods of significant channel fluctuation, we achieve near-perfect key agreement.
We demonstrate in several representative body-worn settings that our scheme can generate secret bits with 99.8% agreement,
and so yield near-perfect matching 128-bit keys approximately every half hour.

Index Terms—Body Area Networks, Secret Key Generation, Physical Layer Security.

1 INTRODUCTION

Soaring national health expenditures and escalating
age-related disabilities are shifting the emphasis from
the hospital to the home. Body area networks are at
the forefront of emerging technologies in this trend
towards personalised healthcare. A body area net-
work typically consists of one or more small sensors
mounted on the body to measure vital signs and
communicate them wirelessly to each other and/or
to a base-station (a fixed access point in the home or
a portable device such as a mobile phone carried by
the patient) for real-time analysis and response, and
remote diagnosis. Wearable platforms for health mon-
itoring have begun to appear in the market. Apple has
recently patented a sensor strip device [1] that inter-
faces with the iPhone, and IMEC has demonstrated
a sensor device [2] which communicates with mobile
phones running the Android OS. Fig. 1 illustrates a
topology based on the Sensium Digital Plaster [3],
a body-worn wireless solution to monitor a subject’s
ECG, temperature, blood glucose and oxygen levels.
A report [4] by ABI forecasts that the market for
wearable wireless sensor devices will grow to more
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than 420 million devices by 2014. Securing these
devices is a significant challenge considering their
low power and computation capabilities, but is also
critical, since these devices record and handle medical
data which comes with stringent privacy and liability
concerns. Some devices may also be actuators, for
example delivering metered medications like insulin,
and such devices present a security vulnerability with
potentially serious medical consequences [5], [6].
The high energy and implementation costs of asym-
metric cryptography precludes its use for encrypting
medical data in a typical body-worn device, leaving
symmetric (or shared key) encryption as the only
viable option. The challenge lies in refreshing the
secret keys shared by the body-worn device and the
base-station. The secret key cannot be pre-configured
at time of manufacture, since the pairing of body-
worn device to base-station is done at deployment,
and dynamic pairing requires a trusted third-party to
store the keys, carrying with it risk of compromise
and associated liability. Furthermore, experience has
shown [7] that users (such as the elderly) are often
unaware of the need, or unable to configure keys of
sufficient strength, or protect them adequately. It is far
more practical to automatically generate secret keys as
needed. Moreover, keys need to be renewed periodi-
cally to protect against attack. It is straightforward to
generate shared secret keys using the Diffie-Hellman
key exchange but it is expensive to implement and
execute on resource-constrained sensor devices [8].
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Fig. 1: The Sensium Digital Plaster and the
associated body area network topology

Recent work such as [9], [10] has shown that it is
possible to generate a shared secret over an unsecured
wireless channel by exploiting the directional sym-
metry of the wireless link. Specifically, the multipath
propagation characteristics between two communicat-
ing parties, Alice and Bob, are symmetric (and hence
strongly correlated) at both ends of the link, and yet
sufficiently random in time and frequency to allow
them to generate shared secret bits. The focus of much
of the prior work has been to generate secret bits at a
high rate (tens of bits per second) at the cost of more
frequent channel probing and greater bit mismatch
between the two ends. Even a 2% probability of bit
mismatch means that a 128-bit key has only a 7.5%
chance of matching perfectly. To resolve mismatch,
reconciliation methods such as Cascade [11] are pro-
posed, where the two ends exchange messages to
probabilistically identify mismatching bits.

In contrast to high bit rate key generation which
is typically used for bootstrapping secure commu-
nications between two devices, we focus on low-
data-rate patient monitoring applications that require
only periodic key renewal. Pairwise temporal keys (or
session keys) are recommended in the emerging IEEE
802.15 standard [12] for body area networks. In these
applications a high bit generation rate is not essential;
for example, if we assume that a 128-bit key needs to
be renewed once every hour, as is recommended for
WiFi [13], a generation rate of a few bits per minute
suffices. This low bit-rate requirement has three bene-
fits for low-complexity key generation schemes: First,
the mismatch of key bits generated by the two ends
can be avoided and so eliminate reconciliation over-
heads which would consume precious computing and
communication resources [14]. Second, body-worn de-
vices typically embed their logic in hardware as a
single-chip solution (as in the case of the Sensium
[3]), and interactive reconciliation protocols requiring
real-time communication are too complex to be com-
pletely implemented in custom hardware and so their
flexibility is limited. A third advantage is that the
low bit-rate requirement allows the key generation
mechanism to piggyback channel sampling on regular
data exchanges (typically at rates of the order of

1 packet/s), instead of requiring dedicated channel
sounding transmissions. This significantly reduces ra-
dio usage, usually the most expensive operation in
small sensor devices.

In this paper, we demonstrate shared secret key
generation for the specific setting of a body-worn
device communicating with a stationary off-body
base-station. We propose a cost-effective scheme to
eliminate key mismatch between the two endpoints.
Our target is to have at least a 75% chance of
generating a fully matching 128-bit secret key,
corresponding to bit-agreement probability of at least
99.8%. Our specific contributions are:

1. Our first contribution is the identification of the
dominant cause of the observed channel mismatch
during motion: the time delay between consecutive
measurements by the two ends of the link. We
present a theoretical bound on the mismatch, and
validate it via experiments with body-worn devices
comparing a representative office environment with
an anechoic chamber.

2. Our second contribution is a method to reduce this
mismatch by filtering the signal using a practical,
low-complexity approach that dramatically improves
correlation between the two endpoints, without
reducing signal randomness.

3. Our third contribution is a mechanism to confine
bit generation to periods of high motion-related
fluctuation, further reducing disagreement in channel
estimation and thereby virtually eliminating key-bit
mismatch. We show that an activity threshold can
be adjusted to yield near-perfect key agreement by
trading-off key mismatch against key generation rate.

For our threat model, we allow stationary passive
eavesdroppers in the environment to sample the chan-
nel at the same time as the communicating parties
with full knowledge of the key extraction algorithm
and its parameters. We do not address the issue of au-
thentication in this paper: we believe that establishing
initial trust between two parties is a distinct research
problem, important during the bootstrapping phase,
whereas our focus is on key renewal. If we assume
a mechanism for bootstrapping initial trust, a basic
challenge-response protocol can ensure authenticity of
newly generated session keys.

We believe our work is the first to undertake
secret-key generation using the wireless channel in
the important and uniquely constrained context of
body-worn healthcare devices. We test our solution
using off-the-shelf hardware, with one device worn
on the human body in conditions approximating
actual deployment of such devices and in typical
usage environments such as an indoor office and
a food court. Moreover, our scheme dispenses with
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reconciliation and dedicated channel sampling, whilst
generating high entropy secret bits at a usable rate of
approximately 8 bits/min, with 99.8% bit agreement.
At this rate, a usable 128-bit key is generated every
20 minutes. If a session key is renewed over a longer
period, say 1 hour, the probability of generating a
perfectly matching key at both endpoints using our
mechanism can be up to 99.5%. Our scheme is light-
weight, implementable on the current generation of
body-wearable devices, and suitable for large-scale
deployment in personalised healthcare systems.

The rest of this paper is organised as follows:
Section 2 discusses prior work in key generation
and reconciliation. In Section 3 we identify the cause
of mismatch theoretically and experimentally, and
Section 4 describes a filtering technique to minimise
this mismatch. Section 5 details our region selection
and key generation mechanisms, whose performance
is then analysed in Section 6. We summarise and
conclude in Section 7.

2 BACKGROUND

In this section we briefly describe secret key genera-
tion and prior research. We furthermore distinguish
our approach from others in that we are able to dis-
pense with key reconciliation in a bodyworn setting.

2.1
2.1.1

The wireless channel is intrinsically symmetrical by
the reciprocity property of electromagnetic propaga-
tion. In the absence of interference, noise, and changes
in the channel, two communicating parties, Alice and
Bob, using identical transceivers and antennas, and
transmitting identical signals, will both also receive
identical signals. In the complex geometry typical of
interior environments, radio signals can propagate via
multiple paths, each experiencing a different delay,
attenuation, and phase and polarisation distortions
which depend on the details of each path. The set
of parameters defining the effects of all these paths
can be measured by both Alice and Bob, and under
ideal conditions their measurements will agree.

In the time domain, the channel can be repre-
sented by the delay spectrum or impulse response,
and equivalently by the frequency spectrum in the
frequency domain. Alice and Bob can measure either
of these representations to construct a shared key,
unique to their positions. An eavesdropper, Eve, lo-
cated outside a distance greater than about one radio
wavelength from either Alice or Bob, will measure a
different spectrum, and so will be unable to determine
their key. This scenario corresponds with the well-
known Jakes uniform scattering model [15] which
states that there is rapid decorrelation in the signal
over a distance of approximately half a wavelength,

Secret Key Generation
The Basic Principle

and one may assume independent signals for a sepa-
ration of one to two wavelengths or more.

Measurement of either delay or channel spectra
with sufficient resolution to generate long keys re-
quires significant investment in hardware and con-
sumption of energy. An approach more suited to
energy-constrained devices characterises the channel
using the time-evolution of received signal strength,
which fluctuates because of motion by the users or
changes in the environment, as a source of shared
information [9], [10].

In practice, asymmetric components appear in these
channel measurements because of transceiver differ-
ences, random noise, the influence of motion, either
of the parties or other elements of the environment,
on the measurement procedure, and asymmetrically
located interference sources. These asymmetries cause
discrepancies in the derived keys, requiring additional
operations to obtain key agreement.

2.1.2 The Procedure

The process of shared secret key generation described
in the literature typically comprises four phases:

1. Channel sensing: Alice and Bob each measure some
characteristic of the channel. A time series of received
signal strengths during node motion is commonly
used [9], [10], [16], although other suitable channel
characteristics have also been studied [17], [18], [19].
2. Quantisation: The measurements are converted into
a string of key bits. Approaches based on signal
extrema [9], [10] and ranking [20] have been described
in prior work.

3. Reconciliation: Key bit discrepancies at the two ends
are discarded or corrected by employing an informa-
tion reconciliation protocol [21].

4. Privacy amplification: The now matching keys are
then strengthened by performing a transformation to
increase key entropy and obscure any partial informa-
tion an eavesdropper may have gathered during key
reconciliation communications.

2.1.3 Reconciliation

We now consider the reconciliation phase to show
that it incurs an unacceptably high cost in body-
worn devices, thereby motivating the study in this
paper. Information reconciliation mechanisms have
been developed mainly in the context of quantum
cryptography [21], and key generation schemes for
wireless links either borrow these mechanisms or
propose non-optimal ad hoc schemes.

To reconcile bitstrings, two parties exchange meta-
data, (similar in concept to the cyclic redundancy
check (CRC)), to identify mismatching bits, whilst si-
multaneously trying to minimise the potential leakage
of information about the bitstring to an eavesdrop-
per. Once mismatching bits are identified, they are
either discarded from the bitstring, or else corrected,
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which may require further message exchanges. Unfor-
tunately, like CRC, reconciliation methods only detect
and correct a specific class of errors, with a probability
depending on the capabilities of the reconciliation
mechanism. If we consider a simple reconciliation
scheme which computes a single parity bit over a
block, an even number of errors will go undetected.
Considering a block of b bits, let 4 denote the proba-
bility that an individual bit differs at both ends. The
probability P, of having mismatching blocks in spite
of reconciliation would therefore be the probability of
encountering an even number of errors, which can be
expressed as:

& b b—27 21
Pp=> (m)““” ¢ (1)

i=1
Consequently, the probability P that a key of length
K has no errors is

P=(1—-P)~/" )

For example, if there is as little as a 2% chance
of a bit mismatching between the endpoints, for a
block size b = 8 there is approximately a 15% chance
of uncorrected errors in a key of length K = 128,
and in this case the key will have to be generated
again. Typically, to counter the information leaked to
an adversary due to parity bits being exposed, an
equal number of bits needs to be dropped from the
key, thereby reducing the final key bit rate.

The public exchange of parity (or any information
about the bitstring) is also a security risk in that it
leaks information that may make it easier to attack
the key. The exact extent of an eavesdropper’s ad-
vantage depends on the reconciliation protocol and
the amount and nature of the information the two
parties exchange. For instance, if Cascade is used to
reconcile two bitstrings having a 1% bit mismatch,
approximately 10% of the key bits are ‘exposed’ (as
detailed in [22]) to the eavesdropper, and for a 10%
bit mismatch, the number of exposed bits rises dra-
matically to 57 ~ 63%, which then requires a privacy
amplification process to obfuscate the key.

Reconciliation protocols such as Cascade typically
perform this parity check multiple times and shuffle
the bit sequence in a coordinated way before each
test. This incurs significant memory and transmission
overheads (as documented in [14]), much more impor-
tant for miniature sensor devices operating with con-
strained resources. Furthermore, reconciliation will
also add to design complexity, of particular concern
since these protocols will typically be implemented in
hardware ASICs to provide a single-chip solution for
body-worn devices. Our aim, therefore, is to virtually
eliminate the need for reconciliation by aiming for
a bit agreement ratio of 99.8% or greater, so that a
typical 128-bit key has a very good (> 75%) chance of
matching perfectly.

2.1.4 Performance Metrics

The following metrics are commonly used to evaluate
the performance of secret key generation schemes:

1. Key Agreement: the fraction of bits matching at both
ends, ideally 100%. Eavesdroppers should match in
only about 50% of the bits they generate.

2. Secret Bit Rate: the average number of secret key
bits extracted from the channel per unit time. This
depends on factors such as sampling rate, quantiser
parameters, and channel variability.

3. Entropy: a measure of the uncertainty (inherent
randomness) in the key. A typical measure of entropy
of a random variable X, over the set of n symbols
T1,L2, ..., Ty, IS

H(X) == p(x;)log, p(:) ®)

i=1

where p(z;) is the probability of occurrence of symbol
x;. For binary symbols, a value close to 1 indicates
high entropy. We use the NIST test suite [23] to
estimate entropy. If the generated key successfully
clears the battery of tests it ensures that the key cannot
be distinguished from a random string using known
statistical techniques, and is therefore suitable to be
used in symmetric key-ciphers such as AES, and also
lightweight block ciphers such as LED, XTEA, Piccolo,
PRESENT, and CLEFIA that are more likely to be used
on small resource-constrained devices.

Ideally a scheme should generate keys with high
agreement, at a fast rate, and with high entropy.
However, these are conflicting goals and researchers
generally focus on one and employ secondary means
to improve the others, at additional computational
and communication cost. Sampling at a high rate
will yield a higher bit rate, but will have greater
disagreement, and lower entropy, since the signal
variation is lower relative to the sampling rate so that
successive bits will be more correlated. Sampling at
larger intervals improves key agreement and entropy
but reduces bit rate. These tradeoffs are handled in a
variety of ways in prior work as discussed next.

2.2 Prior Work

Prior work in secret key generation for 802.11 WiFi
considers both static and mobile cases. The authors
of [9] show that with modified 802.11 hardware able
to measure channel impulse response it is possible to
obtain keys at a rate of more than 1 bit/s with almost
perfect agreement, but use of simple signal strength
measurements instead resulted in key disagreements.
[10] presents experimental results for several static
and mobile scenarios including walking and bicycle-
riding. Motion is seen to yield high entropy keys
at a high rate and with good key agreement. The
authors’ emphasis is on high bit generation rates and
relatively high bit mismatch is seen (4-30%) making
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a reconciliation mechanism (Cascade [21]) necessary,
along with privacy amplification.

In [24], the authors consider key generation in
ultra wide-band channels, mainly using simulations
of static deployments. They use the envelope of the
observed channel impulse response, rather than the
received signal strength metric. However, successive
key values were highly correlated and they use a
whitening process employing training data for pri-
vacy amplification.

Wireless sensor devices have been specifically con-
sidered in some prior work. In [25], the authors
measure at a sequence of frequencies to estimate the
spectrum and extract keys with agreement of over
97% in static deployments.

In [20], the authors aim for a very high rate key
generation of 22 bits per second with 2.2% disagree-
ment, or, alternately 3 bits per second with 0.04%
disagreement. The channel is sampled at a rate of 50
probes/s. Extensive processing is done on the data,
including interpolation, de-correlation, and multi-bit
adaptive quantisation. One of the endpoints must be
moved continuously in a ‘random’ manner to induce
signal fading fluctuations. This approach is extended
in [16] by introducing a ranking mechanism to remove
those asymmetries in the received signal strength
indicator (RSSI) traces due to differences in hardware
characteristics. Experiments with TelosB motes show a
key generation rate of 40 bits/s with 4% disagreement.

Body area networks have unique constraints and
operating conditions. Channel variation is complex
and unpredictable due to motion, shadowing effects
of the human body and multipath propagation [26].
Body-worn devices were first considered in [27],
where the authors simulated a near-body channel and
derived an upper bound on secret bit rate of 4 bits/s
due to inherent limitations on channel entropy. They
do not describe an actual key generation process. We
explored the tradeoff between secret key generation
rate and bit agreement for body area networks in [28]
and proposed a “zero reconciliation” scheme in [29].

2.3 Our Focus

Our emphasis is on minimising key generation costs
due to the limited resources of body-worn devices.
In contrast to earlier schemes, we eliminate the high
costs of dedicated sampling, reconciliation and pri-
vacy amplification. Our scheme samples the chan-
nel in the course of routine transmissions, controls
the prime source of bit discrepancies using low-
complexity filtering, and relies on the user’s own
motion or environmental changes to create signal
entropy which is harnessed for secret key generation.
In this paper, we extend our previous work [29] aimed
at eliminating reconciliation for body-worn devices.
We report experimental results for additional user
scenarios and provide basic guidelines on how to
select the parameter values used in our scheme.

3 UNDERSTANDING DISAGREEMENT

In this section, we use theoretical and experimental
approaches to show that significant disagreement be-
tween two ends of the link is due to non-simultaneous
sampling of the channel.

3.1 Theoretical Estimation of Disagreement in
Measurements of Link Signal Power

Here we carry out a simplified analysis to estimate
the effects of motion on the received signal power
measured by the nodes at the ends of a link. There
are three well-known contributors to changes in signal
power caused by node motion [30], illustrated in
Fig. 2: (i) path loss, due to geometric signal spreading,
has an inverse-square law relationship with range, (ii)
shadow or large-scale fading, arising from signal block-
age in the environment including the subject’s body
and from changes in antenna orientation which affect
signal strength through the antenna radiation pattern,
and (iii) small-scale fading, signal fluctuations caused
by motion induced changes in the multiple propaga-
tion paths between the two nodes. At speeds typical
of human motion, range (path loss) and orientation
(shadow fading) cause only slow variations in signal
strength over successive packets. However multipath
(small-scale fading) can cause rapid fluctuations as
signal paths change either due to movement on the
part of the nodes or in the environment.

Consider an environment with appreciable mul-
tipath propagation, i.e. where multiple propagation
paths exist between the two nodes: suppose at time
instant ¢ = 0, the stationary node (the base-station
(BS)) samples the channel (i.e. hears a transmission
from the mobile node), and At seconds later the
(body-worn) mobile node samples the channel (i.e.
hears the transmission from the BS). The difference in
channel measurements between the two end-points is
equivalent to the change in channel over the interval
At as measured by one node (say the mobile node)
at the two instants, since the channel is reciprocal at
each time. In what follows we estimate this change
using a simple model.

When the BS transmits, signals propagating along
the multiple paths combine to form a standing wave
pattern in the environment. At places where the sig-
nals reinforce due to phase agreement, there is an

\J = = = = Path Loss Component
AN with Shadowing Component

with Small-Scale Component
Signal
Power

Range
Fig. 2: Components of the received signal power
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increase of signal strength, and at places where the
signals subtract there is a decrease in signal strength.
As the mobile node moves through the environment,
the signal strength it observes fluctuates due to these
interference effects. Because of the fixed characteristic
radio signal wavelength, adjacent locations where the
signal is maximum or minimum cannot be separated
by less than a distance of the order of half a wave-
length [31]. This places an upper bound on the rate
at which the received signal power can change as the
node moves through the standing wave pattern. If the
signal radio wavelength is A and the receiver moves
at velocity v, the maximum frequency at which the
observed signal power can change in the receiver is

fmax =v- (2/)‘) (4)

This bound limits the worst-case (i.e. highest fre-
quency) signal component that the receiver senses to

y(t) = (A/2) sin 27 fryaxt (5)

where A is the peak-to-peak amplitude of the signal.
The maximum discrepancy in amplitude, Ay between
sample points taken At apart in time occurs at ¢t = 0
and is

Ay =~ dy/dt- At

~  (A/2) cos(27 frmaxt) 2T fmax At
~ AT fnaxAt,

att=0. (6)

=

(a) Bodyworn (b) Off-body (c) Multiple
mobile mote base-station eavesdroppers
Basestation
(Bob)
Eve3
Cubicle D(/_\>. Q Evel Cubicle
/’g Office Furniture
| 15cm Eve2
im
| 6m
ST Mobile Mote (Alice) Path o> || <]
(Walking) Eved
Resting Point
- &~ Mobile Mote (Alice)
[ 2N
I\ _/"
Cubicle - Cubicle

(d) Experimental setup of indoor environment

Fig. 3: Mobile node, base-station and experimental
layout for indoor environment

The fractional discrepancy ¢ = Ay/A, namely the
change as a fraction of the amplitude, is then

€ = 7TfmaxAt
= 2mvAt/A. ?)

At an operating frequency of 2.4GHz for example
(where A = 0.125m) and a node velocity of v = 1m/s,
a At = 20ms delay between the two ends in sampling
the channel leads to a maximum fractional error of
e ~ 1, implying that the signal component due to
changing multipath (excluding contributions due to
variation in range and orientation) may change over
the entire range from a minimum to a maximum dur-
ing that interval. Since typical wireless sensor device
radios today (e.g. the CC2420 [32]) take 10-20ms to
probe the channel in one direction, this error can be
significant in practice, causing mismatch between the
two ends, as will be examined experimentally next.

3.2 Experiments in Indoor Environment and Ane-
choic Chamber

We studied this effect in two environments: a repre-
sentative indoor office environment, and an RF ane-
choic chamber with very low level reflections. The
purpose of the experiments was (1) to verify impact of
the small-scale fading component (due to multipath)
on channel measurement mismatches between both
ends, and (2) to show the effect of channel sampling
delay At on measurements at the two ends.

ggmﬁ“m‘ﬁ“ﬂu !

&
4, 480K

(a) RF Anechoic Chamber

>

Eved

Mobile Mote (Alice)

2m \V4
Path (Walking)
12 m 11m

G ——————

o 15cm A

Eve3

A 15cm A15cm

Eve2 Evel
Basestation (Bob)

(b) Experimental setup of anechoic chamber

Fig. 4: Anechoic chamber and experimental layout
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Our experiments used MicaZ motes running
TinyOS and operating in the 2.4 GHz band. Their
radios provide a received signal strength indicator
(RSSI), a measure of signal power in logarithmic units,
related in a simple way to dBm. Our setup is modeled
after a real body area network where the body-worn
node (Alice), shown in Fig. 3(a)), transmits one packet
per second, a rate typical for a health monitoring
device sending patient physiological information such
as heart-rate, ECG, etc. Even though continuous pa-
tient monitoring devices may collect medical read-
ings several times per second, they usually process
them in-node (e.g. by averaging or aggregating), and
then transmit the result to the base-station, thereby
reducing radio usage. The base-station (Bob, shown in
Fig. 3(b)) responds with an acknowledgement as soon
as possible (typically 10-20ms on the MicaZ), and this
allows the two ends of the link to probe the channel
alternately in quick succession.

The layout for our indoor environment experiments,
depicted in Fig. 3(d), show locations of the base-
station, the four eavesdroppers labeled Evel to Eve4,
(as shown in Fig. 3(c)), and the path along which
the subject walked back and forth. Multiple WiFi
networks were operating in buildings around the ane-
choic chamber, but our results did not show evidence
of interference. (It is relevant to mention here that
efforts are underway to allocate spectrum specifically
for bodyworn applications, to limit interference from
other systems [33]).

The RF anechoic chamber is pictured in Fig. 4(a).
All surfaces (floors, ceilings, walls) are covered in
material that absorbs electromagnetic energy, thereby
minimising RF reflections and consequently the small-
scale fading due to multipath propagation. Our exper-
imental layout is shown in Fig. 4(b). In all experiments
the subject walked at a moderate pace of about 1m/s.
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Fig. 5: Measurements comparing RSSI in the Indoor
Office and in the Anechoic Chamber

For the indoor office environment, we show in
Fig. 5(a) the signal strengths measured by the base-
station, mobile node, and two eavesdroppers (other
eavesdroppers show similar results). We observe that
the eavesdroppers are not able to replicate the channel
measurements accurately, confirming that the base
and mobile can use the RSSI measurements to gen-
erate private keys. However, we see that there are
discrepancies between the signal strengths measured
by the base and mobile. The same experimental proce-
dure repeated in the anechoic chamber (which largely
eliminates small-scale fading), gave the RSSI trace
shown in Fig. 5(b). The signal strength can be seen to
vary more smoothly for the base-station and mobile
node as compared to the office environment, and
correlates better between the two ends.

We examine this discrepancy in RSSI more closely
in Fig. 6 where a box plot depicts the variation in
signal strength between the base-station and mobile
node. The central mark is the median, the edges of
the box denote the 25th and 75th percentiles, the
whiskers extend to the most extreme datapoints, and
the outliers are plotted individually. For the indoor
environment, most of the discrepancy lies within an
8dB range (—6dB to +2dB), and when the signals
are quantized, this results in significant bit mismatch
i.e. reduced key agreement, at the two ends. The
discrepancy is clearly much lower in the anechoic
chamber, where it is almost completely concentrated
at the median (1dB).

This discrepancy can be quantified with the Pearson
correlation coefficient r:

D o/ 10 P o[ B 6
VI (X = X)2 S, (v - V)2

where X; and Y; are the RSSI values of the ith packet
of each party and X and Y are the respective mean
RSSI values of a sequence of n packets. The corre-
lation coefficient r returns a value in [—1,1] where
1 indicates perfect correlation, 0 indicates no corre-
lation, and —1 indicates anti-correlation. This metric
has the benefit that it measures variations and not
the absolute values, and so is unaffected by offsets
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Fig. 6: Box plot highlighting the discrepancy in RSSI
for both test environments
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in RSSI measurements arising from differences in re-
ceiver sensitivities or transmit powers. For the indoor
office environment, the correlation between the RSSI
signals at the base-station and the body-worn node
over the entire trace (several minutes) is 0.975, while
it is higher, at 0.994, in the anechoic chamber. This
provides quantitative confirmation that the multipath
(i.e. small-scale fading) component, which occurs in
the indoor office environment but is largely absent
in the anechoic chamber, is a significant contributor
to RSSI discrepancies (which in turn leads lower key
agreement) between the two communicating parties.

We can also validate experimentally that the dis-
crepancy increases with increase in probing delay
At. We configured the mobile node to acknowledge
packet reception from a base-station several times
successively at 40ms intervals. The discrepancy be-
tween the RSSI of the original packet (from base to
mobile) and the RSSI of each subsequent response
(acknowledgement from mobile to base) is plotted in
Fig. 7, for both the indoor office environment and the
anechoic chamber. Two observations emerge from this
plot: (i) the discrepancy is again much lower in the
anechoic chamber than in the indoor office environ-
ment, and (ii) the RSSI trace of the first acknowledge-
ment shows least fluctuation, while each subsequent
response deviates further (i.e. has larger amplitude).
The latter visual observation can be quantified with
the correlation coefficient, plotted in Fig. 8 as the
probing delay At between the two ends increases. It
clearly demonstrates that the correlation steadily falls
as probing delay increases, and that a 40ms probing
delay in the indoor environment is equivalent to a
100ms probing delay in the multipath-free anechoic
chamber in the sense of yielding a similar correlation
of about 0.976.

These theoretical and experimental observations
provide strong evidence that the discrepancy in chan-
nel measurement is predominantly due to the stag-
gered sampling by the two ends of the link. In the
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o
o]
T
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Fig. 8: Correlation coefficient r versus sampling delay
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Fig. 9: Variation in RSSI for Resting Scenario

next section, we develop a novel means of reducing
this discrepancy.

We wish to emphasise that other factors such as
external interference (which can be asymmetric) and
uncorrelated random noise effects (e.g. due to re-
ceiver circuitry) also contribute to the discrepancy. To
illustrate this, we conducted experiments in which
the mobile node is stationary (indicated in Fig. 3(d)),
and plot the resulting RSSI in Fig. 9. The channel
is relatively static, yet small RSSI discrepancies are
visible. Unfortunately these small discrepancies can
lead to the generation of mismatching keys, since
the (uncorrelated) noise is amplified by the quantiser
in the process of generating key bits. This issue is
addressed in Section 5, where we develop a way to
eliminate the effects of uncorrelated noise.

4 REDUCING DISAGREEMENT BY FILTER-
ING

In Section 3.1 we developed a simple model showing
that the maximum fractional error due to small-scale
fading is € = 7w fpas At Where frae = v - (2/X). To
reduce this error ¢, one would ideally like to minimise
sampling delay, At, but unfortunately the maximum
possible reduction is limited by operation in half-
duplex mode (although recent proposals for single-
channel full-duplex operation [34] may offer a means
of overcoming this in future). The other parameter
that can be manipulated is the mobile node velocity
v, but that would restrict application to slow-moving
mobile nodes.

Instead, we reduce fpax, i.e. the maximum fre-
quency of changes in received signal power arising
from motion in a small-scale fading environment.
By applying a low-pass filter with cutoff frequency
fe < fumax at both ends of the link, the maximum
fractional error in measuring signal power is reduced
to € = mf At = €fc/ fmax. For the example considered
in Section 3.1, where the subject walks at v = 1m/s,
the delay in bidirectional probing is At = 20ms,
and operating frequency is 2.4GHz with wavelength
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A = 12.5cm, we showed that f,.x =~ 16Hz and the
error can theoretically be as high as ¢ ~ 100%. To
restrict this error to less than a desired bound, say
¢ ~ 3%, we can set the filter cut-off frequency to
fe = (€/€) fmax ~ 0.48Hz.

A low-pass Fourier filter is unsuitable for real-life
situations where users” motion causes discontinuities
and unpredictable changes in the RSSI trace (and is
hence not well-modeled by discrete frequency com-
ponents). Instead we choose the Savitzky-Golay filter
[35] which is better able to match the logarithmic form
of signal strength measurements given by the receiver
RSSI output data. The Savitzky-Golay filter behaves as
a low-pass filter [36], and is able to follow the under-
lying slow-moving features of the RSSI traces we have
observed, while providing a controllable reduction in
the bandwidth of fluctuations caused by motion in a
multipath environment. Moreover, this filter is a linear
algorithm that can be easily implemented in ASIC as
part of a body-worn solution.

In the experimental work reported in this paper we
select the parameters of the Savitzky-Golay filter to
provide a cut-off frequency f. ~ 0.48Hz, so that the
maximum fractional error € is limited to around 3%
(as argued above). The mapping of filter parameters to
3 dB cut-off frequency is based on the approximation
derived in [36, Eq. (11)]:

K+1
fe= T6r 36 ©

where K is the polynomial order used by the filter,
and F' is the frame (window) size. We chose K = 5
(i.e. 5-th order polynomial) and F' = 9 (for an impulse
response half-length of 4), giving a cut-off frequency
fe = 0.43Hz, close to the desired value. This filter
yielded visually good signals for key generation in
all our experiments. Dynamically tuning the filter
parameters to adapt to the mobility of the monitored
subject is left for future work.

It is important to emphasise that the proposed
filtering operation does not reduce the randomness of
the signal (and hence of the generated keys). Motion-
induced discrepancies occupy a range of frequencies
and it is the higher ones, contaminated by the half-
duplex delays, which are removed, leaving the lower-
frequency components which retain the information
about changes in the multipath with position that is
needed for key generation.

To illustrate the operation of the Savitzky-Golay
filter, we show its effect in routine subject activity
in the indoor office environment over several hours.
Fig. 10(a) shows the original RSSI traces. The output
of the Savitzky-Golay filter is shown in Fig. 10(b) -
we call this the slow component, and it is primarily
attributable to path loss, shadow fading and filtered
small-scale fading. The residual (i.e. original signal
less the filter output) is shown in Fig. 10(c). We call
this the fast component, since it consists of higher fre-
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Fig. 10: Application of Savitzky-Golay filter

quency components arising from the effect of channel
measurement delay on the small-scale fading, and
which are primarily responsible for the disagreement
between the two ends.

Comparing Fig. 10(b) with 10(a), we see that filter-
ing visibly improves agreement between base-station
and mobile node RSSI traces. The correlation coef-
ficient of the original RSSI signal between the two
ends is 0.973, whereas after filtering, the correlation
(of the slow components at the two ends) improves
to 0.986. This is almost comparable to the correlation
seen in the anechoic chamber, making near-perfect
key agreement feasible.

5 DyNAMIC REGION SELECTION AND SE-
CRET KEY GENERATION

We have shown that correlation between endpoints
can be greatly improved by filtering the RSSI signals
to attenuate high-frequency components associated
with sampling delay. However, factors such as (asym-
metric) interference and (uncorrelated) random noise
also contribute to mismatch. Indeed the impact of
these effects is amplified when the channel is very
quiescent (as we showed for a resting subject in
Fig. 9), which can lead to an undesirably high rate of
secret-key bit-mismatches after quantisation. We next
propose a novel means of dealing with such effects by
restricting key-bit generation to periods when channel
fluctuation is not dominated by system noise effects.
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Fig. 11: Region Selection for routine office activity

5.1 Dynamic Region Selection

When the channel exhibits significant fluctuations
(e.g. when the subject is moving rather than resting or
when the environment is dynamically changing), the
correlated fluctuations in the signal at the two ends
have large amplitude and dominate the uncorrelated
noise, leading to better agreement (as well as high key
entropy). This has been reported in the literature, and
indeed some works [10], [16] have explicitly required
that the subject should move during key generation.
This can place a burden on users, and instead we
extend our algorithm to automatically detect those
time periods (or regions) that are most suitable for
secret-key bit generation.

The key observation is that rapid channel variation
arises from rapid changes in multipath, and this is
strongly expressed in the higher-frequency compo-
nents of small-scale fading. The latter is already con-
veniently available to us as the fast component, namely
the residual between the original and filtered signals.
By measuring the RMS energy in the fast component,
we can deduce whether there is sufficient activity in
the channel for generating high agreement or “good”
key-bits at little additional computational cost.

We illustrate this approach in signals obtained in
the indoor office environment (in Section 3) while
the subject was engaged in routine office activity.
The RSSI (slow component obtained after filtering) is
shown in Fig. 11(a), while the root mean square (RMS)
energy (in dB, computed using a non-overlapping
moving window of Wgrys = 10 samples) is shown
in Fig. 11(b). High energy in the fast component is
clearly associated with significant variability in the
slow component, and so offers a reliable measure of
channel fluctuation. The shaded zones in the figure
highlight periods when the fast component energy
exceeds a threshold § = 1dB and dynamically identify
regions of high activity during which key bits should
be generated using the RSSI slow component.
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Fig. 12: Energy of fast component when resting

5.2 Understanding Threshold 6

As we noted in Section 3.2, during resting and static
scenarios where the half-duplex delay does not cause
discrepancies, we observe a secondary source of key-
bit discrepancy in small-scale fluctuations of RSSI
caused by system noise. These fluctuations are uncor-
related between the two communicating parties, have
small amplitude, and are a function of the particular
radio hardware used at both ends. Quantisation of
the RSSI measurements in the receivers can introduce
further errors for small signal fluctuations. Discrepan-
cies result if channel measurements made under these
conditions are used to generate keys.

We can estimate a ceiling for the relative energy
in these random components in a given system by
measuring the channel variation in the static case. As
shown in Fig. 12, when our system is in a completely
stationary state, the channel RSSI varies by 1 to 2dB.
The variation in the slow component is smaller due
to the filtering used and has a variation of about 1dB
from the average for both base-station and mobile
node. The fast component energy (Fig. 12(c)) peaks
at about 1.14dB for the base station and 0.82dB for
the mobile mote. Based on these observations, it is
reasonable to restrict key generation to periods when
6 > 1.14dB. In the next section, where we generate
keys for 0 varying from 0-3dB, we see this is a good
approximation: we meet our intended target of 99.8%
bit agreement when ¢ = 1.5dB.
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Parameter 6 thus gives us a means to differentiate
effectively between the static case, where channel
variation is dominated by uncorrelated noise effects
unsuitable for key generation, and regions of signif-
icant activity where variation is highly correlated at
both ends and well suited for key generation.

5.3 Key Generation Flow

Our threat model considers one or more eavesdrop-
pers (Eve) in the environment who sample the channel
at the same time as the legitimate parties, and know
the key extraction algorithm and its parameters. How-
ever, we stipulate that Eve is separated from the two
parties by a distance greater than one radio wave-
length (~ 12.5 cm for the 2.4GHz band), and thereby
forced to measuring a different multipath channel. We
do not consider here the issue of initial trust between
base-station and mobile node, nor active attackers
engaged in jamming and packet injection.

The key generation mechanism runs as a back-
ground process to normal device operation, with the
process flow depicted in Fig. 13 which identifies
the input variables required at every stage. For all
experiments, we employ a sampling rate of 7 = 1
sample/s, allowing channel sampling through rou-
tine data transmissions and also reducing correla-
tion between successive RSSI readings. The channel
response profile is passed to the Savitzky-Golay fil-
ter (polynomial order K and frame size F' are pre-
configured) which outputs the “slow component”.
The “fast component” is obtained by subtracting the
slow component from the original signal, and its
RMS energy is computed for region selection. When
periods of high activity (i.e. when the energy exceeds
a specified threshold 6) are identified, the correspond-
ing segments of the slow component are passed to
the quantiser for bit generation. We note here that
all of these operations are linear and can easily be
implemented in hardware.

Our research does not develop a new quantiser.
Instead, we use a basic single-bit quantiser, taken
from [9] and refined in [10], and operating as follows:
the base-station and mobile node define an adaptive
moving window of size Wy, within which they pro-
cess blocks of consecutive (filtered) RSSI readings. The
process is depicted in Fig. 14. For each block, two
threshold values are calculated:
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where p is the mean, o is the standard deviation,
and o > 0 is an adjustable parameter. If an RSSI
reading within a window is greater than ¢+, it is
encoded as 1, and if less than g—, as 0. The thresholds
define an exclusion zone and values falling between
them are discarded. Smaller RSSI variations are more
likely to disagree at both endpoints and are therefore
not considered, in favor of larger excursions. The «
parameter allows the operator to adjust quantiser per-
formance to balance between bit generation rate and
mismatch. For our purposes, we fixed the window
size to Wy = 5 and set & = 1, consistent with prior
work [10].

Once both parties generate enough secret bits
to form a key, agreement can be verified using a
challenge-response protocol. If the keys fail to agree,
they are discarded and the process is repeated. Results
indicate that in typical conditions, this scheme can
generate 2 ~ 4 shared keys per hour.

6 RESULTS AND ANALYSIS

We tested our key generation mechanism in the office
space in Fig. 3(d) and in a busy public space, i.e.
a food-court on the University of New South Wales
campus. The base-station is stationary with three
eavesdroppers deployed around it at distances of
22c¢m, 44cm and 100cm. The subject wore the mobile
mote on his upper arm. In the first experiment, the
subject performed High Activity, working, walking
and interacting with other people in the room. In the
second experiment he performed Low Activity, mainly
seated at his cubicle working and occasionally fetch-
ing items from other cubicles. In the third experiment,
Dynamic Environment, performed in the food court, the
intention was to keep the two communicating parties
stationary relative to each other, and use customer
traffic in the surrounding environment to cause the
channel fluctuations needed to generate secret-key
bits. The subject was seated at a table about 6m away
from the base-station, almost double the separation
in the office environment. This experiment was con-
ducted during lunch hour when there was a maxi-
mum of pedestrian traffic. Trace data was collected
from each experiment for about 40 minutes and our
key generation scheme was applied offline to assess
its performance with different parameter settings.
The base-station and mobile node were again micaZ
motes and sampled the channel once per second
(1 = 1)/s. We use the Matlab implementation of the
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TABLE 1: Effect of varying threshold ¢ on key generation performance metrics for High Activity scenario

Signal Key Agreement bit rate Evel Key Eve2 Key Eve3 Key Entropy
quantised (%) (bit/s) Agreement (%) Agreement (%) Agreement (%)
unfiltered 98.40 0.205 47.11 46.48 47.34 0.9970
filtered, 6 = 0 97.91 0.244 50.89 51.00 51.03 0.999
filtered, 6 = 0.5 99.08 0.222 50.49 50.64 50.79 0.999
filtered, 6 = 1 99.74 0.181 50.66 50.82 50.97 0.998
filtered, 6 = 1.5 99.83 0.141 50.22 50.56 50.51 0.999
filtered, 0 = 2 99.88 0.101 50.14 50.16 50.10 0.998
filtered, 6 = 2.5 99.92 0.065 50.35 50.22 50.27 0.998
filtered, 0 = 3 100 0.037 49.81 49.15 49.95 0.998

TABLE 2: Effect of varying threshold 6 on key generation performance metrics for Low Activity scenario

Signal Key Agreement bit rate Evel Key Eve2 Key Eve3 Key Entropy

quantised (%) (bit/s) Agreement (%) Agreement (%) Agreement (%)

unfiltered 95.53 0.139 46.26 46.80 47.60 0.9971
filtered, 6 = 0 93.06 0.197 48.40 47.88 48.30 0.999
filtered, 6 = 0.5 98.41 0.132 48.39 47.79 48.49 0.999
filtered, 6 = 1 99.41 0.086 48.26 47.74 48.41 0.999
filtered, 6 = 1.5 99.80 0.057 47.81 46.92 48.01 0.999
filtered, 6 = 2 100 0.036 47.38 45.79 47.69 0.999
filtered, 6 = 2.5 100 0.024 47.35 44.73 47.58 0.999
filtered, 6 = 3 100 0.015 46.54 43.85 47.05 0.999

TABLE 3: Effect of varying threshold 6 on key generation performance metrics for Dynamic Environment

scenario
Signal Key Agreement bit rate Evel Eve2 Eve3 Entropy

quantised (%) (bit/s) Agreement (%) Agreement (%) Agreement (%)

unfiltered 99.86 0.23 53.22 52.48 52.84 0.9968
filtered, 6 = 0 99.92 0.250 50.44 50.99 49.80 0.999
filtered, 6 = 0.5 99.92 0.246 50.48 50.89 49.68 0.999
filtered, 6 = 1 99.89 0.180 48.57 49.89 48.68 1.000
filtered, 6 = 1.5 100 0.068 45.75 47.21 45.16 0.995
filtered, 0 = 2 100 0.015 44.16 42.86 37.66 0.985
filtered, 6 = 2.5 100 0.002 50.00 37.50 37.5 0.954
filtered, 6 = 3 100 0.001 33.33 33.33 33.33 0.918

Savitzky Golay filter where polynomial order, K =5,
and frame size F' = 9. The energy of the fast compo-
nent is computed over a window size Wryg = 10.
The quantiser window size, W = 5, where Wy, is
chosen to be a factor of Wgys (to ensure that the
bitstrings synchronise, in case either party encodes
extra bits), and quantiser o = 1. The value of the RMS
threshold, 6, is then varied in increments of 0.5 from
0 to 3dB to note its effect on performance.

High Activity: Table 1 shows the percentage of
key bits that agree for different energy threshold
settings. It is evident that filtering by itself does not
significantly improve signal correlation between the
two ends (the agreement actually decreases a very
small amount from 98.40% to 97.91%). This can be
explained by the fact that the subject is not in a
constant state of motion, unlike in our walking ex-
periments earlier, and that during quiescent periods,
the quantiser amplifies uncorrelated random noise (as
explained in Section 4) which is likely to cause key
disagreement. However there is a marked improve-
ment in key generation rate when region selection is
applied to restrict key generation to regions with at
least dB energy in the fast component: a threshold
setting of § = 0.5dB improves key generation to over
99%, and at 0 = 1.5dB, over 99.8% of the bits match.

This improved agreement comes however at the

cost of reduced bit rate, which decreases from 0.205 to
0.141 bits/s. Region selection reduces bit generation
rate, because with increasing threshold, a progres-
sively smaller proportion of the signal is available for
quantisation. This trade-off is illustrated in Fig. 15(a),
which shows that with increasing threshold 6, the key
agreement (left axis) increases while the bit generation
rate decreases (right axis), for both high and low
activity. At this generation rate, a usable 128-bit key
is generated approximately every 15 minutes.

Low Activity: Table 2 shows that agreement of
keys generated from the raw unprocessed signal is
quite low at around 95%. This can be attributed to
longer quiescent or low-motion periods during this
experiment where the subject just sits at his desk.
Again, filtering combined with region selection has
a dramatic impact: threshold ¢ = 0.5dB improves
key agreement to over 98%, while at § = 1.5dB key
bits were found to match with probability at 99.8%,
which meets our intended bit agreement target. Key
generation rate similarly decreases from 0.139 to 0.057
bits/s, and a usable 128-bit key can be constructed in
about 35 minutes. The trade-off is shown in Fig. 15(b).

Dynamic Environment: In this scenario the base-
station and mobile node are stationary, and RSSI vari-
ation is caused primarily by changes in the environ-
ment, in particular by the motion of people walking
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Fig. 15: Key agreement vs. secret bit rate for varying
region selection threshold 6

along paths mainly located between the mobile mote
and base-station. These people were moving at typical
speeds, but given the large amount of traffic dispersed
throughout the room, multiple signal paths were
affected at the same time, with a correspondingly
greater magnitude of change per unit time compared
to the other scenarios (where a single person, the mo-
bile subject, is responsible for the channel fluctuation).
This had the notable advantage that the unprocessed
signal was already adequate fluctuating for key gener-
ation, yielding an agreement of 99.86% (which meets
our desired target) at a rate of 0.234 bits/s. Applying
region selection with § = 1.5dB improves agreement
to 100% at a rate of 0.068 bit/s, giving a usable 128-
bit key in approximately 30 minutes. The trend in
variation of key agreement and bit rate with changing
threshold is depicted in Fig. 15(c).

These preliminary results allow us to select a thresh-
old # value which can give good performance across
a wide range of different environments and activities.
For our radio hardware and the scenarios we inves-
tigated (which might be considered representative of
typical use), a threshold value of § = 1.5 is sufficient
for 99.8% bit agreement, corresponding to a 75%
chance of both endpoints” agreeing on a 128-bit secret
key. For this threshold setting, our scheme achieves a
bit rate of 0.057 to 0.141 bits/s, i.e. it would take 15 to

35 minutes to generate a usable 128-bit key, which we
believe is fast enough for purposes of key renewal. If
typical session key lifetime is approximately 1 hour,
the probability of having a valid new key perfectly
matching at both endpoints therefore varies from 93.5
to 99.5% depending on the user’s activity.

The high key entropy seen in all cases (> 0.99)
(Column 6), and the keys’ passing the NIST approx-
imate entropy test [23] confirm that the filter retains
a sufficient component of the essential randomness
arising from motion in a multipath environment.

Tables 1, 2, and 3 also show the percentage of
matching bits that each of the eavesdroppers generate
by passively listening to the channel. Eavesdropper
agreement hovers near the ideal 50% for almost all
cases, indicating that their chance of guessing if a
generated bit is correct or not is no better than an
unbiased coin toss. For the last case, Dynamic Envi-
ronment and 6 = 3dB, the sharp drop in eavesdropper
agreement (to 33%) is due to the fact that too few key
bits were generated by all parties in that run (only 3)
to have statistical significance.

7 CONCLUSION

In this paper we presented a method for generating
shared secret keys using motion in body area net-
works. Our first contribution has been to identify the
primary cause of key mismatch: the delays in measur-
ing the channel in both directions due to half-duplex
radio operation. We presented a theoretical model to
account for the mismatch in secret-key agreement,
and validated it with experiments in an indoor en-
vironment and in an anechoic chamber. Furthermore,
we noted that these discrepancies are concentrated in
the rapidly-varying component of the channel RSSI
trace. Second, we showed that this rapidly-varying
component can be removed using the Savitzky-Golay
filter to dramatically improve endpoint correlation.
Our final contribution demonstrated how this residual
fast component can be employed to dynamically iden-
tify regions of high channel variability, where near-
perfect key agreement occurs. Our mechanism is low-
cost, does not require dedicated channel sampling or
key reconciliation, and incrementally generates high
entropy key bits at a rate suitable for key renewal.
Experimental results show that it takes 15 to 35 min-
utes to generate a 128 bit key with a 75% chance of
perfect agreement between endpoints. If the typical
lifetime of a session key is one hour, depending on
the subject’s activity, there is a 93.5 to 99.5% chance
of generating a perfectly matching secret-key which
can be used by common ciphers such as AES, LED,
PRESENT, etc. which is a promising result.

In future work, we intend to extend this approach
to wholly on-body communications, and secure the
wireless links between bodyworn sensors, portable
base-stations, and/or medical implant devices.
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