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Abstract—Residential broadband gateways (comprising modem,
router, and WiFi access point), though individually consuming only
5-10 Watts of power, are significant contributors to overall network
energy consumption due to large deployment numbers. Moreover, home
gateways are typically always on, so as to provide continuous on-
line presence to household devices for VoIP, smart metering, security
surveillance, medical monitoring, etc. A natural solution for reducing the
energy consumption of home gateways is to leverage the overlap of WiFi
networks common in urban environments and aggregate user traffic on
to fewer gateways, thus putting the remaining to sleep. In this paper
we propose, evaluate, and prototype an architecture that overcomes
significant challenges in making this solution feasible at large-scale.
We advocate a centralized approach, whereby a single authority co-
ordinates the home gateways to maximize energy savings in a fair
manner. Our solution can be implemented across heterogeneous ISPs,
avoids client-side modifications (thus encompassing arbitrary user de-
vices and operating systems), and permits explicit control of session
migrations. We apply our solution to WiFi traces collected in a building
with 30 access points and 25,000 client connections, and evaluate via
simulation the trade-offs between energy savings, session disruptions,
and fairness. We then prototype our system on commodity WiFi access
points, test it in a two-storey building emulating 6 residences, and
demonstrate radio energy reduction of over 60% with little impact on
user experience.
Index Terms—Home WiFi networks, energy consumption, bandwidth
aggregation, centralized control, system evaluation.

1 INTRODUCTION

The energy consumption of the ICT sector in general,
and communication networks in particular, is receiving
increasing attention due to its alarming growth rate [1].
It is also recognized that a majority of the power is
consumed in the access network [2], due to the sheer
volume of user premises equipment (typically a home
gateway comprising a modem, router, and wireless ac-
cess point) and their high per-bit energy consumption.
Even at conservative estimates of 5 Watts per home
gateway device (which is typically always on), in a state
such as California which has over 13 million housing
units [3], this translates to in excess of 65 MegaWatts of
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constant extra load, imposing a considerable strain on
the state’s power grid. While it is conceivable that future
generations of home gateways will implement sleep-on-
idle (SoI) capability, this will prove ineffective when the
household has devices that generate continuous light
traffic. A typical household today is estimated to have
between 4 and 7 wireless devices, and this number is
estimated to grow to 15 within a few years. Devices
for VoIP, continuous health-monitoring, smart-metering,
security surveillance, etc. are expected to proliferate that
require continuous online presence – this “insomnia in
the access” [4] has been shown to severely limit the
benefits of SoI in home gateways.

In this work we investigate the feasibility of reduc-
ing the combined energy footprint of home gateways
by pooling their wireless resources and dynamically
aggregating user traffic on to a subset of gateways.
Pooling of WiFi resources is already being done by
several commercial providers today; Telefonica offers
BeWiFi [5] and Comcast offers Xfinity [6]. The density
of WiFi access points in urban areas is known to be
high (prior work [7] measures between 4 and 6 WiFi
networks visible at a typical urban location). It is also
known that the average load on an access point is quite
low (often < 2%, corroborated by prior studies and our
own measurements). This would suggest that in theory
it should be feasible to dynamically sleep/wake access
points to save energy while still providing connectivity
(and adequate bandwidth) to clients. Any such solution
however faces several barriers to successful adoption:
• Heterogeneity amongst households: Unlike a cen-
trally managed enterprise WiFi network, a solution that
controls autonomous home gateways for coordinated
energy savings has to deal with heterogeneity amongst
households in WiFi security settings, ISP connectivity, IP
address ranges, etc.
• Diversity of clients: The solution cannot be specific
to client platform or operating system, and should en-
compass not just today’s platforms (Windows, Linux,
OS X, iOS, Android, etc.), but also emerging devices
(e.g. IP-TVs, healthcare devices, smart meters, etc.). This
requires that no software and/or configuration changes
be imposed on clients, lest the barrier-to-entry for par-
ticipation be too high.
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• User experience: Dynamic aggregation of clients to
WiFi access points (APs) for energy savings will neces-
sitate migration of sessions between APs. The solution
therefore has to protect user experience (e.g. minimize
video or voice call dropouts) so as to not discourage
participation.
• User fairness: The overall benefits of lower access
network energy footprint, as well as the data costs
associated with supporting traffic for non-home clients,
have to be shared fairly amongst households.

Although [8] demonstrated a solution for greening
enterprise WiFi networks, it does not directly translate
to the residential setting as it does not account for
factors related to heterogeneity and fairness, as noted
above. We are aware of only one existing proposal for
greening residential WiFi networks [4] which takes a
distributed approach and embeds intelligence in clients
to dynamically aggregate their traffic to a reduced set of
APs. While the solution is novel, we believe it is imprac-
tical for large-scale adoption as it (a) requires complex
client-side machinery (including interface virtualization,
reverse NAT, traffic snooping, etc.), which imposes a
heavy burden on users and does not extend easily to
diverse client platforms, (b) falls apart when the network
includes non-compliant (careless or malicious) clients,
and (c) does not address fairness (in benefits and costs)
which is often topmost on participants’ minds.

Unlike the approach in [4], in this paper we propose
a solution architecture in which centralized control is
exercised to achieve network energy savings in a fair
manner. The centralized entity could be an ISP or any
over-the-top third party. Centralization comes with the
benefit of realizing optimal or near-optimal solutions
more easily, and fairness can be readily incorporated.
Centralization does introduce concerns around failures
and attacks. However, we note that there is growing
confidence in the research and operations community
that these issues are surmountable, and indeed emerging
platforms for software defined networking (that use
centralized control) are demonstrating that these issues
are better handled via software in a centralized way
rather than via embedded distributed protocols. Further,
centralization obviates the client from implementing new
mechanisms, and this transparency removes a major
barrier to adoption, since users need only sign-up and
forget, leaving the burden of greening the access network
to the centralized entity. There is (inevitably) a price to
be paid for client transparency – session migrations from
one AP to another cannot be seamless and the transient
disruptions during hand-off will cause some traffic loss
affecting user quality-of-experience. However, as we will
demonstrate later, the central controller has visibility into
client traffic rates and can therefore choose to perform
migrations during periods of “light” traffic, thus mini-
mizing user disruptions. Our specific contributions are:

1) We develop a solution architecture for energy sav-
ings in today’s residential WiFi networks. We argue
that our architecture is very suitable for immedi-

ate large-scale deployment since it: (a) centralizes
control, enabling for optimality and fairness in
energy savings, (b) overlays on today’s networks at
very low cost, allowing for heterogeneity amongst
households, (c) has low barrier to entry, as no user-
side management or client modification is required,
and (d) enables substantial energy savings with
minimal impact on user performance.

2) We develop (optimal and heuristic) algorithms that
maximize energy savings while enforcing fairness,
and demonstrate their performance on real traffic
traces taken over 3 days from a building having
30 access points and 25,000 wireless connections,
showing how the energy savings vary with al-
gorithm parameters such as fairness weights and
client disruption thresholds.

3) We implement our algorithm to operate in real-
time over a test-bed of 6 commodity residential
access points, and test it in a two-storey building
emulating 6 households with real VoIP (i.e. Skype),
video, and browsing traffic. We quantify the energy
savings with power measurements, and show that
over 60% of radio energy can be saved with mini-
mal impact on user experience.

The rest of this paper is organized as follows: in §2
we outline our architecture for energy savings under
centralized control. In §3 we formulate the optimization
problem, develop an efficient algorithm, and discuss
its application, while §4 evaluates its performance via
simulation of trace data. §5 describes our prototype
implementation and results. We discuss related work in
§6, and conclude the paper in §7.

2 SYSTEM ARCHITECTURE

A central goal of our solution is to minimize the burden
on users to participate in the energy savings scheme.
To this end, we argue for a “set-and-forget” approach
whereby users opt for the greening service (say by tick-
ing a box during signing up, much the same way utility
companies do it today), hand over (some) control of their
AP to the green network operator, configure one new
SSID on their client devices (explained below), and then
use their devices as normal. By not requiring users to
install (and maintain) special software on their devices,
our scheme is largely transparent to users, encompasses
all current and future generation of client WiFi devices,
and lowers management, maintenance and support costs
for the operator.

The “green operator” (who may be an ISP or a third
party, henceforth referred to as “operator”) takes on the
responsibility of greening the aggregate of residential
WiFi networks. This operator has management control of
all the residential gateways (APs), and makes centralized
decisions of their states (awake versus asleep), as well
as the corresponding client associations. In order to do
this the operator installs the following capabilities at the
APs (we have done so easily on commodity off-the-shelf
APs – e.g. D-Link DIR 615, NetGear WNR2000, Linksys
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E2000, TP-LINK WR1043ND) running the DD-WRT [9]
open-source firmware:
1) Dual-SSIDs: To delineate “home” clients from “guest”
clients, each AP is configured with two SSIDs. The
“home” SSID is managed by the user (much like today),
and can have name and security settings as desired by
the user. Devices that connect to the home SSID are
identified by the operator as belonging to that user.
The “guest” SSID is common across all APs, and is
configured with a common security key (we note that
security on the guest SSID is not a big concern since
attachment and traffic on this SSID is tightly controlled
by the operator). All user clients have to be configured
with both SSIDs (with the home SSID being the more
preferred network if possible).
2) Client monitoring: The AP has the capability to moni-
tor client activity (traffic flows and their rates) and report
these back to the central controller. This information
is used by the operator to make the energy savings
decisions. Our implementation runs an open source IP
traffic logging tool called RFlow (an alternative to the
industry standard NetFlow application [10]) at the APs
to collect this information. Further, the AP also collects
information (by snooping on all channels) about clients
that are within range but connected to other APs. This
information is used by the operator to deduce feasible
alternate paths for each client if migration is necessary.
We modified and installed the Wiviz module [11] on our
APs to achieve this functionality.
3) Radio management: The operator turns the radio in
the home gateway on/off remotely (over the WAN) to
save energy. Remote management is commonly available
on today’s gateways. In the future, we hope that gate-
ways will have sleep-on-idle (SoI) and remote wake-up
capability, which will allow the entire gateway (and not
just the radio) to be put to sleep and woken up to enable
greater energy savings.

The central controller runs the energy savings algo-
rithm periodically (every 2 minutes in our prototype)
to determine the set of APs that need to be on, and
the client associations. The algorithm takes as input the
set of client connections and their data rates (obtained
from RFlow on the APs), the alternate paths available
to clients (available from WiViz on the APs), along
with running estimates of costs borne by the APs (for
fairness). It then computes (details in the next section)
the best set of APs to be (kept or turned) on, so as to
minimize energy, while limiting client traffic disruptions
as well as enforcing fairness (discussed next). The con-
troller then migrates clients between appropriate APs as
needed by white-/black-listing their MAC addresses at
the corresponding APs (discussed below).

Fairness is needed to ensure that the benefits of
energy savings, and the potential data costs of guest
client downloads, are shared equally amongst the APs.
Centralization makes this relatively easy to achieve. For
each AP, the central controller maintains a running cost
(in dollars) of supporting “guest” clients (the distinction

between “home” and “guest” clients is easy to make
as only the former connect to the home SSID of the
AP). This cost comprises two parts: the energy cost is
attributable to the power consumption of the AP, and is
the sum of a base (static) power that the AP consumes
when sleeping (i.e. radio is off), and the dynamic power
that is the increment when the AP is active (i.e. radio
is on), while the data cost is associated with downloads
performed by guest clients (this information is available
from the AP’s RFlow records). Note that home client
downloads (i.e. when a client is in its home network) do
not count towards this cost, since these are not shared
contributions towards the scheme. The guest data cost
is balanced across all the users without regard to the
volume of each home client download. The combined
dollar cost (of energy and data) is averaged for each AP
using an exponential averaging technique. This averaged
cost is used by our algorithm (detailed in §3) as a
selection weight so that an AP that has incurred high
guest cost is more likely to be put to sleep to achieve
fair distribution of costs.

Migrations (aka hand-offs) of clients are essential, so
as to permit the dynamic aggregation of traffic to a
reduced number of gateways for energy savings. Unfor-
tunately, unlike in an enterprise environment, migrations
entail disruptions in a residential setting, since the client
has to obtain a new IP address associated with the AP
(and ISP) it migrates to. It is possible to overcome this
problem using sophisticated techniques that virtualize
the client’s WiFi interface and use reverse NAT to pro-
vide a seamless IP address to the application, as demon-
strated in [4]. We do not preclude such an approach
for clients (and users) that are capable of doing so, but
focus on the more likely case of unmodified clients that
incur the disruption during migration. The migration
is tightly controlled by the central controller by black-
listing the client’s MAC address from the AP it needs to
be migrated out of, and white-listing it at the AP it needs
to migrate to. This allows the controller to track ISP
and power costs incurred by guest clients (on the guest
SSID). As we will detail in our experimental section,
we were able to migrate arbitrary clients (Windows,
iPhones, etc.) across APs using this method. To preserve
quality-of-experience for the user, the controller can be
programmed with the intelligence to effect migrations
only during low activity periods, such as when a user
has Skype presence but is not actively engaged in a video
conference session. Presence applications are designed to
be robust to network disruptions (e.g. Skype reconnects
within a minute of migration), and this does not there-
fore pose a major concern.

A concern that we do not directly address (and indeed
arises with earlier schemes such as [4] as well), relates to
coverage blackholes. If turning off a set of AP radios cre-
ates a coverage blackhole to which a new client arrives,
the client sees no network to connect to. One option is
to wake up each AP periodically to allow new clients to
join, and in future, wake-on-WirelessLAN (WoWLAN)
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technology may solve this problem. But even in the
interim, we do not believe this problem is catastrophic.
If the household has several devices, some of which
demand continuous presence, the controller will ensure
that at least the guest SSID is visible to the household.
Moreover, since the user has control over the home SSID,
they have the option to manually turn on their home AP
radio (either with a button or by logging in using a wired
port). This “manual override” is an accepted feature in
many systems, and so we do not attempt to overcome
the blackholes problem algorithmically in our solution.

3 OPTIMIZATION AND ALGORITHM

We now discuss our algorithm for energy savings. We
first develop an optimization framework, prove its NP-
hardness, and then develop a heuristic algorithm with
known bounds. We conclude with a brief discussion on
the selection of fairness weights in the algorithm.

3.1 Optimization Framework
Our framework determines the minimum set of APs that
are needed to provide Internet connectivity to a set of
(residential) end-user clients. The APs are numbered 1
to N , and each AP has broadband (i.e. WAN) down-
load bandwidth capacity Cj Mbps for j = 1, . . . , N .
Let U = {1, 2, 3, . . . , n} denote the set of clients, and
each client has bandwidth requirement (measured over
a certain interval) of bi Mbps. Denote by eij the indicator
variable that is 1 if and only if client i can connect to AP
j on any frequency channel with a specified minimum
signal strength (chosen so that the connection is at an
acceptable rate, as discussed in §5). Denote by Wj the
weight associated with AP j (as briefly described above,
these weights are used to control fairness in energy
consumption and bandwidth costs across the APs). Our
optimization framework takes as input the bi’s, Cj ’s, eij ’s
and Wj ’s as defined above, and computes ∀i, j: xij which
is 1 if client i is connected to AP j, and 0 otherwise. We
also denote by Xj the binary variable indicating if AP j
is on or off. The objective function of our optimization
is to minimize the weighted power P :

P =
∑
j

WjXj (1)

subject to the following constraints:

xij ≤ eij ∀i, j (2)∑
j

xij = 1 ∀i (3)∑
i

bixij ≤ Cj , ∀j (4)∑
i

xij ≤ Xj

∑
i

eij ∀j (5)

Constraint (2) ensures that a client i connects to AP j
only if the link is feasible. Constraint (3) restricts each
client to connect to exactly one AP, while (4) ensures
that the sum of the bandwidth requirements of all clients

does not exceed the broadband capacity at the AP.
Constraint (5) mandates that an AP is turned on only if
at least one client connects to it. We call this problem as
minimum weighted set of APs (MWS-AP) that provide
network connectivity to all clients.

3.2 NP-Completeness and Heuristic Algorithm

We now formally prove that the decision version of the
above MWS-AP problem is NP-Complete:

Theorem 1. Determining if there exists a solution to the
MWS-AP problem above, with weighted power no more than
P , is NP-Complete.

Proof: Given an association of clients to APs (i.e. xij ’s),
it is easy to verify that it is feasible (2), connects each
client to exactly one AP (3), and does not exceed the
bandwidth capacity of an AP (4). APs that connect to
at least one client need to be on (5), and their weighted
power is verified to be at most P . Therefore MWS-AP is
in NP.

To prove that MWS-AP is NP-Hard, we show that the
Weighted Set Cover problem can be reduced to MWS-
AP in polynomial time. Let the universe of elements be
U = {1, 2, 3, . . . , n}, where each element corresponds to
a client. Let S = {S1, S2, . . . , SN} denote the collection
of subsets of U , where Sj ⊂ U corresponds to the clients
that can connect to AP j. Let Wj be the weight of set Sj ,
corresponding to the weight of AP j. The above (trivial)
transformation is polynomial in time, and it is easy to
see that if the MWS-AP (with capacity Cj of each AP set
to∞) can be solved in polynomial time, this will directly
yield a solution to the weighted set cover problem. �

The best known algorithm for weighted set cover has
an approximation factor of O(lnn), where n is the num-
ber of elements in the universe. We adapt this greedy
algorithm for MWS-AP by selecting at each step the
AP that has the highest value of the number of (as yet
unconnected) clients divided by the weight of the AP.
The algorithm is formally described next.

Algorithm 1 Determine the set of active APs
Inputs: Set of clients U , visible client set Sj and

weight Wj for each AP j
Output: Set I of APs that should be active
Temporary variables: X , I

1: X ← U , I ← ϕ
2: Repeat until X = ϕ
3: Pick AP j with smallest |X ∩ Sj |/Wj

4: I ← I ∪ {j}, X ← X \ Sj

5: Output I

The algorithm above takes as input the set of clients
U , and for each AP j, its coverage of clients Sj and
weight Wj . Internal variable X keeps track of the set
of clients that are uncovered, and is initialized to the
entire set of clients U in step 1. Variable I stores the
selected APs, and is initialized to the null set in step
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1. The algorithm operates in a loop till all clients are
covered, i.e. X = ϕ (step 2). In each iteration, the AP
j which has the maximum ratio of unconnected clients
(|X ∩ Sj |) to weight (Wj) is selected (step 3). This AP is
added to the set I of selected APs and the clients Sj it
covers are removed from X (step 4). The set of active
APs I is output in step 5.

3.3 Client Migrations and AP Fairness

Our algorithm determines the set of APs that need to be
on, but does not clarify the attachment of clients to the
APs. We therefore refine our algorithm in the following
ways:
• For each “active” client, i.e. one whose traffic inten-
sity is above a certain threshold (we will study the im-
pact of this threshold in the next section), we do not want
to disrupt its existing connectivity as it can impact user
quality-of-experience. Our algorithm therefore begins by
keeping such APs on, i.e. in step 1 it will initialize the set
I to include such APs, and the set X to exclude clients
covered by these APs.
• The algorithm outputs the set of APs that need to be
on. A client may have multiple APs within range that are
on, and we use the following method to decide which
one it connects to: (a) if the client’s home AP comes on, it
is migrated to its home SSID (as it is unnecessary to incur
a guest cost when the home is available), (b) otherwise,
if the client’s current AP is on, the client stays connected
to the same AP and is not migrated (so as to minimize
migration disruptions), and (c) if neither the home AP
nor the current AP of the client are on, the client is
migrated to the AP with least weight (for fairness, as
described next).

The determination of fairness weights was discussed
in §2, here we formally describe how it is computed. The
AP weights Wj are updated each time the algorithm is
executed, every T = 120 seconds in our studies. Denote
by Pb the base power consumption of the AP (with
radio off, the TP-LINK AP used in our experimentation
consumes Pb = 2.8 W), and by Pr the additional power
consumed when it is on (the radio on the TP-LINK
consumes Pr = 1.7 W). Then the base cost of AP j
over the interval of T seconds is CpPb where Cp is the
unit cost of energy (we used the energy rate of $0.23
per KWh). The running cost of operating AP j over the
interval comprises (a) the energy cost of CpXjPr where
Xj is the indicator variable denoting if the AP (radio)
was on or not over the interval, and (b) the data cost
CdDg where Cd is the unit cost of data (we used $1
per GB), and Dg denotes the data download in KB by
guest clients attached to this AP over the interval. We
use a linear cost function for data cost to exemplify how
it can be introduced in our scheme. The cost function
can be suitably adapted depending on the deployment
environment. The weight of AP j is then updated by
combining the base cost and running cost as:

Wupdate
j = CpPb + β(CpXjPr + CdDg) (6)

The scaling parameter β can be adjusted by an op-
erator to control fairness. If the operators sets β to
zero, then running costs become irrelevant, and overall
energy savings is maximized without being fair. If, on
the other hand, the operator wants to implement (and
market) fairness for their users, they can easily do so
by appropriately choosing this parameter. If β → ∞,
running costs will be more fairly shared, at the cost of
reducing global energy savings. This trade-off between
fairness and efficiency will be investigated in the next
section. Lastly, we note that the weight Wj is averaged
over time t using:

Wj [t]← (1− α)Wj [t− 1] + αWupdate
j (7)

The exponential averaging technique above is routinely
used as a way of obtaining longer term averages with-
out explicitly maintaining window size of samples. The
parameter α controls the time period over which the
averaging is done – for our study that uses traces which
are 24-hours long, we wanted to enforce fairness over a
window of a few hours, and so we chose α = 0.01, which
reduces the importance of a new sample (computed
every 2 minutes) to half its value in about 2 hours. If
fairness is to be enforced over longer time periods (e.g.
many days), a lower value for α can be used.

4 SIMULATION USING TRACE DATA

We now study the efficacy of our algorithm by applying
it to real trace data. Though our algorithm is designed
for home networks, obtaining WiFi data from sufficient
households to test the algorithm at scale is very chal-
lenging (the next section will describe our prototype
experimentation over a small test-bed of 6 WiFi access
points). To validate our algorithm at larger scale, we use
traces taken from a university campus WiFi network.
We first describe the characteristics of the campus WiFi
network and the data traces, and then describe the
energy-savings trade-offs obtained from simulating our
algorithm over these traces.

4.1 WiFi Network and the Trace Data

The university campus comprises over 850 APs, serving
tens of thousands of client connections on a typical day.
To make our study tractable, we chose to focus on just
one building. This building has 6 levels (Lower Ground,
Ground, and Levels 1-4), and can be thought to be rep-
resentative of a multi-storey dwelling unit comprising
many households. The building houses 30 APs, which
are Cisco Airnet 1140 Series Dual-Band Access Points
(model AIR-LAP1142N-N-K9) with a power draw of
approximately 15.4 W each (12.95 W base power, with an
additional power draw of up to 2.45 W for Power-over-
Ethernet depending on the length of the interconnecting
cable). Thus the APs in this building consume about 462
W of continuous power, and we seek to quantify the
potential for power savings on a typical day, along with
the impact on user experience.
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(a) Aggregate data rate versus time
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(b) Connections per AP

Fig. 1. WiFi statistics for 2 weekdays and 1 weekend: (a) aggregate data rate of clients over a 24-hour period, (b)
number of client connections for each of the 30 APs over a 24-hour period.
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(b) Distribution of APs visible to client
Fig. 2. (a) CCDF of mean client session rates for 2 weekdays and 1 weekend, and (b) Distribution of number of APs
visible to a client for 2 weekdays and 1 weekend.

For the purposes of this study, we obtained root
access to the wireless control system, which allowed
us to capture detailed statistics on all wireless client
connections in the building over several consecutive
days. Specifically, we analyzed traces spanning a week in
April 2012. Each weekday had approximately 8500 client
sessions (across all 30 APs in the building), while the
weekend had around 500 sessions. The traces showed
that the demand for WiFi in the building varies signifi-
cantly depending on the time of day, with 300-400 clients
concurrently connected during peak hours on a typical
weekday, while only a small handful are connected
during off-peak hours. Fig. 1(a) shows the aggregate data
rate of the clients over a 24-hour period (for 2 weekdays
and 1 weekend), typically in the few tens of Mbps during
peak hours on weekdays, and no higher than 1 Mbps
during off-peak hours. The distribution of load across
the APs is non-uniform. Fig. 1(b) shows as a bar graph
the number of client sessions (connections) at each of
the 30 APs over the 24-hour period. Some of the APs
in the lower ground floor (prefixed “eeblg”) see over
800 connections on a weekday (as it houses the student
computer labs) while some of the APs in levels 3 and 4
see less than 100 sessions.

We also have access to the mean data rate in each client
session. This is plotted in Fig. 2(a) as a complementary
cumulative distribution function (CCDF), and shows a
rapid drop-off in the initial part. Nearly 70% of the ses-
sions had an average data rate below 1 Kbps, and over
90% of sessions have average data rate below 20 Kbps.
This confirms earlier observations that several clients
generate light continuous traffic (such as to maintain
presence), and can easily be aggregated onto a smaller
number of APs to save energy. However, the ability to
aggregate traffic requires clients to be able to connect
to alternative APs. To determine this, we measured the
coverage area of each AP in the building (corroborating
it against the coverage maps provided by IT services),
and determined the overlap in coverage for every pair
of APs. Using these, we deduced the probability with
which a client can connect to other APs in the building.
Note that the coverage area is purely required for simu-
lation purposes. A real system does not need to know the
coverages. As we will show in the next section, the APs
discover the connectivity dynamically using the WiViz
module. The probability distribution of the number of
APs to which a client can connect to is plotted in Fig. 2(b)
for the client traces of each of the three days, and shows
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that over half the clients can see 6 or more APs. The
average number of APs visible to a client was found to be
5.8, consistent with the number observed in residential
networks by earlier studies [7].

4.2 Results and Discussion
Using the above WiFi traces from our building con-
taining 30 APs, and spanning 25, 000 client connections
over three days, we determine the potential for energy
savings and the associated trade-offs in terms of session
disruptions and fairness in costs.

4.2.1 Energy Savings and Client Migrations
As described in §2, our scheme requires no client soft-
ware changes, but entails transient disruptions to client
sessions as they are migrated between APs for energy
savings. These can cause annoyance for users if they
are active on their device, but are not problematic for
presence applications (e.g. Skype) which automatically
reconnect after network disruptions. To understand the
trade-off between energy savings and migrations, we
simulate our algorithm over the traffic traces for different
values of threshold θ, which is the value of the session
rate (in Kbps) above which the client is not allowed to
be migrated (i.e. the client is deemed “active”). Fig. 3(a)
shows the energy savings as a function of θ for each
of the three days, while Fig. 3(b) shows the average
number of migrations incurred by a client session. We
make several observations from these figures: (a) When
the threshold is set to θ = 0, the algorithm is essentially
disabled, since no migrations are permitted – this allows
APs to sleep only if they have no clients connected, i.e.
corresponds to sleep-on-idle (SoI) capability. The energy
savings with SoI are approximately 48% on weekdays
and 78% on weekends. Though this may seem encourag-
ing, it arises because of the uneven distribution of clients
to APs in this building, and we believe the SoI savings
are likely to be much lower in the residential setting
wherein most homes in the near future will have always-
on devices such as sensors, healthcare monitors, etc. (b)
As the threshold θ increases, so do the energy savings,
since clients can be migrated more freely to aggregate
them at a smaller number of APs to allow greater energy
savings. When no barrier is placed on client migration
(i.e. θ = ∞), energy savings increase to over 70% on
weekdays and 87% on weekends, which is substantially
higher than the SoI energy savings. However, this comes
at the cost of increasing the number of migrations per
client session, rising to 1.2 on weekdays and 1.4 on
weekends. The curve of energy savings seems to have
a knee around the 10-20 Kbps mark, suggesting that
threshold θ in the range 10 to 20 Kbps allows much
of the energy gains to be obtained, while the number
of migrations per-session is relatively low. We therefore
use θ in this range for our subsequent study.
4.2.2 Fairness
Prior studies have not considered the fairness of cost-
sharing among APs. Fairness is a significant issue in

users’ minds, so they know that everybody in the com-
munity is contributing equally. The AP weights Wj in
our algorithm are used to provide fairness, and the
parameter β in (6) can be increased to make the system
more fair, as described in §3.3 above.

In Fig. 4 we depict the impact of parameter β on
energy savings (left axis) and unfairness (measured in
terms of the standard-deviation of the average guest traf-
fic rate) across APs (right axis) for a weekday (Fig. 4(a))
and a weekend (Fig. 4(b)). For the setting β = 0,
running costs of APs are ignored, causing all APs to
have the same weight in the algorithm. This yields best
savings in overall network energy, but is not as fair –
for example, the four APs on the lower ground level
respectively supported 3.5, 5.4, 1.5, and 0.2 Kbps of
average guest client traffic during the day, implying that
they incur very different costs for participating in the
algorithm. This unfairness can be quantified in terms of
the spread (i.e. standard deviation) of the guest traffic
rate supported by the APs, and for β = 0 (no fairness),
the plot shows this to be over 1.5 Kbps on a weekday and
0.65 Kbps on a weekend. When β is increased (towards
1), the running cost of supporting guest traffic at each
AP plays a dominant role in determining its weight,
which leads to increased fairness. The same four access
points on the same day would now support 1.6, 1.6,
1.4 and 0.7 Kbps of average guest client traffic, and the
costs are more evenly spread across all APs as shown
by the bottom curves in Fig. 4. The increased fairness
with parameter β = 1 reduces the standard deviation
in guest client rates supported by the APs to nearly 0.8
Kbps for the weekday and 0.5 Kbps for the weekend.
Note that the layout of APs and clients may not allow
for perfect fairness (we increased β to large values and
found that the spread did not reduce much beyond
what we got for β = 1); for example, an area of the
building with higher density of APs will allow for higher
fairness (since the APs can take turns to cover the area)
whereas an area covered by just one AP prevents it from
ever being turned off, causing unfairness. In general,
denser deployments permit greater fairness, and this is
corroborated in our experimental evaluation in the next
section. We also note that increased fairness comes at
the expense of reducing the overall energy savings (blue
curves in Fig. 4), though for this network the reduction
is marginal.

5 SYSTEM EVALUATION

We prototyped our system on commodity hardware and
deployed an experimental test-bed in a 2-storeyed build-
ing representative of 6 apartments in a multi-dwelling
complex. The hardware/software configurations, test-
bed setup and performance results are described next.

5.1 Hardware and Software Configurations

Access Points: We measured the power consumption of
several popular residential APs, and found that the radio
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(b) Migrations per session

Fig. 3. Algorithm performance for campus WiFi traces as a function of migration threshold θ: (a) Energy savings for 2
weekdays and 1 weekend, and (b) Average migrations per session for 2 weekdays and 1 weekend.
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(b) Weekend

Fig. 4. Overall energy savings (left axis) and unfairness (standard deviation of guest traffic, right axis) as a function of
parameter β for (a) Weekday and (b) Weekend.

accounted for between 20-40% of their overall power
consumption (note that our current prototype turns only
the AP radios on/off, future hardware that supports
wake-on-WAN capability can allow the entire AP to be
put to sleep and woken up remotely). For our test-bed
we used the TP-LINK WR1043ND [12] AP, which con-
sumes 4.5 W with the radio on (this was largely invariant
to traffic load) and 2.8 W with the radio off – the radio
thus accounts for nearly 40% of its energy. We installed
the DD-WRT Linux-based open source firmware [9] on
it and enabled data collection capability with RFlow.
Further, the set of feasible migrations for each client was
determined with the help of the Wiviz module [11].

Database: We configured each AP to export NetFlow
records of wireless clients to a remote database at 1
minute intervals, thereby logging all IP traffic flows for
these clients passing through all the APs. These records
include information such as timestamps, source and
destination IP address, IP protocol, source port, amount
of data in each flow, etc. The APs also send updates to
the controller indicating the identities of APs and clients

within radio range. We store all this information in a
MySQL database at the controller and use it as input
to the algorithm. We used Wireshark to quantify the
amount of communication between the controller and
the APs, and noted that the data rate between each AP
and the controller varied between 0.18 and 1.5 Kbps,
implying that the benefits of centralization do not come
at expense of large communication overheads.

Controller: The controller functionality was pro-
grammed in Java, running on a FreeBSD machine. At 2
minute intervals, the controller checks the flow records
for each client to determine those that are Idle (i.e. have
traffic rate below the Idle threshold), and hence suitable
for migration. It also checks the records for each AP to
determine the clients that can be covered by that AP,
as well as traffic and power consumption of each AP
for fairness calculations. It then runs the algorithm to
determine the most suitable set of APs (radio) to keep
on, and the most appropriate AP to serve each client. The
controller then turns each AP radio on/off by logging in
to the AP over its WAN port via an SSH script.
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5.2 Experimental Setup

(a) Interior of building (b) Schematic

Fig. 5. Experimental setup: (a) Two-level 12m x
18m building emulating six residential apartments, (b)
Schematic (top view) of the building.

Test site: We deployed our experimental test-bed in
a two-level 12m x 18m shed (pictured in Fig. 5(a)) that
allows emulation of six residential apartments with four
units in the lower floor and two in the upper (schematic
shown in Fig. 5(b)). Each apartment is outfitted with
one AP. The APs draw power from a common source,
and we used a power meter to measure the aggregate
power consumption of all APs. The power is logged
every second, and exported to a PC for later analysis.
The central controller runs off-site.

AP and client setup: As mentioned in §2, APs and
client devices are configured with two SSIDs. Further,
each AP has an Ethernet (i.e. WAN) broadband link and
runs its own DHCP server. Our prototype allows the APs
to operate on arbitrary channels, since the Wiviz module
is able to scan for clients on all frequency bands. Our
implementation does not currently consider the rate at
which a client connects to an AP. It has been found that
a client with a weak signal strength connecting to an
AP can reduce the rate for all other clients connected to
that AP, resulting in a rate anomaly [13], [14]. Though
our implementation does not currently handle the rate
anomaly, the centralized nature of our algorithm allows
this to be relatively easily incorporated as a constraint
in the optimization, by restricting connectivity to clients
that have a sufficiently high signal strength (obtained
from WiViz information). Lastly, our algorithm can be
further refined to include frequency planning and dy-
namic adaptation of AP radio signal strength; however
these enhancements are left for future work.

Our client devices are MacBook Pro machines running
Windows 7, one per household. On each client the home
SSID is configured as a higher priority network than the
guest SSID, to ensure that the client chooses to connect
to the former when both are available (this helps speed
up the migration of a client to its home SSID, but is not
strictly necessary since our MAC filtering will prevent it
anyway). We emphasize that no special software or setting
(other than the home and guest SSID configuration) is
needed on the clients, making our scheme amenable for
any breed of client device (PCs, smart-phones, medical

devices, etc.) running any operating system (Windows,
OS X, iOS, Android, etc.).

Client migrations: The controller periodically executes
the algorithm to decide which AP radios should be
turned on/off. It can migrate clients from one AP to
another when turning an AP off, or for fairness in
load across APs. In our network, client migrations are
achieved by black-listing the client’s MAC addresses
at its current AP and white-listing it at the AP we
want it to connect to. This is only done for the guest
SSID and does not hinder the addition of new clients
to their home SSID. When a client migrates between
two separate SSIDs, such as from home to guest or vice
versa, the client TCP/IP stack automatically obtains a
new IP address by sending a DHCP RELEASE followed
by a DHCP DISCOVER. When migrating a client be-
tween APs on the same (guest) SSID, we found that
the (Windows) client attempts to keep its IP address
(as typically happens in an enterprise WiFi network) by
first sending a broadcast DHCP REQUEST; only when
this times out after 5 attempts does the client send a
DHCP DISCOVER to obtain a new IP address from the
AP it has migrated to. In either case, the migration time
from one AP to another was found to be between 10
and 20 seconds over 50 measurements. The migration
time was not dependent on the number of available APs.
The variation in migration times is due to the Windows
software and the randomized timers associated with the
various DHCP messages that need to be exchanged.

User Traffic: We wrote scripts for each client to gen-
erate traffic representative of two types of users – (a)
heavy users (who consume over 80 GB of data per
month) [15], and (b) typical users (who consume on
average about 5 GB of data per month) [16], [17]. In both
cases, we model the user as being in one of four states:
in Browsing mode, the user downloads several web-
pages on a browser (at an average bit-rate of 478 Kbps);
in Video mode, the users play videos from YouTube
(average bit-rate 1.528 Mbps); in Skype mode, the user
initiates a Skype voice session with a random client in
our network (average bit-rate 64 Kbps); and finally in Idle
mode, the client is inactive but maintains online Skype
presence (average bit-rate 1 Kbps). These actions are
modeled as distinct states in a Markovian process, where
the user state transitions in every time step depend on
pre-specified transition probabilities. To emulate realistic
user behavior, we divide the day into distinct epochs.
For the scenario corresponding to heavy users, the day
is divided into four epochs – in the morning (6 AM to
9 AM) there is moderate traffic from a client as the user
browses and places some voice calls; during the day (9
AM to 6 PM) usage is relatively low; between 6 PM and
12 AM is peak time when users actively engage in voice,
video, and browsing; and finally at night (12 AM to 6
AM) Internet use is very low (maintaining presence).
In the case of a typical user setting, we divide the day
into two epochs – between 8 AM and 2 AM users are
either active (i.e. engaging in voice, video and browsing
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sessions), or inactive (i.e. in the idle state), and between
2 AM and 8 AM users are always idle and therefore
Internet activity is very low (only maintaining presence).
We chose the state transition probabilities (for both types
of users) to obtain the average fraction of time spent in
each state during each time epoch as per Table 1 and 2.

Epoch Skype Video Browsing Idle
6am-9am 28% 20 % 36 % 16 %
9am-6pm 14% 14 % 27 % 45 %
6pm-12am 29% 32 % 34 % 5 %
12am-6am 1% 2 % 2 % 95 %

TABLE 1
Percentage of time spent in a state by heavy users

Epoch Skype Video Browsing Idle
8am-2am 1.8% 1.5 % 5.7 % 91 %
2am-8am 0% 0 % 0 % 100 %

TABLE 2
Percentage of time spent in a state by typical users

Metrics: We ran the experiment over 6 hours (of real
time), emulating a 24 hour cycle. The central controller
runs our algorithm every 2 minutes and accordingly
migrates clients and turns APs on/off. Based on results
from our simulation study above, we tried several migra-
tion thresholds θ in the range 10-20 Kbps – thus any host
with a data rate above this threshold is deemed “active”
and not migrated, while clients with data rate below
this threshold are “inactive” and eligible to be migrated
to the guest SSID. We measure the power consumption
(using the power meter) every second during the exper-
iment, and also the traffic flow at each AP (i.e. from the
AP to each of the clients). For enforcement of fairness, the
controller tracks the guest cost per AP, which comprises
the energy cost incurred by an AP for supporting guest
clients, and data costs incurred by the AP for downloads
by guest clients. We assume a data cost of $1 per GB (for
ADSL [18]) and a power cost of $0.23 per kWh. The con-
troller attempts to enforce fairness in guest cost incurred
by the various APs (households) by manipulating the AP
weights in the algorithm as described earlier.

5.3 Experimental Results

We ran our algorithm over several days. Each run lasted
6 hours, with the traffic pattern emulating a 24-hour
cycle as described above. We quantify the performance
of our prototype system in terms of power savings and
disruptions (§5.3.1), as well as fairness (§5.3.2).

5.3.1 Power Savings and Disruptions
Fig. 6 depicts the average aggregate power consumption
of all the APs (in a chosen experimental run spanning
6-hours, emulating a 24-hour cycle) measured using the
power meter. Without our power-saving algorithm, the
6 APs together (in the top plot corresponding to heavy
users) consume roughly 28.7 W continuously, shown
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Fig. 6. Average aggregate power consumption of the APs
for heavy users (top) and typical users (bottom).

by the dashed line in the plot. By contrast, our algo-
rithm dynamically aggregates clients to a reduced set
of APs, and the average aggregate power consumption
is reduced to 22.9 W. This is a saving of about 0.97
W per AP, or about 57% of the power required by
the AP radio, which is substantial. The power savings
become more significant when considering typical usage
patterns (the bottom plot). The 5 APs (the power supply
of one of the previously used APs died, and therefore
became unusable) consume a constant 23 W without
the algorithm, and this reduces to 16.5 W with our
algorithm running, representing a saving of about 1.3
W per AP, or about 77% of the power required by the
AP radio. Over several runs we found the standard
deviation of power savings to be between 1.42 W and 3.3
W. Note that (unlike the simulation study earlier) sleep-
on-idle (SoI) gives no energy savings, since the clients
maintain continuous Skype presence (even in the Idle
state). Needless to say, the overall energy savings would
be even higher if the AP had remote wake-up capability
allowing the entire AP to be put to sleep.

Action
Disruptions

(heavy users)

Disruptions

(typical users)

Skype Calls 64/284 = 22.5% 14/182 = 7.7%

Video Views 24/257 = 9.3% 2/139 = 1.4%

Browsing Sessions 28/966 = 2.9% 2/551 = 0.4%

TABLE 3
Effect on user experience – heavy and typical users

The energy savings come at the cost of disruptions
to user sessions arising from migrations, as depicted in
Table 3. We find that in the case of heavy users (column
two) more than 22% of Skype calls experience a dropout.
Although the disruption is temporary and the user can
redial, it does cause some annoyance. We investigated
why this was happening and found the following: Skype
chooses from a large number of codecs and can have
a highly variable bit-rate, ranging from 11 to 230 Kbps
[19]. Consequently, there is no one bit-rate threshold at
which the controller can reliably detect an “active” VoIP
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call, and hence can falsely believe the client to be idle
even when it is on the call; this leads to migrations
during an active call, resulting in dropouts. As future
work we intend to improve algorithm intelligence for
detecting VoIP calls to minimize such disruptions. The
table also shows that few (9.3%) video views experience
some stalls, and a small percentage (2.9%) of the browser
downloads timeout due to the disruption. These happen
because the controller makes the decisions based on
client data-rates that are obtained (using the flow-tools
[20] NetFlow collector) only once a minute – if the
video/browsing session starts towards the latter part of
that minute, the average client rate over that minute is
still low enough that the controller falsely deems the
client “inactive” and eligible for migration.

The disruptions incurred by Skype, video and brows-
ing sessions are substantially lower in the case of a
more typical residential user (column three), implying
that the nature of user activity does impact quality-
of-experience. 7.7% of Skype calls dropout, while only
a very small fraction of video (1.4%) and browsing
sessions (0.4%) are affected. In future enhancements,
disruptions can be greatly minimized for improved user
quality-of-experience by polling data rates more fre-
quently to rapidly detect client activity at the flow level
(VoIP, video, etc.).

5.3.2 Fairness
We have already emphasized that it is important to
have fair sharing of the benefits of the scheme. Our
implementation keeps track of the “guest cost” borne
by each AP, comprising the energy cost and the data
cost, and incorporates this into the algorithm weights
(as described in §3.3) to balance the contributions by
each AP. In Fig. 7 we show (left plot) how the cumu-
lative guest cost for each AP evolves over the 24-hour
duration in a run for heavy users. It is seen that the
costs stay reasonably balanced for the most part, except
for sudden spikes that can create transient imbalance.
This can be explained as follows: when an inactive client
suddenly becomes active, it can impose a significant data
download cost on a guest AP (hence the spike). This
spurt of activity takes a couple of minutes to be detected
by the controller (since it obtains flow records only at
periodic intervals), upon which it attempts to migrate
the client back to its home network. We notice in the plot
that the period 6pm to midnight has several such spikes
(being peak hour), which make the costs imbalanced
temporarily, but will average out over longer periods
(several days). Another “view” of how fair our algorithm
is can be seen from the right plot in Fig. 7 which shows
the histogram of the aggregate energy and data costs
(comprising guest and home clients) for typical users
over the 24-hour duration. It can be observed that the
power and guest data costs incurred by each AP are
well balanced across all 5 APs, demonstrating that the
algorithm achieves good fairness even though home
usage data costs are significantly different among the
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Fig. 7. Fairness in guest cost, i.e. sum of the energy cost
and the data cost of the APs for heavy (left) and typical
(right) users.

users. The centralized nature of the controller leaves
open the door to more sophisticated algorithms that
can learn user activity patterns and predictively migrate
clients to their home network ahead of activity spurts,
thus eliminating spikes and achieving perfect fairness.

6 RELATED WORK
We now provide a brief overview of recent work in
the context of reducing energy consumption of access
networks, centralized control and AP-level coordination
of WiFi networks.
Wireline access networks: Bianco et al. [21] present
trends from a telco-perspective (Telecom Italia) and dis-
cuss the importance of minimizing energy consumption
for enabling sustainable next generation FTTx access
networks. Greening DSL networks has also received
widespread attention – Tsiaflakis et al. [22] and Guenach
et al. [23] revisit the dynamic spectrum management
problem in DSL systems and make it power-aware
by incorporating constraints for limiting the transmit
power. Their results indicate that there exists a tradeoff
between power savings and data rates. The problem
of (re)designing DSL networks to minimize power con-
sumption is studied by Bhaumik et al. [24] who show
that the energy efficiency of access networks can be
improved by replacing large monolithic DSLAMs with
small DSLAM units closer to the customer.

Mobile devices: Based on the observation that WiFi
radios in smartphones consume significant amount of
power when active, Rozner et al. [25] propose NAPman,
a system to minimize WiFi energy consumption in mo-
bile devices. Although PSM (Power Save Mode) is part
of the WiFi standard, the authors note that competing
background traffic can adversely impact energy con-
sumption. Consequently, an energy-aware fair schedul-
ing algorithm is developed yielding up to 70% savings.
Manweiler et al. [26] argue that NAPman is most effec-
tive when a single access point is connected to multiple
clients. Since in practice a client is within the range of
multiple access points, this scenario strongly impacts
energy consumption. A new system called Sleepwell is
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designed and savings of up to 51% is demonstrated.
Finally, Zhang et al. [27] found that over 60% of the
WiFi energy is consumed when the device is in the idle
listening (IL) state, even in the presence of PSM. While
prior work minimizes the duration a client spends in IL,
their proposal E-MiLi reduces the power consumption
of IL by reducing the clock rate of the radio when the
device is in IL. Results show savings of ≈ 44%.

Wireless access networks: Jardosh et al. [8] and Goma
[4] et al. demonstrate greening enterprise and residential
WiFi networks respectively. However as argued in §1, the
former does not apply to the residential setting because
it does not address heterogeneity and fairness issues,
while the latter uses a distributed approach and places
the onus on end-users, which is fundamentally different
from our technique that is centralized and controlled by
an operator.

Aggregating bandwidth: As the energy saving
schemes primarily rely on bandwidth from neighbor-
ing wireless gateways being pooled and shared across
many users, we now briefly mention few works that
achieve this aggregation. Jakubczak et al. [7] and Tan
et al. [28] propose Link-alike and CUBS respectively to
effectively aggregate and share the uplink bandwidth
of neighboring gateways. Their results indicate that the
throughout of upload intensive applications improve by
more than 30%. Giustiniano et al. [29] show that fairness
is an important metric that needs to be factored in
when aggregating capacity from multiple access points,
which was not considered by Kandula et al. [30]. As
a solution, they propose a system called THEMIS that
incorporates fairness and addresses the problem in a
distributed manner without requiring any changes to
the network. COMBINE by Ananthanarayanan et al. [31]
is a system that significantly improves the download
speed at any node by pooling together bandwidth from
the wide area network. OpenRadio [32], based on the
software defined networking paradigm, advocates pool-
ing together resources from various wireless access tech-
nologies, i.e. WiFi, 3G, LTE etc., for improved network
performance and ease of management. It is important to
note that while the above works aim to maximize system
throughput, reducing the energy consumption has not
been their primary focus.

Centralized control and AP coordination: Central-
ized control has been efficiently leveraged in enterprise
WLANs for fault management [33], power control and
channel assignment of APs [34], and client localiza-
tion [35]. Shrivastava et al. [36] develop a framework
called CENTAUR for mitigating hidden or exposed
terminal interference in enterprise WLANs. CENTAUR
is shown to improve the performance of the network
substantially due to improved utilization of the wireless
medium. Much like our scheme, the centralization func-
tionality of CENTAUR is implemented in a single central
server and requires minor modifications to the APs. No
changes are needed to the end-user client devices. A
system called FLUID was built by Rayanchu et al. [37]

that also employs a central controller and assigns the
centre frequencies and channel widths to the APs dy-
namically, based on traffic demand. Flexible channeliza-
tion combined with data scheduling is shown to further
improve performance. Experimental results demonstrate
that FLUID improves the median throughput by 59%.
Akella et al. [38] develop an algorithm called Power-
controlled Estimated Rate Feedback (PERF) for improv-
ing end-user performance in chaotic (i.e. unplanned and
unmanaged) dense WiFi network deployments. Home
WiFi networks belong to the category of chaotic net-
works. The key idea behind PERF lies in automatic
management of transmission power levels and rates of
APs and clients so that interference between neighbour-
ing APs is minimized. Experimental results highlight
the benefits of PERF; a client of a highly utilized AP
located next to another such pair sees a 20-fold increase
in throughput. In essence, this work shows that it is
possible to improve the performance of WiFi networks
if the APs can be made to coordinate with each other.
In the context of home networks, Patro et al. [39] deploy
an infrastructure called WiSe to measure and monitor
the performance of home WiFi networks. The APs are
configured with specialized software and communicate
with WiSe’s measurement controller using open APIs.
Analysis of traces from 30 households spanning over 6
months show that a majority of the links performed well
but poor quality was observed about 2% of the time.
Finally, Manweiler et al. [40] develop a tool called RxIP
for monitoring the health of residential WiFi networks.
Specifically, the APs announce their IP addresses periodi-
cally. Neighbouring APs that receive these messages then
relay them so that they are received by potential hidden
terminals. As new APs are discovered, neighbouring
APs establish a control channel with these APs over the
wired Internet, thus enabling coordination between APs.
Results show an improvement of 57% in the median
throughput in symmetric hidden terminals.
7 CONCLUSIONS

Residential broadband access gateways are a major con-
tributor to overall network energy consumption due to
their widespread deployment. In this paper, we pro-
posed, evaluated and prototyped a scheme for aggregat-
ing users on to a fewer set of WiFi access points to reduce
energy consumption. We made the following contribu-
tions: (1) We developed a centralized architecture that
works across heterogeneous ISPs and clients, and allows
for fairness in energy savings, (2) We developed (optimal
and heuristic) algorithms, and also studied the tradeoff
between energy savings and session disruptions using
campus WiFi traces (comprising of 30 APs and 25,000
connections), and (3) We prototyped our algorithm in
an experimental test-bed consisting of 6 APs and real
applications, and showed energy reductions of over 60%
with limited impact on user experience. Our scheme is
centralized putting the onus on the operator rather than
the user, thereby significantly reducing the barrier-to-
adoption for wide-scale deployment.
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