
Comparing Edge and Host Traffic Pacing
in Small Buffer Networks I

Hassan Habibi Gharakheilia,1, Arun Vishwanathb,2, Vijay Sivaramana,1

aSchool of Electrical Engineering and Telecommunications, UNSW, Sydney, Australia
bIBM Research, Melbourne, Australia

Abstract

As packet switching speeds scale to Terabits-per-second and beyond, power considerations are increasingly forcing
core router manufacturers to adopt all-optical and hybrid opto-electronic single-chip switching solutions. Such routers
will have small buffers, typically in the range of a few tens of Kilobytes, causing potentially increased packet loss, with
adverse impact on end-to-end TCP performance. We recently proposed and analysed the benefits of pacing traffic at
the network edge for open-loop real-time traffic in a small buffer network. However, no detailed study of the efficacy
of edge pacing on closed-loop TCP performance has been undertaken for such a network.

In this paper, we consider two pacing methods - TCP pacing at the end-hosts, and traffic pacing by the network edge
- in the context of small buffer networks, and undertake a comprehensive comparison. Our contributions are three-
fold: First, we show via extensive simulations that under most scenarios (considering bottleneck and non-bottleneck
core links, low-speed and high-speed access links, long- and short-lived TCP flows, and different variants of TCP)
edge pacing performs as well or better than host pacing in terms of link utilisation (TCP throughputs) and average
per-flow goodputs. Second, we provide analytical insight into the setting of the edge pacing delay parameter, showing
how the efficacy of pacing relates to bottleneck buffer size. Third, we demonstrate the benefits of pacing in practical
scenarios multiplexing both TCP and real-time traffic, and discuss incremental deployment of pacing, highlighting
that unlike host pacing that requires adoption by a critical mass of users, edge pacing can be deployed relatively easily
under service provider control to facilitate rapid migration to core networks with small buffers.

Keywords: Small buffer networks, edge pacing, optical packet switched networks

1. Introduction

As Internet traffic continues its inexorable growth,
core routers are struggling to keep pace with the re-
quired switching capacity. Router scaling is primarily
limited by power density – a typical rack today with
a throughput of a Terabit-per-second consumes tens
of Kilowatts, and at current trends, scaling its capac-
ity to Petabits-per-second would require hundreds of
Kilowatts of power, alongside complex cooling mech-

IThis submission is an extended and improved version of our paper
presented at the IFIP Networking 2013 conference [1].

Email addresses: h.habibi@unsw.edu.au (Hassan Habibi
Gharakheili), arvishwa@au.ibm.com (Arun Vishwanath),
vijay@unsw.edu.au (Vijay Sivaraman)

1H. Habibi Gharakheili and V. Sivaraman are with the School of
Electrical Engineering and Telecommunications, The University of
New South Wales, Sydney, Australia.

2A. Vishwanath is with IBM Research, Melbourne, Australia.

anisms. To sustain capacity growth, router manufactur-
ers are therefore increasingly looking to photonics, in-
cluding all-optical packet switching solutions and inte-
grated single-chip systems employing hybrid optics and
electronics. In order to perform energy-efficient high-
speed packet forwarding, such architectures necessarily
sacrifice many non-critical functionalities, among them
buffering of packets during periods of congestion. Re-
cent research studies on such architectures have argued,
based on theory, simulation, and experimentation, that
core router buffer size can safely be reduced from Giga-
bytes down to Megabytes [2] or Kilobytes [3], and can
even be nearly eliminated [4], though with some loss
in performance. We refer the reader to our survey ar-
ticle [5] for a comprehensive discussion on the buffer
sizing debate.

When router buffers in the network core are very
small (sub-50 KB), contention and congestion at the
output link can lead to high packet loss, significantly

Preprint submitted to Elsevier December 22, 2014

degrading end-to-end traffic performance. We have
shown in [6] that real-time traffic streams can expe-
rience poor quality, and in [7] that TCP flows can
have reduced throughput. Several mechanisms have
been proposed for mitigating this problem, such as us-
ing wavelength conversion [8] in the core to alleviate
contentions, feedback-based rate control to proactively
prevent network congestion in optical burst switching
networks [9, 10], packet-level forward-error-correction
(FEC) at edge nodes to recover from core loss [4],
and traffic pacing at the edge prior to injection into the
core [6, 11, 12, 13]. While all these methods have their
relative merits, in this paper we focus on pacing, since
it is low-cost (compared to wavelength conversion), is a
well-known concept (studied under various names such
as rate-limiting, shaping, smoothing, etc.), and is yet
relatively unexplored in the context of small buffer net-
works.

Traffic can be paced in various parts of the network:
by end-hosts as part of their TCP stack (host pacing),
by the access link connecting the user to the network
(link pacing), or by the edge node that connects into the
core network (edge pacing). Host pacing (also known
as TCP pacing) modifies the end-user client TCP stack
to spread the transmission of packets from the TCP win-
dow over the round-trip-time (RTT) of the connection.
Many researchers have studied host pacing over the past
decade [14, 15, 16], and the general belief is that host
pacing can, under most circumstances, improve over-
all TCP throughput. However, deploying host pacing
has been stymied by the fact that the network operator
does not have control over user devices to enforce pac-
ing, and hosts that pace their TCP transmissions can be
unfairly penalised over hosts that do not [15].

Link pacing relies on the access link being of much
lower capacity than links deeper in the network, ensur-
ing that packets belonging to any single flow are spaced
apart when they arrive at the core link. This has been
leveraged by works such as [3] to argue that neither
can a single flow contribute bursty traffic to the core
node, nor are many flows likely to synchronise to cre-
ate bursts, and hence loss is contained. Though this ar-
gument applies to typical home users, entities such as
enterprises, universities, and data centers are often ser-
viced with high-speed links capable of generating bursty
traffic that does not fit this assumption, necessitating ex-
plicit mechanisms (at the host or edge) to reduce bursti-
ness.

Edge pacing relies on explicit smoothing of traffic
by edge nodes prior to injection into the small buffer
core network. In [6] we proposed a method that adjusts
traffic release rate to maximise smoothness, subject to

a given upper bound on packet delay. We proved the
optimality of our scheme, analysed its burstiness and
loss performance, and evaluated its impact for open-
loop real-time traffic, though not for closed-loop TCP.
A similar (though sub-optimal) pacing method was pro-
posed in [11, 12] to vary the edge traffic release rate
based on queue backlog. However, the impact of edge
pacing on TCP performance was only cursorily stud-
ied, and no appropriate guidelines on parameter settings
were provided.

Our goal in this paper is to undertake a comprehen-
sive comparison between host and edge pacing in the
context of small buffer core networks, by evaluating
their impact on end-to-end TCP performance. We seek
to gain insights into the network and traffic characteris-
tics that influence their efficacy, the parameter settings
that maximise their benefits, and deployment strategy
that make them practical in real networks. Our specific
contributions are:

• We show using extensive simulations of various
scenarios, considering small-buffered bottleneck
and non-bottleneck links, low-speed and high-
speed access links, short- and long-lived flows, dif-
ferent number of flows, and different variants of
TCP, that edge pacing achieves as good or bet-
ter performance than host pacing in terms of link
throughput and per-flow goodput.

• We develop an analytical model that sheds light
into the selection of the edge pacing delay param-
eter that maximises TCP throughput for different
bottleneck link buffer sizes.

• We present evidence that edge pacing is beneficial
in practical networks that multiplex both TCP and
real-time traffic, and argue that the benefits of edge
pacing can be easily realised under tight operator
control in real networks, unlike host pacing that re-
quires a critical mass of uptake by end-users for it
to be effective.

Our intention is to show network operators that from
a performance, configuration and deployment point-of-
view, edge pacing presents an attractive alternative to
host pacing as a mechanism for enabling scalable and
energy-efficient core networks having small-buffers in
the near future.

The rest of this paper is organised as follows: Sec-
tion 2 gives requisite background on traffic pacing stud-
ies. In Section 3 we present comprehensive simulation
studies comparing the performance of host and edge
pacing, and in Section 4 we develop analytical insights

2

into appropriate parameter settings. Section 5 shows
that edge pacing benefits both TCP and real-time traffic,
Section 6 discusses the deployment strategy for pacing,
and the paper is concluded in Section 7.

2. Background and Related Work

It is well-known that TCP traffic is bursty at short-
time scales [17] because of its self-clocking mechanism
and queueing of packets at the bottleneck link. Bursty
traffic is largely undesirable since it causes large queue-
ing delays, higher packet loss, and degradation in end-
to-end throughput. As a result, several researchers have
proposed to pace TCP at the end-hosts, an idea initially
suggested by [18], to reduce burstiness. A comprehen-
sive simulation study to evaluate the benefits of end-host
TCP (Reno) pacing is undertaken by [15], who argue
that pacing can result in lower throughput and higher la-
tencies for most realistic network settings. Since pack-
ets across different TCP flows are evenly spaced, the
flows can become synchronised and experience simul-
taneous losses at the bottleneck link, leading to lower
throughput than unpaced flows. They also point out that
paced flows perform poorly when coexisting with un-
paced flows in the network.

However, as noted in a more recent study [14], there
is no consensus on whether end-hosts should pace TCP.
The paper evaluates via analysis and simulations the im-
pact of pacing not just TCP Reno, but also newer pro-
tocols such as New Reno, SACK and FACK. The au-
thors conclude that it is indeed beneficial to pace TCP at
the end-hosts, and that the performance when all flows
pace is better than when no flows pace. Further, when
the fraction of paced flows exceeds a critical value, both
the paced and unpaced flows gain in performance. The
experimental study using a high-speed wide area net-
work [19] showed that the overall throughput of par-
allel TCP transfers improves substantially when pac-
ing is employed, while [20] found that pacing can im-
prove the aggregate TCP throughput of multiple Reno
and FACK flows in large bandwidth-delay product net-
works by 20%.

It must be mentioned that the above studies assume
end-host pacing and consider bottleneck link with large
buffers (i.e. at least an order of magnitude more than
our study). This study differs in two ways: (a) We con-
sider pacing traffic at the network edge and compare it
to TCP pacing by end-hosts, and (b) We consider small
buffers (sub-50 KB) at the bottleneck link, motivated by
the move towards all-optical and hybrid opto-electronic
switching solutions. Our earlier work [6] developed an

τ
1 τ2 τ

3
τ

k0 T

delay bound

w
or

kl
oa

d
(b

yt
es

)

arrival curve A(t)

deadline curve D(t)

a feasible exit curve S(t)

time

Figure 1: Arrival, deadline and exit curves for an example workload

edge pacing method (details described next) for reduc-
ing traffic burstiness at the edge of the small buffer core
network, proved its optimality, and evaluated its per-
formance via native simulation for open-loop real-time
traffic. Parallel to our work, [11, 12] also developed
a similar (though sub-optimal) edge pacing mechanism
termed Queue Length Based Pacing (QLBP). However,
their method uses three parameters (which can be more
difficult to tune compared to just one parameter, the de-
lay bound, in our case), and moreover does not under-
take a comprehensive study of TCP performance when
combined with real-time UDP traffic.

In contrast, our work in this paper is the first to un-
dertake a thorough evaluation of performance for both
closed-loop TCP and real-time traffic (by implementa-
tion in ns-2) in the presence of edge and host pacing in
a small buffer network, under a variety of network set-
tings using both aggregate throughput and average per-
flow goodput as metrics. We will show in subsequent
sections that edge pacing performs as good (if not bet-
ter) than host pacing, and improves TCP performance
significantly in a small buffer network.

2.1. Edge pacing mechanism

The edge pacing mechanism used in this study is
based on the optimal algorithm we developed in [6].
Our pacer, unlike a shaper that releases traffic at a
given rate, accepts arbitrary traffic with given delay con-
straints, and releases traffic that is “smoothest” (i.e. has
lowest maximum rate and rate variance) subject to the
time-constraints of the traffic. Fig. 1 depicts an exam-
ple traffic arrival curve A(t) (i.e. the cumulative arriv-
ing workload in units of bytes), from which the dead-
line curve D(t) (i.e. the cumulative workload that has
to be served so as not to violate any deadlines) is de-
rived, based on configured parameter d corresponding
to the maximum delay that the pacer is allowed to in-
troduce. A feasible exit curve S (t) must lie in the re-

3

Figure 2: ns-2 network topology

gion bounded above by the arrival curve A(t), and below
by the deadline curve D(t). Amongst all feasible exit
curves, we have shown that the one which corresponds
to the smoothest output traffic is the shortest path be-
tween the origin (0, 0) and (T,D(T)), as shown in Fig. 1.
In our earlier work we showed that an online implemen-
tation of optimal pacer would compute the convex hull
of the deadline curve, and use the corresponding instan-
taneous slope as the rate at which to release traffic. We
also showed that the convex hull can be computed in
O(1) amortised time, and is amenable for high-speed
hardware implementation. It is interesting to note that
our algorithm for optimal pacing satisfies the properties
that it does not space packets out when the link is heav-
ily loaded (since that would cause packets at the tail of
the queue to violate their delay bound), and it does space
packets out maximally (subject to the delay constraint)
when the link load is light. The pacing delay bound d is
a critical parameter that determines the window of time
over which pacing is effective – when d = 0, pacing is
in effect disabled, since packets cannot be held back by
the pacer. As the delay bound d increases, the traffic be-
comes increasingly smooth. Further details of the pac-
ing mechanism, and an analysis of its impact on traffic
burstiness and loss performance for open-loop real-time
traffic, can be found in [6].

3. Efficacy of Edge Pacing for TCP Traffic

The above mentioned pacer was implemented in ver-
sion 2.33 of the ns-2 network simulator. We created a
new link type, by extending the drop-tail link, and in-
corporated the computation of the convex hull as per the
O(1) amortised time algorithm. The patch for end-host
TCP pacing was obtained from [21] and runs in ns-2
version 2.28.

0 5 10 15 20 25 30
50

55

60

65

70

75

80

85

90

95

100

Buffer size (KB)

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Edge−paced

Host−paced

Unpaced

(a) Aggregate TCP throughput

0 5 10 15 20 25 30
0.05

0.06

0.07

0.08

0.09

0.1

Buffer size (KB)

A
v
e

ra
g

e
 p

e
rf

lo
w

 g
o

o
d

p
u

t
(M

b
p

s
)

Edge−paced

Host−paced

Unpaced

(b) Average per-flow goodput

Figure 3: TCP performance with small buffer link as the bottleneck

We conducted extensive simulations in ns-2 for eval-
uating the effectiveness of traffic pacing. Our simula-
tions were limited to link speeds of 100 Mbps and 1000
flows, which already stretch ns-2 to the limits of time
and memory resources available to us. In what fol-
lows we compare the performance of edge pacing with
non-paced and host-paced flows using aggregate TCP
throughput and average per-flow goodput as metrics.
We use goodput as a metric since it has been argued to
be the most important measure for end-users [22], who
want their transactions to complete as fast as possible.
All simulations in this section use an edge pacer delay
bound of 10ms; we will justify this choice via analysis
in the next section.

3.1. Small buffer link as the bottleneck

Our simulations were conducted on the single link
dumbbell topology shown in Fig. 2. Ten ingress edge

4

0 5 10 15 20 25 30
20

30

40

50

60

70

80

90

100

Buffer size (KB)

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Edge−paced (1000 flows)

Host−paced (1000 flows)

Unpaced (1000 flows)

Edge−paced (100 flows)

Host−paced (100 flows)

Unpaced (100 flows)

(a) Aggregate TCP throughput

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size (KB)

A
v
e
ra

g
e
 p

e
rf

lo
w

 g
o
o
d
p
u
t
(M

b
p
s
)

Edge−paced (1000 flows)

Host−paced (1000 flows)

Edge−paced (100 flows)

Host−paced (100 flows)

Unpaced (100 flows)

(b) Average per-flow goodput

Figure 4: TCP performance with 100 and 1000 flows

links (ES 1-ES 10) feed traffic into the core link C0-C1,
with each edge link in turn fed by hundred access links.
Each end-host has one TCP (Reno) agent, and the net-
work therefore simulates 1000 long-lived TCP flows
(short-lived flows and different TCP versions are dis-
cussed below). Similarly the TCP flows are sinked by
the 1000 end-hosts on the right, which are connected
to ten egress edge links (ED1-ED10) . The propagation
delays on the access and edge links are uniformly dis-
tributed between [1, 5] ms and [5, 15] ms respectively,
while the core link C0-C1 has delay 100 ms. RTTs there-
fore vary between [224, 280] ms. The access link speeds
are uniformly distributed in [8, 12] Mbps, all edge links
operate at 100 Mbps, and the core link also at 100 Mbps.
For these simulation settings it can be seen that the core
link is the bottleneck. FIFO queue with drop-tail queue
management is employed at C0, and the queue size is
varied in terms of KB. Data and ACK packet sizes are

1000 and 40 Bytes respectively. The start time of the
TCP flows is uniformly distributed in the interval [0, 10]
sec and the simulation is run for 400 sec. Data in the in-
terval [100, 400] sec is used in all our calculations so as
to capture the steady-state behaviour of the network.

Fig. 3(a) shows the aggregate TCP throughput as a
function of core link buffer size. When buffers are very
small (i.e 2-3 KB), packet loss rates at the core link
were found to be in excess of 15% for the three scenar-
ios shown in the figure. The benefit of pacing packets
(at the host or the edge) is thus outweighed by the high
loss rates, and the aggregate TCP throughput is no better
than when all flows are unpaced. On the other hand, the
efficacy of pacing packets at the edges is pronounced in
the small buffer regime (i.e. 5-15 KB), reflected in the
aggregate TCP throughput shown in Fig. 3(a) as well
as the average per-flow goodput in Fig. 3(b). At 5 KB
worth of buffering, the per-flow goodput for host and
unpaced flows is ≈ 82 Kbps, while edge pacing achieves
93 Kbps. Edge pacing therefore outperforms host pac-
ing by over 13%. As core buffers get larger (i.e. > 20
KB), the utilisation of the link C0-C1 is near-100%, and
therefore there is no room for pacing to improve TCP
performance, suggesting that edge pacing is particularly
beneficial in the region of 5-15 KB buffers.

3.2. Number of TCP flows
We now study the efficacy of the pacer for varying

number of TCP flows. We use the same setup as before,
but alter the number of access links (10, 50, 100) feed-
ing into the edge, to simulate 100, 500 and 1000 flows
respectively. The resulting aggregate TCP throughput
and average per-flow goodput are shown in Fig. 4 (plots
corresponding to 500 flows closely follow that of 1000
flows, not plotted for the sake of clarity).

In contrast to the previous case of 1000 flows where
edge pacing consistently outperformed host pacing over
the entire buffer size range, when the number of flows
is small (100) and buffer sizes are in a certain region
(10-30 KB), we find that host pacing gives better per-
formance than edge pacing. We believe this is because
of the following: burstiness at the bottleneck buffers can
arise in two ways – (1) an individual flow itself can gen-
erate bursty traffic and contribute to increased loss, or
(2) packets from multiple sources might arrive simul-
taneously to cause loss. When the number of flows is
small, the burstiness of an individual flow is greater as
its TCP window expands to a larger value, and this con-
tributes more to loss than the simultaneous arrival of
packets from multiple flows. This can be seen to be
trivially true in the case of only one flow in the net-
work. Conversely when the number of flows is large,

5

0 5 10 15 20 25 30
45

50

55

60

65

70

75

80

85

90

95

100

Buffer size (KB)

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Edge−paced

Host−paced

Unpaced

(a) Aggregate TCP throughput

0 5 10 15 20 25 30

0.05

0.06

0.07

0.08

0.09

0.1

Buffer size (KB)

A
v
e

ra
g

e
 p

e
rf

lo
w

 g
o

o
d
p

u
t
(M

b
p

s
)

Edge−paced

Host−paced

Unpaced

(b) Average per-flow goodput

Figure 5: TCP performance with high-speed access links

loss is more likely to happen due to simultaneous arrival
of packets from several flows rather than due to many
packets from one flow being in the buffer. Host pacing
is more effective at reducing source burstiness (scenario
1) because it spaces traffic over a larger window (i.e.
a RTT), whereas edge pacing deals better with the lat-
ter (scenario 2) since it can space the release of packets
arriving simultaneously from multiple flows. This ex-
plains why pacing at the hosts is more beneficial than
pacing at the edge when the number of flows is small. In
practice however, core links typically have tens of thou-
sands of TCP flows traversing through them, suggesting
that it is better to pace the aggregate (at the edges) rather
than the individual (at the host) for improved TCP per-
formance.

3.3. High-speed access links

We now investigate the merits of pacing TCP traf-
fic in the presence of high-speed access links arising
from data centres, enterprise and university networks,
etc. We use the setup discussed above for 1000 flows,
the difference being that access links now operate at 100
Mbps. The core link still remains the bottleneck. The
bottom curve in Fig. 5(a) shows that at 5 KB of buffer-
ing, unpaced flows obtain an aggregate throughput of 77
Mbps, host pacing (middle curve) increases the through-
put to 90 Mbps (better by 17%), and edge pacing (top
curve) further pushes the throughput to 98 Mbps (im-
provement of 27% compared to unpaced flows), high-
lighting the efficacy of pacing traffic at the edge. Edge
pacing obtains higher TCP throughput than host pacing
in the small buffer regime (5-15 KB). Fig. 5(b) depicts
the average per-flow goodput for the 1000 TCP flows

and demonstrates that edge pacing is extremely effec-
tive. To obtain 90 Kbps goodput (90% of 0.1 Mbps, the
ideal goodput) the bottom curve indicates that unpaced
flows require 20 KB of buffering. Pacing flows at the
host (middle curve) halves the buffering requirements
to 10 KB, while edge pacing (top curve) achieves 90
Kbps with just under 5 KB buffers (half of that for host
pacing, and a fourth of that for unpaced flows). These
results highlight the efficacy of edge pacing for use with
high-speed access links.

3.4. Short-lived TCP flows

0 5 10 15 20 25 30
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Buffer size (KB)

A
v
e

ra
g

e
 p

e
rf

lo
w

 g
o

o
d

p
u

t
(M

b
p

s
)

Edge−paced

Host−paced

Unpaced

Figure 6: Average per-flow goodput with short-lived TCP flows

Our study thus far only considered long-lived TCP
flows. We now consider short-lived TCP flows (also
known as mice), wherein the number of active TCP

6

0 5 10 15 20 25 30
40

50

60

70

80

90

100

Buffer size (KB)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Reno; Edge−paced
Reno; Host−paced
New Reno; Edge−paced
New Reno; Host−paced
SACK; Edge−paced
SACK; Host−paced
FACK; Edge−paced
FACK; Host−paced

(a) Aggregate TCP throughput

0 5 10 15 20 25 30
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Buffer size (KB)

A
v
e

ra
g

e
 p

e
rf

lo
w

 g
o

o
d

p
u

t
(M

b
p

s
)

Reno; Edge−paced

Reno; Host−paced

New Reno; Edge−paced

New Reno; Host−paced

SACK; Edge−paced

SACK; Host−paced

FACK; Edge−paced

FACK; Host−paced

(b) Average per-flow goodput
Figure 7: Performance with different TCP variants

flows is time-varying. Measurement studies in the In-
ternet core show that a large number of TCP flows (e.g.
HTTP requests) are short-lived. They spend most of
their time in the slow-start phase and generate more
bursty traffic than long-lived flows, that are often in the
congestion avoidance mode. To incorporate such realis-
tic TCP traffic we simulate the closed-loop flow arrival
model described in [23], operating as follows. A given
number of users perform successive file transfers to their
respective destination nodes. The size of the file to be
transferred follows a Pareto distribution with mean 100
KB and shape parameter 1.2. These chosen values are
representative of Internet traffic, and comparable with
measurement data. After each file transfer, the user tran-
sitions into an idle (“thinking period”) or off state. The
duration of the “thinking period” is exponentially dis-
tributed with mean 1 sec. We implemented this model
in ns-2 and repeated our simulations on the dumbbell
topology with 1000 short-lived flows. Fig. 6 shows that
pacing TCP at the edge can improve the average per-
flow goodput of short-lived flows substantially, peaking
at 155 Kbps with 10 KB of buffering, which is nearly
17% larger than the goodput obtained by pacing TCP at
the end-hosts (133 Kbps). These results with short-lived
flows demonstrate that edge pacing is very effective in
combating short time-scale burstiness (typical of short-
lived TCP flows).

3.5. Different versions of TCP

We compared the performance of edge and host pac-
ing with three additional variants of TCP (New Reno,
SACK and FACK). Simulations in Section 3.1 were re-
peated with each of these TCP versions. Overall, we ob-
served that for all the above variants of TCP, edge pac-

ing offers better performance than host pacing (typically
by more than 10% in the region 5-15 KB) in terms of ag-
gregate throughput as well as average per-flow goodput,
as depicted in Fig. 7.

3.6. Small buffer link not the bottleneck

0 5 10 15 20 25 30
80

100

120

140

160

180

200

Buffer size (KB)

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Edge−paced

Host−paced

Unpaced

(a) Aggregate TCP throughput

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

Buffer size (KB)

C
o

re
 p

a
c
k
e

t
lo

s
s
 p

ro
b

a
b

ili
ty

Edge−paced

Host−paced

Unpaced

(b) Packet loss rate at the core link

Figure 8: TCP performance with small buffer link as non-bottleneck

All the previous scenarios considered the small buffer
core link as the bottleneck link. We analysed the impact
of pacing TCP traffic when the core link is not the bot-
tleneck link. To this end, we set the core and edge link
rates to 200 Mbps and 40 Mbps, and access link rates are
uniformly distributed in [1, 2] Mbps respectively. 10 ac-
cess links feed into each edge link, with 10 edge links in
turn feeding into the core. In all, the network simulates
100 long-lived TCP flows. Since the access network is
the bottleneck, and 10 edge links feed into the core, it
is evident that the core link does not require more than
10 KB of buffering to guarantee zero packet loss. This
can be seen from Fig. 8(b), which plots the loss rate (on
log-scale) as a function of buffer size. The aggregate
throughput curve in Fig. 8(a) shows that pacing (both

7

0 5 10 15 20 25 30
50

60

70

80

90

100

Buffer size (KB)

T
C

P
 T

h
ro

u
g
h
p
u
t
(M

b
p
s
)

Edge−paced

Host−paced

Unpaced

(a) Aggregate TCP throughput

0 5 10 15 20 25 30
0.05

0.06

0.07

0.08

0.09

0.1

Buffer size (KB)

T
C

P
 A

v
e

ra
g

e
 p

e
rf

lo
w

 g
o

o
d

p
u

t
(M

b
p

s
)

Edge−paced

Host−paced

Unpaced

(b) Average per-flow goodput

Figure 9: TCP performance with RED queue policy

host and edge) achieves approximately the same perfor-
mance as unpaced, indicating that TCP throughput is
not sensitive to pacing when the small buffer link is not
the bottleneck.

The above results illustrate, under various network
settings, that pacing traffic at the edge of a small buffer
network is extremely effective in obtaining high TCP
throughput and per-flow goodputs, and can play an im-
portant role in the design of future generation optical
core networks with limited buffering capability.

3.7. Random Early Detection drop policy

We now evaluate the efficacy of our pacing scheme
when the core link employs the Random Early Detec-
tion (RED) queue drop policy. The simulation settings
are the same as section 3.1. We set the RED parameters
according to [24]: the maximum and minimum RED
drop thresholds are set to the buffer size and 40% of the
buffer size respectively. We use the ns2 default values
of 0.1 for the maximum drop probability and 0.002 for
the queue weight.

Fig. 9 shows that edge pacing performs as well or bet-
ter than host pacing in terms of both aggregate through-
put and average per-flow goodput. We observe from
Fig. 9(a) that edge pacing requires only 4 KB of buffer-
ing to realize 99 Mbps of aggregate throughput (i.e. to
achieve 99% of link capacity), which is less than half
of the buffering required when TCP flows are paced at
the end-hosts (10 KB). Fig. 9(b) shows that at 6 KB of
buffering, unpaced flows obtain 89 Kbps of googput on
average, host pacing improves this by 5% (to 94 Kbps),
while edge pacing achieves 97 Kbps (9% improvement
compared to no pacing). These results show that edge
pacing is also effective when the RED drop policy is
employed at the core bottleneck link.

4. Analysing the Impact of Edge Pacer Delay

In this section we seek to develop insights into the
impact of pacing on TCP performance. Modeling TCP
performance is notoriously difficult due to its control

feedback loops, and indeed existing models of host pac-
ing often resort to (excessively conservative) worst-case
approximations to bound performance. We will resort to
several simplifications and approximations, with a view
towards getting insight into the shape of curves relating
edge pacing delay parameter d with TCP throughput,
rather than their exact numbers.

We begin with the relatively well-known fact that
throughput of a TCP flow is inversely proportional to
its RTT as well as to the square root of the loss L it ex-
periences:

T ∝ 1

RTT
√

L
(1)

Pacing traffic at the network edge smoothens the ag-
gregate TCP traffic, reducing loss at bottleneck buffers.
However, pacing holds packets back in the pacer queue,
which increases the mean end-to-end RTT. In what fol-
lows we attempt to quantify these two opposing forces,
and show that the force that dominates to determine the
appropriate choice of pacing delay parameter d depends
on factors such as network buffer size and traffic flow
characteristics.

The pacing delay incurred by a packet can vary be-
tween ϵ > 0 (when the link is continuously heavily
loaded) and d (when the link is lightly loaded). Quanti-
fying the dependence of pacing delay on (first and sec-
ond moments of) the link load is non-trivial. We thus
make an approximation that the average delay incurred
by a random packet is d/2 (we acknowledge that this
is a simplification to make the analysis tractable), in-
creasing mean RTT to RTT0 + d, where RTT0 is the
round-trip-time without pacing.

Quantifying loss at a buffer fed by several (paced)
TCP sources is however non-trivial. A worst-case as-
sumption that all TCP sources synchronise their bursts
(to yield a giant saw-tooth) is unrealistic (especially
when thousands of TCP sources share the link) and ex-
cessively conservative. We instead resort to the obser-
vation (made in our earlier work [25] and by others e.g.,
[26, 27]) that the aggregated traffic from a large number
of TCP flows sharing a small buffer (up to 50 Kilobytes)
is approximately Poisson. We have shown buffer occu-
pancy traces in [25] to substantiate that large bottleneck
buffers cause TCP flows to synchronise, whereas small
buffers break this synchrony, and aggregation therefore
allows application of the central limit theorem to allow
Poisson approximation. Hence, in what follows we as-
sume that the aggregate TCP traffic is Poisson-like with
a certain (yet to be determined) rate λ.

When Poisson traffic of rate λ is fed into an edge
pacer with delay parameter d, the egress traffic has

8

0 10 20 30 40 50 60 70 80 90 100
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

Pacer Delay (ms)

T
h
ro

u
g
h
p
u
t

M
e
a
s
u
re

(a) Low load/Small buffer

0 10 20 30 40 50 60 70 80 90 100

0.08

0.09

0.1

0.11

0.12

0.13

Pacer Delay (ms)

T
h
ro

u
g
h
p
u
t

M
e
a
s
u
re

(b) High load/Large buffer

Figure 10: Throughput measure as a function of pacer delay from our analytical model for (a) Low load (small buffer), and (b) High load (large
buffer)

0 2 4 6 8 10 12 14 16 18 20
0.075

0.08

0.085

0.09

0.095

0.1
Buffer = 5KB

Pacer Delay (ms)

T
C

P
 T

h
ro

u
g

h
p

u
t

(M
b

p
s
)

(a) Low load/Small buffer

0 50 100 150
0.0955

0.096

0.0965

0.097

0.0975

0.098

0.0985

0.099

0.0995

0.1
Buffer = 50KB

Pacer Delay (ms)

T
C

P
 T

h
ro

u
g
h
p
u
t
(M

b
p
s
)

(b) High load/Large buffer

Figure 11: Throughput measure as a function of pacer delay from simulations for (a) Low load (small buffer), and (b) High load (large buffer)

burstiness (ratio of standard deviation to mean rate)
given by [6]:

β = 1/
√

2λd (2)

Further, the loss rate, derived using a bufferless fluid
approximation, is obtained from the Chernoff bound as
[6]:

L ≤ (λe1−λ)2d (3)

This shows that loss falls monotonically as the pacer de-
lay d is increased. Moreover, since the above bound is
derived under a fluid approximation, it holds irrespec-
tive of the number of edge nodes that pace traffic prior
to aggregation at the core node buffers, as long as the
aggregate rate is λ.

With the above expressions for RTT and L, we can
rewrite the throughput of a TCP flow from (1) as:

T ∝ 1
(RTT0 + d)(λe1−λ)d (4)

We plot this in Fig. 10 for two cases: Fig. 10(a) con-
siders relatively light load and plots the above through-
put measure for a base round-trip-time RTT0 fixed at
200 ms, and the pacer delay d is varied from 0 to 100
ms. We see that the curve is monotonically increasing,
suggesting that larger pacing delay values are prefer-
able, since the benefits of loss reduction from smoothing
outweigh the penalty due to increased RTT. In Fig. 10(b)
we consider the case of heavy load and plot the above
throughput measure for the same base round-trip-time

9

RTT0 of 200 ms, and the pacer delay d varied from 0
to 100 ms. In this case, we find that the per-flow TCP
throughput falls monotonically with pacing delay, sug-
gesting that when loads are higher, larger pacing delays
are detrimental as the effect of increased RTT outweighs
the benefits of reduced loss from smoothing.

Having argued that the net effect of pacing delay
on TCP throughput depends on the offered load λ, we
argue that the offered load directly depends on traf-
fic characteristics and bottleneck link buffers. When
many TCP flows share bottleneck link buffers, we have
shown in [7] (and several other researchers have cor-
roborated [28]) that the empty buffer probability 1 − ρ
falls exponentially with buffer size, and hence the of-
fered load is ρ = 1 − e−B/B∗ where B represents bottle-
neck buffer size and B∗ is a constant (with same units as
B) dependent on system parameters such as link capac-
ities, number of flows and their durations, round-trip-
times, etc (we found B∗ to be in the range 2-10 KB).
Thus, when buffer size is small (say 5 KB), the offered
load is lower ρ ≈ 90%, and as buffer size increases (to
say 50 KB), offered load increases to over ρ ≈ 99.9%.

To validate that smaller bottleneck buffers favour
a higher pacing delay, we ran simulations using the
same topology as in the previous sections - 1000 TCP
flows share a bottleneck core link of 100 Mbps capac-
ity. We set the core link buffers to 5 KB, and plot in
Fig. 11(a) the per-flow TCP throughput. It shows that
TCP throughput increases with pacing delay, as pre-
dicted by our analysis in Fig. 10(a). We now set the core
link buffers to 50 KB, and plot in Fig. 11(b) the per-flow
TCP throughput obtained from simulation. We find that
in this case TCP throughput falls with pacing delay, as
predicted by our analysis in Fig. 10(b), since the offered
load with larger buffers is higher and the benefits of loss
reduction are outweighed by increase in RTT.

The above analysis provides valuable insight into the
relationship between pacing delays and TCP perfor-
mance, though we do not claim to be able to accu-
rately quantify TCP throughput. Indeed, though our
analysis and simulation both show a monotonic rise in
TCP throughput with pacing delay for low load (small
buffers), the analysis curve in Fig. 10(a) is convex while
the simulation curve in Fig. 11(a) is concave – this is
because our analysis assumed a fixed load λ, whereas
when the pacing delay is increased and loss reduces,
TCP reacts by increasing its offered load. This increase
in load can offset the loss reduction (it can be seen that
the TCP throughput curve saturates in simulation when
the pacing delay reaches 10 ms), whereas we do not cap-
ture this effect in our analysis (which is why the TCP
throughput in our analysis continues to increase). Cap-

0 5 10 15 20 25 30 35 40 45 5050
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Buffer size (KB)

A
v
e

ra
g

e
 p

e
rf

lo
w

 g
o

o
d

p
u

t
(M

b
p

s
)

Edge−paced (d = 1ms)

Edge−paced (d = 10ms)

Edge−paced (d = 100ms)

Edge−paced (d = 200ms)

Host−paced

Unpaced

Figure 12: Per-flow TCP goodput for various pacing delay values

turing these feedback effects precisely in a finite buffer
system is notoriously hard, and is beyond the scope of
the current paper. What we have established is that pac-
ing delays need to be tuned to network and traffic con-
ditions, and our observations from simulation show that
pacing with larger delays is increasingly beneficial as
the bottleneck buffers become smaller, especially when
they fall below 10 KB.

In Fig. 12 we show the per-flow TCP goodput ob-
served in simulation as a function of buffer size for var-
ious pacing delay values d = 1, 10, 100, 200 ms. It is
observed that a small pacing delay d = 1 ms is rela-
tively ineffective at small buffer sizes, while a large pac-
ing delay such as d = 100 or 200 ms is detrimental (i.e.
reduced TCP goodput) as buffer sizes become larger.
Throughout our simulations we found that d = 10 ms
was a good compromise that works well across the en-
tire range of buffer sizes for all scenarios considered,
and hence our simulation studies presented in other sec-
tions of this paper have used this delay value.

5. Mixed TCP and UDP Traffic

Having demonstrated the benefits that edge pacing of-
fers to TCP flows, in this section we will evaluate via
simulations the impact of edge pacing on the joint per-
formance of TCP and UDP traffic when they multiplex
at a core link. Observations of traffic in the Internet sug-
gest that TCP constitutes around 90% of the total traffic,
with real-time (open-loop UDP) traffic accounting for
about 5-10%. We will show that the aggregate through-
put and average per-flow goodput for TCP, as well as the
packet loss rate for UDP, improve substantially when
they are paced at the network edge.

10

0 5 10 15 20 25 30
50

60

70

80

90

100

Buffer size (KB)

T
C

P
 T

h
ro

u
g
h
p
u
t
(M

b
p
s
)

Edge−paced

Host−paced

Unpaced

(a) Aggregate TCP throughput

0 5 10 15 20 25 30
0.05

0.06

0.07

0.08

0.09

0.1

Buffer size (KB)

T
C

P
 A

v
e

ra
g

e
 p

e
rf

lo
w

 g
o

o
d

p
u

t
(M

b
p

s
)

Edge−paced

Host−paced

Unpaced

(b) Average per-flow goodput

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Buffer size (KB)

U
D

P
 p

a
c
k
e

t
lo

s
s
 p

ro
b

a
b

ili
ty

Edge−paced

Host−paced

Unpaced

(c) UDP loss rate

Figure 13: TCP and UDP performance with poisson UDP

0 5 10 15 20 25 30
50

60

70

80

90

100

Buffer size (KB)

T
C

P
 T

h
ro

u
g
h
p
u
t
(M

b
p
s
)

Edge−paced

Host−paced

Unpaced

(a) Aggregate TCP throughput

0 5 10 15 20 25 30
0.05

0.06

0.07

0.08

0.09

0.1

Buffer size (KB)

T
C

P
 A

v
e

ra
g

e
 p

e
rf

lo
w

 g
o

o
d
p

u
t

(M
b

p
s
)

Edge−paced

Host−paced

Unpaced

(b) Average per-flow goodput

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Buffer size (KB)
U

D
P

 p
a

c
k
e

t
lo

s
s
 p

ro
b

a
b

ili
ty

Edge−paced

Host−paced

Unpaced

(c) UDP loss rate

Figure 14: TCP and UDP performance with fBm UDP

The simulations were performed using the dumbbell
topology shown in Fig. 2, as described in previous sec-
tions. In all we had 1000 TCP-Reno flows, which is
near the limit of what can be simulated in reasonable
time within the ns2 simulator. The real-time traffic is
modeled as a single UDP flow, which suffices since
open-loop traffic can, without loss of generality, be ag-
gregated. There has been much debate in the litera-
ture about whether aggregated traffic has short- or long-
range dependent characteristics, and so in this paper we
will consider both types of models for our aggregated
UDP flow. The UDP access and edge links operate at
100 Mbps, and the packet sizes were uniformly dis-
tributed in the range [100, 300] Bytes. Other parame-
ters in our simulations were as in Section 3.1. The edge
pacer, which is agnostic to the type of traffic, paces both
TCP and UDP flows. However, host pacing, when con-
sidered, is applied only to TCP flows.

5.1. Poisson UDP

We first consider the commonly used Poisson model
for aggregated UDP traffic. The average UDP traf-
fic rate is chosen as 5.5 Mbps, accounting for 5.5%
of the bottleneck link capacity, which is consistent

with observations in the Internet. This traffic multi-
plexes with the TCP flows at the bottleneck link, and
in Fig. 13 we show the aggregate TCP throughput, the
average per-flow TCP goodput, and the UDP loss rate
(on log-scale) as a function of the bottleneck link buffer
size. The aggregate throughput plots in Fig. 13(a) show
that edge-pacing outperforms unpaced and host-paced
flows, reaching a saturation throughput of roughly 95
Mbps with only 6 KB of buffering; by contrast, host
pacing requires more buffers at the bottleneck (10 KB)
to reach saturation throughput, while absence of pac-
ing requires substantially more buffers (more than 20
KB). A similar pattern in per-flow throughput is corrob-
orated in Fig. 13(b) that shows that at 6 KB of buffering,
edge-pacing gives 91 Kbps to each TCP flow, whereas
host-pacing gives around 85 Kbps and no pacing only
around 82 Kbps. These plots corroborate that edge pac-
ing outperforms host pacing (and no pacing) for TCP
flows even in the presence of real-time UDP traffic in
the network.

We now explore the impact of pacing on UDP traf-
fic – Fig. 13(c) shows the UDP loss rate (on log scale)
as the buffer size varies. Our first observation is that
the loss rate is non-monotonic in buffer size. This phe-

11

nomenon is not surprising and arises due to the inter-
action between closed-loop TCP traffic and open-loop
UDP traffic at the bottleneck link with small buffers –
we refer the reader to our detailed study in [7] that pro-
vides qualitative and quantitative explanations of this
phenomenon. The observation from the figure that is
more pertinent to our study in this paper is that the UDP
loss is same or lower with edge pacing than with host
pacing or no pacing – indeed, in certain regimes (e.g.
5-15 KB and 20-30 KB buffers), UDP loss is lower by
multiple orders of magnitude, corroborating that edge
pacing is also beneficial for UDP traffic.

5.2. fBm UDP

We now evaluate the benefits of edge pacing when
UDP traffic has long-range dependent properties. For
our simulations we generated fractional Brownian mo-
tion (fBm) traffic at an average rate of 6 Mbps (6%
of the bottleneck link capacity) with a Hurst parame-
ter at H = 0.85 representing a relatively high degree of
self-similarity. The fluid traffic was generated using the
novel filtering method of [29] to obtain long sequences
from an underlying Norros’ self-similar traffic model
[30], packetized as per our method in [6]. In Fig. 14 we
show the aggregate TCP throughput, average per-flow
TCP goodput, and the UDP packet loss as a function of
buffer size.

The aggregate and per-flow TCP throughputs in
Fig. 14(a) and Fig. 14(b) show that edge-pacing again
outperforms host-pacing and no-pacing, achieving peak
throughput for as low as 6 KB buffers, much as in the
case of Poisson UDP traffic. The UDP loss rate is shown
in Fig. 14(c), and once again shows similar qualitative
behavior to what was observed for Poisson traffic be-
fore, namely that (a) loss is non-monotonic in buffer
size, irrespective of whether traffic is paced or not (ex-
plained by our previous work [7]), and (b) edge-pacing
reduces loss for UDP traffic, by as much as an order
of magnitude in some regimes. These plots corroborate
that edge pacing is beneficial for both TCP and UDP
traffic, irrespective of whether the UDP traffic has long-
range dependent characteristics or not.

5.3. Impact of Pacer Delay

We now study how the choice of edge pacer delay
impacts on TCP and UDP performance. Recall that in
Section 4 we had shown that in (small buffer) regimes,
TCP benefits from larger pacing delay, whereas in high
load (large buffer) regimes larger pacing delay can im-
pact TCP performance negatively. In this section we
corroborate this behavior in the presence of UDP traffic,

and also investigate how UDP loss is affected by pacing
delay in both regimes.

In Fig. 15 we plot the per-flow TCP throughput (left
axis) and UDP loss (right axis) as a function of pacer de-
lay. In Fig. 15(a) we set buffer size very small (5 KB),
and observe that TCP throughput rises monotonically
with pacing delay, much as we had observed in Fig. 11
earlier. As argued before in Section 4, this is because at
low loads (induced by TCP’s reaction to high network
loss arising from very small buffers), pacing helps TCP
reduce its burstiness and hence loss, allowing its win-
dow (and throughput) to grow more. Simultaneously,
the right axis shows that UDP loss first falls with pacing
delay, and then grows. This can be explained as follows:
for small pacing delay (sub-millisecond), UDP traffic
benefits from the smoothing and experiences reduced
loss; however, as pacing delays grow larger, TCP ramps
up its throughput aggressively, leaving less capacity to
serve UDP traffic at the bottleneck link, thereby causing
its loss to increase. It is seen that beyond about 14 KB,
TCP throughput has saturated, and UDP therefore expe-
riences slightly reduced loss as pacing delay increases.
We acknowledge that our explanation is only qualita-
tive; however, developing a quantitative model to cap-
ture the complex interactions between UDP and TCP
dynamics in the presence of pacing turned out to be in-
tractable and beyond the scope of this paper.

When load is higher (due to larger buffers of 50 KB),
we observe from Fig. 15(b) that TCP throughput de-
creases with pacing delay; as argued in Section 4, this
is because the increase in RTT from pacing over-rides
the benefits of burstiness reduction from pacing. Cor-
respondingly, we can see on the right axis that UDP
loss falls monotonically, due to both increase in avail-
able bandwidth (that was given up by TCP) and reduc-
tion in burstiness from pacing. These plots tell us that in
a mixed TCP-UDP scenario, TCP pacing delay should
be tuned to load conditions, while UDP benefits from
increased pacing delay (at the cost of increasing end-to-
end delays for the application).

6. Practical Deployment of Pacing

The previous sections have shown that in small buffer
networks edge pacing is as effective (or more) as host
pacing in improving link throughput and per-flow good-
put. We now argue that edge pacing is also more easily
deployed in an incremental way into operational net-
works. The first question we address is the benefit of
partial deployment of pacing, namely when only a frac-
tion of hosts (in the case of host pacing) or edge nodes

12

0 5 10 15 20
0.08

0.085

0.09

0.095

T
C

P
 T

h
ro

u
g

h
p

u
t

(M
b

p
s
)

Pacer delay (ms)

Buffer = 5KB

0 5 10 15 20
1.5

2

2.5

3

U
D

P
 L

o
s
s
 r

a
te

 (
%

)

TCP throughput

UDP loss rate

(a) Low load/Small buffer

0 50 100 150
0.09

0.092

0.094

0.096

T
C

P
 T

h
ro

u
g

h
p

u
t

(M
b

p
s
)

Pacer delay (ms)

Buffer = 50KB

0 50 100 150
0

0.5

1

1.5

U
D

P
 L

o
s
s
 r

a
te

 (
%

)

TCP throughput

UDP loss rate

(b) High load/Large buffer

Figure 15: Throughput and Loss measure as a function of pacer delay from simulations (Poisson UDP rate 5.5 Mbps) for (a) Low load / small
buffer, and (b) High load / large buffer

0 5 10 15 20 25 30
50

55

60

65

70

75

80

85

90

95

100

Buffer size (KB)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

0% Host−Paced

30% Host−Paced

50% Host−Paced

100% Host−Paced

(a) Host pacing

0 5 10 15 20 25 30
50

55

60

65

70

75

80

85

90

95

100

Buffer size (KB)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

0% Edge−Paced

30% Edge−Paced

50% Edge−Paced

100% Edge−Paced

(b) Edge pacing

Figure 16: Aggregate bottleneck link throughput versus buffer size for varying fractions of pacing deployment at (a) Hosts and (b) Edge nodes

(in the case of edge pacing) perform pacing. We con-
ducted simulations under various scenarios with frac-
tional deployment of pacing, and measured the impact
on aggregate throughput improvement on the bottleneck
link. Fig. 16 depicts results from one setting in which
1000 TCP flows multiplex at the bottleneck link, and
shows the aggregate throughput when pacing is 0%,
30%, 50%, and 100% deployed at host and edge nodes
respectively. Comparing host pacing in Fig. 16(a) with
edge pacing in Fig. 16(b), we note that in both cases
throughput rises gradually as the fraction of hosts/edges
that perform pacing increases, and therefore it would
seem the benefits of pacing can be realised incremen-
tally with progressive deployment.

Though fractional deployment of pacing leads to
overall throughput improvement for both host and edge

pacing, the way these benefits are shared is radically dif-
ferent in the two cases. To illustrate this, consider the
same scenario as before (i.e. 1000 flows share the bot-
tleneck link), and say pacing is 30% deployed (namely,
300 out of 1000 flows perform TCP pacing in the case
of host pacing and 3 out of 10 edge nodes perform pac-
ing in the edge pacing case). In Fig. 17 we compare
the average per-flow goodput of paced versus unpaced
flows. Fig. 17(a) shows that with host pacing, flows that
pace their TCP traffic actually obtain worse goodput (by
as much as 10%) than flows that do not pace their traf-
fic. This phenomenon has been identified in prior stud-
ies [15, 14] which have shown that TCP pacing is effec-
tive only if employed by a critical mass of users. Early
adopters of host pacing can therefore obtain worse per-
formance than their non-pacing peers, and this creates

13

0 5 10 15 20 25 30
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Buffer size (KB)

A
v
e

ra
g

e
 p

e
rf

lo
w

 g
o

o
d

p
u

t
(M

b
p

s
)

Paced flows (30% Host−Paced)

Non−paced flows (30% Host−Paced)

(a) Host pacing

0 5 10 15 20 25 30
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Buffer size (KB)

A
v
e

ra
g

e
 p

e
rf

lo
w

 g
o

o
d

p
u

t
(M

b
p

s
)

Paced flows (30% Edge−Paced)

Non−paced flows (30% Edge−Paced)

(b) Edge pacing

Figure 17: Per-flow goodput versus bottleneck buffer size for paced and unpaced flows with fractional deployment of pacing at (a) Hosts and (b)
Edge nodes

a substantial disincentive for users to adopt host pacing.
By contrast, Fig. 17(b) shows that with the same frac-
tion of flows being paced via edge pacing, this problem
does not arise, and paced flows experience better perfor-
mance than unpaced ones. This allows network opera-
tors to focus their initial deployment of edge pacing at
sites connecting their most critical customers, confident
that performance for these customers will not degrade
(as in the case of host pacing).

Apart from the performance issues, there are also ma-
jor logistic differences between deploying host and edge
pacing. Host pacing requires changes to the TCP/IP
protocol stack in the end-user client devices. Given
the myriad devices in use today (PCs, laptops, tablets,
smart-phones, Internet-enabled TVs, etc.) and their het-
erogeneous operating systems (Windows, Linux, iOS,
Android, etc.), this is a daunting task. Further, the ker-
nel update required to incorporate pacing at the host
would need to be explicitly done by each user, which re-
quires motivation and skill, and is virtually impossible
to achieve at scale. Moreover, operating system ven-
dors are reluctant to incorporate pacing in the standard
kernel distribution for fear that initial adopters will get
degraded performance. These factors have stymied de-
ployment of TCP pacing over the last decade. By con-
trast, edge pacing has no such issues as it can be easily
deployed since it is entirely under operator control. We
have shown in our previous work [6] that our optimal
edge pacing algorithm is amenable for hardware imple-
mentation at very high speeds, and operators can choose
to employ it incrementally or simultaneously around
their small buffer core network.

7. Conclusions

Energy density concerns in modern high-speed
routers are driving the trend towards photonic integrated
switching platforms [31] with reduced buffering capa-
bility. In networks with such small buffers, end-to-end
performance of TCP/UDP can be improved by traffic
smoothing. In this paper, we compare two mechanisms
of pacing – at the edge and the host – and undertake
a comprehensive quantification of TCP throughput and
per-flow goodputs in various scenarios comprising bot-
tleneck and non-bottleneck links, short- and long-lived
flows, low- and high-capacity access links, different
number of TCP flows and various TCP variants. We
showed that edge pacing performs as good, if not bet-
ter, than host pacing. Via analysis and simulations we
have provided insights into choosing the delay parame-
ter of the edge pacer. We argued that unlike host pac-
ing, there is a clear and safe path towards incremental
deployment of edge pacing in an operational network.
We offer edge pacing as an attractive solution for en-
hancing TCP/UDP performance in emerging all-optical
or hybrid-optical core networks with small buffers.

8. References

[1] H. H. Gharakheili, A. Vishwanath, V. Sivaraman, Edge versus
Host Pacing of TCP Traffic in Small Buffer Networks, in: Proc.
IFIP Networking, USA, May 2013.

[2] G. Appenzeller, I. Keslassy, N. McKeown, Sizing Router
Buffers, in: Proc. ACM SIGCOMM 2004, USA, 2004.

[3] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, T. Roughgar-
den, Routers with Very Small Buffers, in: Proc. IEEE INFO-
COM, Spain, 2006.

14

[4] A. Vishwanath, V. Sivaraman, M. Thottan, C. Dovrolis, En-
abling a Bufferless Core Network using Edge-to-Edge Packet-
Level FEC, in: Proc. IEEE INFOCOM, USA, 2010.

[5] A. Vishwanath, V. Sivaraman, M. Thottan, Perspectives on
Router Buffer Sizing: Recent Results and Open Problems, ACM
SIGCOMM Computer Communication Review 39 (2) (2009)
34–39.

[6] V. Sivaraman, H. Elgindy, D. Moreland, D. Ostry, Packet Pacing
in Small Buffer Optical Packet Switched Networks, IEEE/ACM
Transactions on Networking 17 (4) (2009) 1066–1079.

[7] A. Vishwanath, V. Sivaraman, G. N. Rouskas, Anomalous Loss
Performance for Mixed Real-Time and TCP Traffic in Routers
with Very Small Buffers, IEEE/ACM Transactions on Network-
ing 19 (4) (2011) 933–946.

[8] E. M. Wong et al., Towards a Bufferless Optical Internet,
IEEE/OSA Journal of Lightwave Technology 27 (4) (2009)
2817–2833.

[9] F. Farahmand, Q. Zhang, J. P. Jue, A Feedback-based Con-
tention Avoidance Mechanism for Optical Burst Switching Net-
works, in: Proc. Workshop Opt. Burst Switching, USA, 2004.

[10] H. Boyraz, N. Akar, Rate-controlled optical burst switching
for both congestion avoidance and service differentiation, Opt.
Switch. Netw. 2 (4) (2005) 217–229.

[11] Y. Cai, B. Jiang, T. Wolf, W. Gong, A Practical On-line Pac-
ing Scheme at Edges of Small Buffer Networks, in: Proc. IEEE
INFOCOM, USA, 2010.

[12] Y. Cai, T. Wolf, W. Gong, Delaying Transmissions in Data
Communication Networks to Improve Transport-Layer Perfor-
mance, IEEE Journal on Selected Areas in Communications
29(5) (2011) 916–927.

[13] B. Zhao, A. Vishwanath, V. Sivaraman, Performance of High-
Speed TCP Applications in Networks with Very Small Buffers,
in: IEEE Advanced Networks and Telecommunication Systems
(ANTS), India, 2007.

[14] D. X. Wei, P. Cao, S. H. Low, TCP Pacing Revisited (2006).
URL http://www.cs.caltech.edu/weixl/research/\\

summary/infocom2006.pdf

[15] A. Aggarwal, S. Savage, T. E. Anderson, Understanding the Per-
formance of TCP Pacing, in: Proc. IEEE INFOCOM, Israel,
2000.

[16] C. Caini, R. Firrincieli, Packet Spreading Techniques to Avoid
Bursty Traffic in Long RTT TCP Connections, in: Proc. IEEE
VTC Spring, Italy, 2004.

[17] H. Jiang, C. Dovrolis, Why is the Internet Traffic Bursty in Short
Time Scales?, in: Proc. ACM SIGMETRICS, Canada, 2005.

[18] L. Zhang, S. Shenker, D. D. Clark, Observations on the Dynam-
ics of a Congestion Control Algorithm: The Effects of Two-Way
Traffic, in: Proc. ACM SIGCOMM, Switzerland, 1991.

[19] H. Kamezawa et al., Inter-Layer Coordination for Parallel TCP
Streams on Long Fat Pipe Networks, in: IEEE/ACM Supercom-
puting, USA, 2004.

[20] J. Kulik et al., A Simulation Study of Paced TCP, Tech. Rep.
BBN Technical Memorandum No. 1218.

[21] D. X. Wei, A TCP Pacing Implementation for NS2 (2006).
URL http://netlab.caltech.edu/projects/\\

ns2tcplinux/ns2pacing/index.html

[22] N. Dukkipati, N. McKeown, Why Flow-Completion Time is the
Right Metric for Congestion Control, ACM SIGCOMM Com-
puter Communication Review 36 (1) (2006) 59–62.

[23] B. Schroeder, A. Wierman, M. Harchol-Balter, Closed Versus
Open: A Cautionary Tale, in: Proc. USENIX NSDI, USA, 2006.

[24] General main RED parameters.
URL http://www.cs.technion.ac.il/Courses/

Computer-Networks-Lab/projects/spring2003/ns1/

Net\%20Site/Source/RedParam.htm

[25] A. Vishwanath, V. Sivaraman, D. Ostry, How Poisson is TCP
Traffic at Short Time-Scales in a Small Buffer Core Network?,
in: Proc. IEEE Advanced Networks and Telecommunication
Systems (ANTS), India, 2009.

[26] A. Lakshmikantha, C. Beck, R. Srikant, Impact of File Arrivals
and Departures on Buffer Sizing in Core Routers, IEEE/ACM
Transactions on Networking 19 (2) (2011) 347–358.

[27] D.Wischik, Buffer Sizing Theory for Bursty (TCP) Flows, in:
Proc. 2006 International Zurich Seminar on Communications,
Switzerland, 2006.

[28] L. Andrew, T. Cui, J. Sun, M. Zukerman, K. Ho, S. Chan, Buffer
Sizing for Nonhomogeneous TCP Sources, IEEE Communica-
tions Letters 9 (6) (2005) 567–569.

[29] D. Ostry, Synthesis of accurate fractional gaussian noise by fil-
tering, IEEE Transactions on Information Theory 52 (4) (2006)
1609–1623.

[30] I. Norros, On the use of Fractional Brownian Motion in the The-
ory of Connectionless Traffic, IEEE J. Selected Areas in Comm.
13 (6) (1995) 953–962.

[31] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz,
O. Solgaard, N. McKeown, Scaling Internet Routers Using Op-
tics, in: Proc. ACM SIGCOMM, Germany, 2003.

15

Hassan Habibi Gharakheili is cur-
rently a Ph.D. candidate in the
School of Electrical Engineering and
Telecommunications at the University
of New South Wales in Sydney, Aus-
tralia. He received his B.Sc. and
M.Sc. degrees from Sharif University
of Technology, Tehran, Iran in 2001

and 2004 respectively. His research interests include
software defined networking, optical networking and
QoS.

Arun Vishwanath is a Research Sci-
entist at IBM Research Australia. He
received the Ph.D. degree in Electri-
cal Engineering from the University
of New South Wales in Sydney, Aus-
tralia, in 2011. He was a visiting Ph.D.
scholar in the Department of Computer
Science at North Carolina State Uni-

versity, USA in 2008. His research interests include
software defined networking and energy-efficient net-
working.

Vijay Sivaraman received his B.
Tech. from the Indian Institute of
Technology in Delhi, India, in 1994,
his M.S. from North Carolina State
University in 1996, and his Ph.D.
from the University of California at
Los Angeles in 2000. He has worked
at Bell-Labs as a student Fellow, in

a silicon valley start-up manufacturing optical switch-
routers, and as a Senior Research Engineer at the
CSIRO in Australia. He is now an Associate Professor
at the University of New South Wales in Sydney, Aus-
tralia. His research interests include Optical Network-
ing, packet switching and routing, network architec-
tures, and sensor networks for the environment, health-
care and sports monitoring.

16

