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Abstract—Software Defined Networking (SDN) is rapidly
emerging as a new paradigm for managing and controlling the
operation of networks ranging from the data center to core,
enterprise and home. The logical centralization of network intel-
ligence presents exciting challenges and opportunities to enhance
security in such networks, including new ways to prevent, detect
and react to threats, as well as innovative security services and
applications that are built upon SDN capabilities. In this paper
we undertake a comprehensive survey of recent works that apply
SDN to security, and identify promising future directions that can
be addressed by such research.

Index Terms—software defined networking, OpenFlow, net-
work security, threat detection, threat remediation, network
verification, anonymization, data offloading, network functions
virtualization.

I. INTRODUCTION

Computer networks typically consist of hosts interconnected
by switches and routers providing data forwarding and routing
functionality. These forwarding devices are usually black
boxes that run proprietary operating systems and vendor-
specific protocols that have to be individually configured in a
tedious process in which network operators translate high-level
network policies into device-specific low-level commands,
manually input using command-line interfaces. The lack of
unified network control makes network management chal-
lenging, and the painstaking error-prone configuration process
is the leading cause of network faults, bugs, and security
lapses [1] [2]. Furthermore, due to this inflexibility, network
innovation has essentially stagnated, contributing to what some
term the Internet “ossification” [3] phenomenon.

The recently emergent Software Defined Networking (SDN)
paradigm [4] addresses this challenge by separating the packet
forwarding functionality of the forwarding devices, i.e. the
data plane from the control element, the control plane.
This decoupling enables a radical new network architecture:
switches in the network are reduced to basic packet forwarding
devices containing flow tables populated with localized flow
rules. These rules describe how incoming packets will be
handled based on matching fields (such as packet header
content, incoming port, etc.), and are managed by a remote
‘controller’ entity, which communicates securely with switches
potentially using a standard and open interface, such as the
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Fig. 1. The SDN architecture

OpenFlow protocol [4]. To reconfigure a switch as per new
policy, the controller modifies relevant entries in the flow
tables. This may also be done reactively, i.e. a specific packet
may arrive at the switch necessitating that existing flow rules
be modified or new ones be specified, and the controller
updates relevant flow table entries in real-time.

This new architecture where control and forwarding ele-
ments in the network are disassociated, allows for a range of
considerably more flexible and effective network management
solutions. Compared to a purely distributed control plane, a
logically centralized controller not only enables the implemen-
tation of consistent policy across the network in a dynamic and
scalable manner, but also provides application developers with
a unified programmable interface on which to deploy software
and higher level applications. This abstraction is analogous to
that of an operating system [5] in which the controller acts as
the OS kernel which abstracts the forwarding hardware of the
network. In such a case, network operators no longer need to
enforce complex policies manually on individual switches and
routers, instead they can specify high-level declarative policies
for the network as a whole which an application running on
the controller translates and installs in switches in the form
of localized flow rules. A high-level view of this scenario is
depicted in Fig. 1.

In addition, the controller polls flow statistics from network
devices periodically, thereby compiling a centralized real-time
view of network state. This state can be exposed via open
APIs, allowing developers to automate the control process,
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enabling dynamic and efficient network management. Exam-
ples of innovative network management applications include
dynamic load balancing [6], advanced threat mitigation [7],
and virtual machine mobility [8].

SDN has captured the imagination of the research commu-
nity and industry alike and the movement towards adoption
has gained considerable momentum. Universities are actively
building SDN deployments and testbeds [9], [10]. Google
has already deployed SDN in-house for datacenter backbone
traffic and reports an unprecedented network utilization of
up to 95% [11]. There is significant interest from industry
vendors: major commercial switch vendors including Cisco,
IBM, Hewlett-Packard, Dell, Juniper Networks, Brocade Com-
munications and others have announced intent to support or
have already launched switching products that support the
OpenFlow protocol. Industry and vendors have also launched
collaborative efforts such as the Open Networking Foundation
(ONF) [12] and the OpenDaylight project [13] to promote
SDN standardization and innovation, and the IETF and IRTF
have also set up SDN working groups. Market analysts agree
that the SDN market will grow at a phenomenal rate: IDC
predicts it will be worth $3.7 billion by 2016 [14]. ACG
Research estimates that the service-provider SDN market (for
‘live’ SDN deployments) will reach $15.6 billion by 2018 [15].

The ability to view network state in real-time, and pro-
grammatically control network behavior, opens up exciting
possibilities for network security. Security has assumed critical
importance in recent years due to a number of reasons. As
adoption rates for disparate networked devices such as mobile
phones, tablets, and sensors skyrocket, networks face a ‘crisis
of trust’ [16] and reports indicate that security threats continue
to grow and evolve very rapidly [17], [18]. Furthermore,
critical and aging infrastructure, such as automation systems,
factory equipment, and traffic controls, are being brought
online without adequate security and safeguards [19], amid
growing fears of ‘irrational’ hackers [20]. In this paper we
examine how SDN offers new ways to tackle these concerns.

We categorize current SDN-based security research into two
branches, research geared towards protecting the network, and
providing security as a service. The first direction, reviewed
in Section II, deals with security configuration and threat
detection, remediation and verification using SDN. The
consolidation of policies at the central controller enhances
consistency of configuration, helping prevention of attacks.
The centralization of network state makes it easier to detect
intrusions and anomalies, and to react in an agile and coherent
way to isolate or neutralize the attack. As examples, a Denial
of Service attack can be inferred from current network state,
and a threat mitigation application may dynamically reprogram
switches at the network perimeter to drop malicious traffic
flows; a malware outbreak in one section of the network can
be contained by instructing select switches to restrict traffic
flows to that section; and a user on an infected machine can
automatically be routed to a web-server issuing a quarantine
notification. An analogy may be drawn to the ‘immune system
response’ [21] where a centralized intelligence collects infor-
mation from network elements and dispatches the appropriate
response to the infected part.

The second branch of SDN-related security research, re-
viewed in Section III, develops innovative security capabilities
that can be instantiated on-the-fly, thereby offering security as
a service. For example, user identity such as IP address may
be anonymized, affording privacy from targeted advertising
or government surveillance; sensitive data may be offloaded
securely within an enterprise network or across organizational
boundaries; and management of security threats may be out-
tasked to specialized third parties. These security capabilities
need not be always on, they may be selectively invoked on
a need basis for specific traffic flows, thereby permitting an
elastic cost model for the value-add services.

We believe that research in SDN-based security is still in its
early days, and there are several areas in which SDN can play
a pivotal role. In Section IV we discuss the major challenge
of securing SDN itself, and promising new directions, which
include the use of SDN to federate heterogenous networks,
couple overlay networks with hardware, and for service chain-
ing using network functions virtualization.

II. PROTECTING THE NETWORK

In this section we survey the basics of security configuration
using SDN, and discuss new techniques for threat detection,
remediation, and network verification.

A. Security Configuration using SDN

1) Centralizing the Control Plane: The original vision for
software defined network security management is spelt out
by Casado et. al in SANE (Secure Architecture for Network
Enterprise) [22], a clean-slate security solution for enterprise
networks. Enterprises today face a barrage of ever-evolving
security threats and have little choice but to rely on a combina-
tion of security solutions that are complicated, distributed, and
limited in scope. Security policies are typically implemented
as complex, topology-dependent access control lists. Trust is
distributed across multiple components, such as switches, DNS
servers, authentication services (such as Kerberos [23] and
RADIUS [24]) and each of these individual components need
to be protected in turn. If a network element is compromised,
an attacker may be able to identify vulnerabilities and obtain
sensitive information about the network itself, such as the
topology, the location of critical servers, etc. Furthermore,
security enforcement at higher layers may be undermined by
unsecured access at the lower layers.

In SANE, all connectivity in the network is mediated by
a single protection layer that is overseen by a logically cen-
tralized controller in charge of all routing and access control
decisions. High-level declarative policies can thus be specified
in terms of services and principals that are independent of
topology, e.g. Alice can contact service ftp or users in group
bobs-friends can access bob’s streaming-audio server, and
the controller accordingly configures encrypted access routes
across switches and routers. Security is enforced at the link
layer and cannot be undermined by lower layers. The con-
troller is the sole trusted entity in the network and it restricts
network access for unauthorized parties.
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Deploying SANE, however, requires a complete upgrade
to the entire network infrastructure and modifications at the
hosts. To ease deployment issues specifically, the authors
extend their original work and propose Ethane [25]. Ethane
retains SANE’s primary vision of a centralized controller
and introduces the additional element of Ethane Switches,
which consist of basic forwarding hardware with minimal
memory able to track flows in-progress. Ethane Switches can
be deployed alongside Ethernet switches in the enterprise,
and the controller ensures seamless traffic flow across them,
thereby allowing enterprises the option to upgrade their net-
works incrementally. Furthermore, Ethane does not require
modification at the hosts.

However, Ethane suffers from a critical shortcoming,
pointed out by Levin et al. [26], that transitional deployment
using Ethane switches cannot guarantee rigorous enforcement
of network policy (including security) on legacy devices.
The authors note that the real-world process of upgrading is
slow, typically undertaken in stages due to budget restrictions,
but that it is possible to realize the benefits of SDN in
large enterprise networks using a very small number of SDN
switches, provided that every network source-destination path
includes at least one SDN switch. In their solution Panopticon
[27], this fundamental requirement is modelled as a constraint
in an optimization problem to determine optimal upgrade sites
in the network in a cost-aware manner. VLAN technology
(commonly available on enterprise switches) is then used to
isolate network hosts and route network traffic through SDN-
upgraded switches, ensuring that network policy is rigorously
enforced. The technical challenges encountered using this
approach are detailed in [28] and simulation results indicate
that for large campus network topologies (> 1500 switches)
by upgrading as low as just 0.6% of the existing switches, it
is possible to operate more than 80% of the network as an
SDN.

2) Flexible Policies: Software defined networking also al-
lows network administrators to define intelligent and dynamic
policies that strike a cost-effective balance between users’
convenience and network protection. A popular example is that
of Ballarat Grammar [29], a school in Victoria, Australia. The
school, catering to over 1400 students, sought a campus-wide
network security solution to facilitate WiFi access for personal
devices, such as laptops and tablets, and would not be re-
strictive on students and staff. The school installed OpenFlow
firmware on its switches and used Hewlett-Packard’s Sentinel
Security SDN application [30] to route DNS queries through
an intrusion prevention system. This approach effectively
filters for malware on user devices without having to install
and manage specialized software on individual users’ devices.

Administrators at Ballarat Grammar report a further ad-
vantage: previously when a machine would be infected, a
user would report it to the IT department which would
initiate diagnosis and repair, a process spanning several days
to weeks. After deploying SDN, however, infections and
malicious activities are detected and logged in detail by the
Sentinel application, significantly aiding with trouble-shooting
and reducing downtime.

B. Threat Detection

The SDN paradigm offers a new level of visibility into
the network which is ideally suited for traffic monitoring
applications. The controller can program forwarding devices in
the network to conduct fine-grained packet inspection on traffic
passing through the devices. These statistics, periodically
collected by the controller, afford a centralized real-time view
of network state which is exposed via open APIs, allowing
for automation. Developers can write applications utilizing
data mining and machine learning techniques to enable rapid
intelligent identification of threats.

There is also the advantage of flexibility and scale: Mi-
crosoft has revealed that it uses a homegrown SDN solution to
capture and analyze the huge volumes of traffic in its Internet-
facing and cloud services data centers [31]. Data centers typi-
cally consist of thousands of 10 Gigabit Ethernet links, and tra-
ditional packet capture mechanisms such as port mirroring and
SPAN, which require an immense number of physical ports,
are infeasible from a scale and cost perspective. On SDN-
compatible switches, virtual ports can be defined with ease for
packet monitoring purposes. Furthermore, network operators
can define software policies to create service chains, diverting
flows through multiple analysis and inspection points. This
obviates the need to insert dedicated middleboxes at traffic
chokepoints in the physical network.

1) Denial-of-Service Attack Detection: Security solutions
provider Radware has recently developed DefenseFlowTM
[32], the first commercial SDN application that addresses
denial-of-service (DoS) attacks. Radware has furthermore con-
tributed a simplified open source version of DefenseFlow,
Defense4All, to the OpenDaylight project [33].

DefenseFlow directs the network controller to collect spe-
cific flow statistics from forwarding devices in the network
at a per second resolution. The application measures baseline
traffic flows and then monitors for patterns suggestive of a
DoS attack. In the event that a threat is detected, a traffic
diversion mechanism programmatically redirects suspicious
traffic to a dedicated scrubbing center (running Radware’s
DefensePro network behavioral analysis system) for detailed
traffic inspection, signature analysis, and threat neutralization.

2) Traffic Anomaly Detection: SDN-enabled distributed
traffic inspection functionality also has application to anomaly
detection solutions. Anomaly detection mechanisms running
on Internet core routers cannot process adequately the high
volumes of traffic flowing through at line rates, and, addi-
tionally, these mechanisms generate a large number of false
positives, which cannot be dealt with practically in the network
core.

Mehdi et al. [34] make the novel suggestion that the user
home gateway device is ideally positioned to run anomaly
detection mechanisms. The advantage of the home gateway is
that residential data rates are low enough to enable anomaly
detection at line rate, false positives can be screened more
efficiently, and specialized security policies can be managed
on the device by a remote controller.

The authors implement four anomaly detection algorithms
for the NOX SDN controller [5] (and these implementations
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have been made publicly available). These include the Thresh-
old Random Walk with Credit Based Rate Limiting (TRW-
CB), Rate Limiting, Maximum Entropy Detector, and NETAD
algorithms. Experiments are undertaken with real-world traffic
datasets, into which the authors inject portscans and DoS
attacks at varying rates, and perform anomaly detection at
three points in the network: the edge router of an ISP, a
home network router, and a switch in a small office. Results
indicate that the algorithms are unable to satisfactorily identify
anomalies at the ISP level but prove highly accurate running
at the home and small office level.

C. Threat Remediation

In traditional networks, the only possible response to a
threat has been to drop offending traffic. SDN, however, with
on-the-fly programmatic capabilities, makes possible a richer
variety of dynamic responses, including emergency alarms,
dynamic quarantine solutions, traffic redirection for forensics,
and entrapment mechanisms such as tarpits and honeypots.

FRESCO [7], proposed by Shin et. al, is an application
development framework facilitating design of sophisticated
threat detection and mitigation modules. FRESCO provides
a scripting API and basic reusable modules, which can be
assigned relevant parameters and stitched together into a
desired security configuration. At compilation, these modules
produce flow rules which are overseen by FortNOX [35], a
specialized security enforcement kernel which is embedded in
the network controller.

The authors provide two case studies to demonstrate the
power and range of FRESCO: first they build Reflector Net,
an application to detect and entrap malicious scanners. If an
attacker initiates a large number of failed TCP connections, the
ScanDetector module is triggered, prompting the ActionHan-
dler module to redirect the traffic to a remote honeypot. The
attacker therefore receives valid responses from the honeypot
machine, under the impression that it is still communicating
with the original target. In the second example, the authors
demonstrate how FRESCO can be integrated with legacy
security applications: monitoring tools such as BotHunter [36],
in the event that they detect a threat, can invoke security
applications written in FRESCO script to quarantine infected
hosts on the network.

The FRESCO Application Layer prototype is implemented
in Python and operates as an OpenFlow application on NOX.
The kernel, FortNOX, is implemented directly into NOX
as a native C++ extension. However, the architecture and
methodology can easily be ported to other SDN designs and
controllers. Modules are implemented as Python objects. The
research team has built 16 commonly used modules (including
a FRESCO Scan Deflector, an adapted version of the Botminer
[37] application, and a P2P malware detection service) with
plans to build more and release to the research community.

D. Network Verification

A popular area of research is the use of automated tech-
niques to verify network consistency in SDNs. Human opera-
tors are prone to make errors: security professionals attending

the DEF CON 18 conference recently reported encountering
poorly configured networks “more than three quarters of the
time” and they were in strong agreement that badly configured
networks are the main cause of network breaches [1]. A
Gartner study predicts that in the period 2010 to 2015, 80%
of network outages impacting mission-critical services will be
due to ‘people and process issues’, and more than 50% of
these stemming from configuration modifications and updates
and hand-off problems [2].

In software defined networks, such problems may be en-
countered when network controllers are shared by different
users or applications, or multiple controllers operate in the
same domain, leading to conflicting rules, violation of policy,
or network faults, such as loops, black holes, access control
violations, etc. Malicious parties may even bypass security
policies by defining strategic flow rules to re-label and redirect
traffic. Furthermore, in the case of large networks potentially
comprising hundreds of switches, where multiple applications
are able to program the network and SDN controllers have the
capability to install approximately 50k new flows per second
[38], there needs to be quick and efficient mechanisms to
ensure security compliance, fault tolerance and fast failover.

Formal reasoning techniques are a powerful tool in this
regard. The SDN paradigm simplifies the traditional network
in two very important ways: first the network no longer con-
sists of disparate elements running proprietary protocols but
instead comprises uniform switching hardware with standard
functionality and interfaces, communicating using a single
open protocol. Second, network control is no longer purely
distributed over several elements but restricted to the con-
troller. The state and behavior of the network therefore is
the logical outcome of configuration commands dispatched by
the controller, and these can easily be modeled using formal
techniques. This allows administrators to fault-check networks,
verify network properties, and build in failsafe mechanisms.
Formal techniques are already being applied in designing
‘machine-verified’ network controllers [39], programming lan-
guages for software defined networks (such as Frenetic [40]),
and innovative abstractions with verifiable security properties
such as isolated network slices [41] and security monitoring
routing protocols [42].

The earliest work in this area, FlowChecker [43] is a
property-based verifier solution to identify misconfiguration
within the network. FlowChecker encodes switch flow-table
configuration using Binary Decision Diagrams to model a
state machine describing the behaviour of OpenFlow switches
in the network. FlowChecker then uses the model checker
technique to validate correctness of the interconnected network
by pairwise comparison of each pair of flow table rules in the
domain. Network administrators can also use this solution to
analyse the impact of new applications on the network prior to
installation. For experimental evaluation, the authors randomly
generated flow tables of various sizes and overlap, and ana-
lyzed them for configuration conflicts. Results show that for
a network of 120 switches and flow tables containing 1000
rules, it takes approximately 160 ms to verify correctness.

NICE [44] uses automated model checking to identify er-
rors in SDN applications. The network operator inputs details
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about the controller, network topology specification, number of
switches, hosts, etc. NICE tests applications on this schematic
by automatically generating specific traffic flows that study
the network for a variety of different events, and identify
property violations. NICE checks for specified ‘correctness
properties’ which include no forwarding loops, no black holes,
direct paths, no forgotten packets, etc. and operators may
craft modules to code other properties. A key innovation here
is that the authors utilize symbolic execution to bypass the
rapid expansion in state space that typically arises when model
checking is undertaken. Instead of exploring all possible states
in the network, NICE models the impact of a subset of packets
which are representative of all the different packet classes.

The authors prototype NICE using Python for the NOX
controller to test three real applications (a MAC-learning
switch, a Web server load-balancer, and energy efficient traffic
engineering) and uncover several bugs. Experimental results
indicate that NICE is five times faster than existing model
checkers. The advantage of this approach is that finite-state
modelling is a relatively simple verification technique which
can be applied to various types of applications. However, there
are limitations is that in applications with infinite states, this
approach, even while identifying errors, cannot definitively
prove that no errors exist. Furthermore, it is problematic to
scale this approach to large networks in the real world.

In contrast to these solutions which are run prior to network
initialization or application installation, VeriFlow [45] is a
dynamic solution which verifies network correctness as the
network evolves in real-time. VeriFlow is situated as a layer
between the controller and the switches and checks the validity
of network invariants whenever a new forwarding rule is in-
stalled. VeriFlow divides the network into a set of equivalence
classes on the basis of existing rules. Packets falling into a
class undergo the same forwarding decisions throughout the
network. When a new rule is to be introduced, the classes
that will be altered by such a rule are located and network
invariants are verified within those classes. VeriFlow maintains
forwarding graphs for the equivalence classes and traverses
them to query the invariants. Each flow modification is thus
verified in real-time before it is implemented. The VeriFlow
prototype implementation, run using a NOX controller manag-
ing a simulated OpenFlow network on Mininet, validates that
VeriFlow has minimal impact on network performance and
can verify network-wide invariants in near real-time, within
hundreds of microseconds. However, the authors note that it
is not yet feasible to implement Veriflow in a network with
multiple controllers because it is hard to obtain a complete
view of network state in such a case.

FortNOX [35] is a NOX-based security mediation service
that is directly integrated in the NOX controller, and is
able to identify conflicting flow rules in real-time. This is
done by converting all rules to a representation the authors
refer to as ‘alias reduced rules’ by essentially enlarging the
rules’ match criterion to include wildcards and set operation
transformations. These new rules can then be easily validated.
In case of conflicting flow rules, the choice of flow rule is made
depending on the relative level of security authorization of the
requesting party. In case the flow rule is not implemented, the

service returns an error message to the application. The authors
simulated large traffic flows in a network and discovered that
it takes less than 7 ms to compare a candidate flow rule against
1000 existing flow rules.

FLOVER [46] is another solution to verify compliance
of dynamically assigned rules with invariant security policy
in real time. FLOVER translates security policies into a set
of assertions (referred to as Non-bypass properties) which
can be processed and verified using an SMT (Satisfiability
Modulo Theories) solver. Whereas this technique resembles
the modelling approach taken in FlowChecker and VeriFlow,
the authors emphasize a distinct advantage in that they also
model and verify set and goto actions which the earlier works
neglected, thereby identifying a potentially wider range of
policy violations. We consider a simple example: a typical
firewall rule may block traffic specifically originating from
Host A that is addressed to Host B. However, an application
may dynamically insert new rules into flow tables, enabling
intermediate switches to re-label source and destination IP
addresses of incoming packets and redirect them to other
switches (using set and goto directives) such that traffic flows
are routed from hosts A to B without explicitly violating the
firewall rule.

FLOVER is able to resolve all intermediate actions during
the flow rule verification phase rather than the modelling
phase. Experimental results from using a simulated OpenFlow
network on Mininet with a NOX controller, indicate that
FLOVER can detect coverage and modify violations of up
to 200 rules in under 131 ms.

Apart from real time network verification, there is also
a need for fast failover mechanisms to cope with network
disruptions. Typically, if a network link fails in an OpenFlow
network, the switch informs the controller which programs
new flow rules for all the affected switches. This process takes
some time [47] as the controller will have to compute alternate
paths, e.g. run spanning tree protocol, verify that new paths do
not violate policies, etc. and during this period running traffic
in the network may suffer from inconsistent flow and policy
violations.

Newer versions of OpenFlow, however, enable multiple
forwarding behaviors to be defined for the same switch, differ-
entiated on the basis of switch state and specific parameters,
such as whether a link is up or down. Reitblatt et. al [48]
capitalize on this feature to formalize network correctness
and fast failover in a high-level declarative application pro-
gramming language called FatTire (Fault Tolerating Regular
Expressions). With FatTire, programmers do not need to ex-
plicitly program failover forwarding rules, they simply specify
policies and the controller precomputes appropriate backup
paths and populates the switches with flows and backup flow
paths. Now, in case a link or device in the network fails, the
controller no longer needs to intervene, the network elements
switch automatically to the backup rules.

A FatTire program has three policy components: a security
policy (e.g. all SSH traffic must traverse the IDS), a fault
tolerant policy (e.g. forwarding must be resilient for a single-
link failure), and a routing policy (e.g. traffic from the gateway
to the switch can be forwarded using select paths). The system
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TABLE I
SUMMARIZED COMPARISON OF SDN NETWORK VERIFICATION SOLUTIONS

Solution Method Usage Comparison
FlowChecker [43] Binary decision graphs At application runtime Verifies consistency

model checking of network configuration
NICE [44] Finite-state model At application runtime Does not scale well

checking for large applications
VeriFlow [45] Equivalence classes Real-time verification Not suited to a

and forwarding graphs multi-controller setup
FortNOX [35] Alias reduced rules Real-time verification Resolves rule conflicts

based on security privileges
FLOVER [46] Non-bypass properties Real-time verification Includes resolution of set

verified using SMT solver and goto actions
FatTire [48] Intersection operations over At network configuration Computes fast failover

all possible paths rules from policies

then computes all possible paths for these specifications, and
performs the intersection operation, to identify those which
fulfil all criteria. These policies are then translated into Open-
Flow rules using a modified version of the NetCore compiler
[49]. The authors have prototyped their solution which takes
as input a FatTire application and a network topology, and
outputs policies for individual elements in the network.

Table I presents a brief overview and comparison of these
different solutions.

III. SDN SECURITY AS A SERVICE

In this section we examine how the SDN paradigm facili-
tates additional network security measures which go beyond
network protection, enabling services such as anonymization,
enhanced trust, and remote management.

A. Anonymization

In [50], Mendonca et. al present an SDN-based anonymiza-
tion service to counter IP-based profiling on the Internet.
Sophisticated data mining systems today are able to piece
together significant detail about Web users from their IP
addresses, attributes such as location, Internet usage patterns
and possibly even their identity. Static IP address assignment
also renders a user vulnerable to online censorship, active
attacks, and breach of data. Existing approaches to reclaim
anonymity, such as Onion routing overlays (e.g. ToR and
Tarzan) are inefficient and have significant latency issues.

The authors propose AnonyFlow, a solution where Internet
users offload trust to their primary ISPs which assign tempo-
rary IP addresses and disposable flow-based identifiers to user
traffic exiting their domains. This is similar to the concept of
NAT: third parties on the Internet no longer have visibility
in the ISP network and are therefore unable to correlate user
traffic to specific IP addresses with which they build composite
user profiles. The authors present this as an additional service
an ISP may choose to provide, similar to the caller-ID blocking
service which withholds customers’ phone numbers and call
information from call recipients.

Previous attempts at such anonymization solutions required
specialized gateways to track user state and traffic flows.
The SDN paradigm dramatically simplifies this deployment:
the controller can coordinate the implementation of custom
routing policies across multiple switches in the network on an

on-the-fly basis. The anonymization function is performed by
the switches at line speed. Testbed results using commercial
OpenFlow-enabled switches reveal that AnonyFlow causes
near-negligible impact on throughput.

A similar approach is taken by Jafarian et al. [51] to
anonymize network hosts to protect from online adversaries.
Adversaries typically use stealth scanning tools to remotely
probe IP addresses at random in networks to identify targets.
When a host responds, attackers can probe it further to identify
vulnerabilities and launch specific attacks. A typical solution
is to dynamically modify host IP addresses using NAT or
DHCP but the address assignment may be infrequent and
traceable, and inconvenient in that active connections are
disrupted during an address change. The authors therefore
propose OpenFlow Random Host Mutation (OF-RHM), a
mechanism to mutate IP addresses of network hosts randomly
and frequently in a fully transparent manner. In this case, the
controller assigns each host a random and temporary virtual IP
that is translated to/from the host’s real unchanging IP address.
External parties can access the hosts using their virtual IPs
which are circulated via DNS. Access to the host using the
real IP is restricted solely to authorized parties.

OpenFlow-enabled network switches perform the translation
between real and virtual IPs and the controller coordinates
the mutation process across the entire network. Virtual IP
addresses are picked randomly from a pool of unused ad-
dresses in the network. Host IP mutation is set to be rapid
and unpredictable for maximum efficacy, and even in a limited,
fragmented address space, each host should mutate at required
rate such that no IP address is reused for a long period. The
authors treat these requirements as a constraint satisfaction
problem, solved using Satisfiability Modulo Theories (SMT)
solvers. They propose two mutation strategies, Blind Muta-
tion, where virtual IPs are chosen from the address space
with uniform probabilty, and Weighted Mutation, where the
selection is weighted based on previous usage of the particular
IP address. The authors implement OF-RHM in Mininet with
multiple NOX controllers and theoretical results indicate that
OF-RHM invalidates up to 99% of the information gathered by
remote scanners, saving up to 90% of hosts from sophisticated
zero-day worms.
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B. Out-tasking Network Security Management

Small business and home networks are particular targets for
online attack. The reasons are primarily lack of specialized
security protection (e.g. dedicated firewalls, IPS systems,
security expertise) due to the cost factor, a homogenous
and predictable network architecture, and an erroneous belief
in security through insignificance [52]. Kindsight Security
Labs report that 10% of home networks are infected with
malware in the second quarter of 2013 [53]. Small businesses
are particular targets, they are the most victimized in the
category of businesses; 31% of recorded cyberattacks in 2012
targeted businesses with fewer than 250 employees [54]. The
Federation of Small Businesses, the UK’s leading business
organization, comprising some 200,000 small UK businesses,
states that cybercrime currently costs its members up to 800
million pounds per year [55].

Feamster [56] points out that the SDN paradigm enables
users to outsource their network security to professional third
parties who possess operational expertise as well as a broader
view of the network. There are already preliminary moves
towards such an arrangement: basic ADSL modems can be
easily configured to to use third party DNS services such as
Google DNS and OpenDNS which provide protection from
a range of malware, typo protection, phishing and optional
content filtering. Software defined networking enables a com-
plete transition and gives full control to a third party service.
Research trials are already underway [57] where ISPs are
installing Lithium OpenFlow controllers to remotely manage
home networks on behalf of residential customers.

The basic model for residential users is as follows: pro-
grammable network access points in the home periodically
dispatch traffic statistics to the (remotely based) controller
which runs specialized algorithms to detect spam filtering and
botnet detection, and implements the relevant protection poli-
cies (filtering rules, blacklists, etc.). The author identifies open
research challenges in this scenario: devising a methodology
for collecting statistics that strikes the appropriate balance
between the scale of the data collected, efficacy of threat
detection and maintaining user privacy. Suggested solutions
include intelligently sampling the data depending on specific
deployment scenarios and making the process dynamic (i.e.
the controller could have the ability to demand finer-grained
statistics if the need arises). The issue of collecting appropriate
statistics on flows for security monitoring is explored in greater
detail in [58], and specifically in the context of home networks
in [59] and for large networks in [42].

To protect user privacy, the author proposes that ISPs
or home users obfuscate IP addresses in flow statistics and
anomaly detection algorithms work (on aggregate data) at
the level of IP prefixes rather than specific IP addresses.
Furthermore, the user may locally deploy privacy preserving
algorithms to screen sensitive data before the results are
uploaded to a central server.

C. BYOD and Secure Data Offloading

Software defined networking can also be leveraged to secure
data offloading from mobile and handheld devices. Smart-

phones and tablets greatly enhance productivity, but sensitive
data may need to be offloaded from the device on to the
network for further processing, sharing, or archival. Dicta-
phone audio recordings may be offloaded to remote servers for
software-based transcription, and patient data may be collected
from bodyworn medical sensing devices for cloud-based data
mining. There is also a trend among business and corporate
employees to use their personally owned handheld devices
to access corporate networks, creating a wealth of security
problems. In such situations, SDN can dynamically slice and
allocate network resources in a secure and elastic way as per
the specific requirements of offload applications.

Gember et al. [60] identify in more detail the hurdles
facing secure data offloading: offloading may require energy-
intensive processing on the mobile device to capture execution
state and the data transfer may incur problematic latency is-
sues. Additionally, offloading must permit differentiated secu-
rity settings, according varied access privileges and protections
to different classes of data. Offloading, furthermore, must not
rely on dedicated resources (which may cause bottlenecks in
the system or single points of failure), and it must be scalable
(multiple applications may vie to offload data with different
objectives and policies).

To meet these needs, Gember et al. propose Enterprise-
centric Offloading System (ECOS), an enterprise-wide solu-
tion enabling mobile applications to offload data in a tightly
controlled environment as per the privacy, performance, and
energy constraints of users, and process the data by oppor-
tunistically leveraging diverse compute resources. The network
controller negotiates the requirements of the mobile applica-
tion, e.g. is encryption feasible with current energy resources,
are trustworthy compute resources currently available, what
level of security is required, etc. Applications can choose
if they want energy savings or latency improvements and
the controller leverages idle resources from the enterprise
pool. Data is also graded into distinct categories, user-private,
enterprise-private, and no-private, enabling the controller to
implement differentiated service policies for each type. Since
SDN manages flows in real-time, the mobile device can also
move within the network during the offloading process.

ECOS is prototyped using OpenFlow and Android. Exper-
imental results indicate that latency improves by as much as
94%, energy savings up to 47%, and as much as 98% reduction
in execution state that applications need to communicate.

IV. CHALLENGES AND FUTURE DIRECTIONS

In this section we discuss potential challenges and future
security-oriented applications for software defined networking.

A. Securing SDN

Whereas, so far we have summarized research where SDN
enables greater security for networks, we discuss here the
major challenge of securing SDN itself. In a position paper
[61], Kreutz et al. make a persuasive case for the need to
incorporate security and dependability into SDN design from
the group up. They note that threats in SDN are not only of
a different nature as compared to traditional networks, but,
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by virtue of SDN being highly programmable, the potential
impact is also far more serious. They outline certain categories
of threats which may be used to attack SDN, including the
following:

Forged traffic flows may be used to attack network entities,
including DoS attacks on switches and controllers. Switches in
the network may be exploited or hijacked to launch attacks on
other entities. Control plane communications may be targeted
with DoS attacks or exploiting weaknesses in TLS/SSL imple-
mentations. Faulty or hijacked controllers could wreak havoc
in the whole network. Furthermore, the interface between the
controller and high level applications is a potential point of
attack.

The authors also briefly indicate potential solutions for
these threats. Stringent authentication mechanisms and trust
models could counter common identity-based attacks. DoS
attacks may be addressed by enforcing rate bounds for control
plane requests. Controllers should be replicated for resiliency.
There should be a diversity of protocols, controllers and tools
employed to reduce the set of common implementation vulner-
abilities. Mechanisms could be implemented to ensure secure
and timely collection of data forensics and administration of
software updates. Sandboxing techniques could isolate security
domains in SDNs and communication between these domains
could be tightly controlled by well-defined protocols. The
network could also be strengthened by employing tamper-
proof devices to securely store credentials and sensitive data.

Research efforts have already started to address some of
these challenges. For instance, the issue of DoS attacks and
forensics collection is examined in more detail by Shin et
al. in [62]. The authors describe the control plane saturation
attack in which botnets may be used to overwhelm the
control plane with a series of uniquely crafted forged flow
requests and also saturate the limited buffer capacity on the
switches. They also note that current SDN mechanisms for
polling network traffic statistics are not ideally suited for
monitoring applications since they do not provide the desired
level of detail and granularity that may be required to deal
with threats. In response to these needs, the authors present
AVANT-GUARD, a set of extensions to the data plane. DoS
attacks may be mitigated by enabling switches to proxy the
TCP handshake with the packet source before allowing flow
requests to traverse up to the control plane. Essentially, the
switch does not forward flow requests to the controller until the
source successfully completes the handshake and the switch
receives some guarantees that the source is genuine. These
may even involve receiving a few data packets from the source
after the handshake before the switch contacts the controller
with the flow request. Furthermore, AVANT-GUARD also
allows the control plane to define traffic statistics or conditions
for which switches transmit asynchronous notifications and
payload information to the control plane. Switches may even
be instructed to insert pre-defined flow rules into flow tables
when a condition is met. This mechanisms allows security
monitoring applications to define customised alarms, perform
forensics on network traffic, and specify threat reaction strate-
gies for the data plane.

Wen et al. [63] present a first-line defence against potential

network attacks mounted via the controller API interface.
Even if the network itself is fully trusted, malicious or poorly
designed applications can misconfigure the network. To al-
leviate this threat, the authors propose PermOF, a solution
which isolates the controller kernel modules at runtime such
that applications cannot call on them directly, and defines
a set of fine-grained permission categories which allow the
network operator to sharply define access privileges allowed
to applications.

These research efforts are steps in the right direction but
there is an immense amount of work to be done before SDN
can be confidently deployed in the real world. Cyberthreats are
multiplying, evolving very rapidly, and growing increasingly
sophisticated, and the potential impact of successfully attack-
ing a highly configurable network may be catastrophic. We can
no longer afford a reactive security strategy that the industry
took with traditional networks. It is critically important that
the security threats to SDN be realised at this early juncture
in its evolution, and we consider it a promising sign that the
research community is taking note of it.

We discuss next how the SDN paradigm of decoupling
control and data planes may help secure other types of
networks.

B. Federating Heterogenous Networks

The SDN programmable networks vision is already being
applied to unify network management in WiFi networks [64]
[65], to provide programmable interfaces across the wireless
stack [66], for accessing services in IEEE 802.15.4 networks
[67], and in coordinating services across heterogenous net-
works [68]. It is anticipated that SDN will also be a key driver
in the emerging Internet of Things paradigm [69], where the
centralized control element and standardized protocols facili-
tate the process of federating disparate devices such as mobile
phones, smart TVs, computers, household appliances, sensor
devices, healthcare monitors, etc. and enable implementation
of federated policies on top. How to manage privacy and
trust in a seamless and efficient manner across heterogenous
networks and multiple devices is a critical question.

There is already a marked trend in this direction in home
networks research: networking appliances and devices in
homes and buildings is now practical [70] [71] [72], and there
is a critical need to assure the privacy and security of residents
[73]. The model for deployment of home networks is similar
to SDN in that there is a centralized intelligence: certain
research and industry efforts [74] [75] recommend enhancing
the capabilities of the residential Internet home gateway device
to serve as the controller entity and orchestrate operations
between high-level user-defined applications and networked
devices.

There is considerable potential for new research in the
design and implementation of security policies for such scenar-
ios. Smaller devices, such as actuators and sensors, generally
possess limited compute and battery resources, and cannot run
resource-intensive cryptographic protocols. There is therefore
an urgent need for mechanisms which translate security privi-
leges across domain boundaries and contribute to enforcing a
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uniform federated security policy in a seamless and efficient
manner. We expect the controller will play a key role in this
regard. Existing research in wireless sensor networks may
prove useful: an illuminating example is that of Sizzle [76]
which implements a minimal footprint HTTPS stack between
two endpoints, a Web browser and a miniaturized wireless
device. With Sizzle, a user can control resource-constrained
wireless devices (such as sensors, thermostats, etc.) from a
browser window with end-to-end SSL protection. As we noted
earlier, standard SSL operations are not practical for small
devices. In this case, a basestation acts as a gateway device
between the Internet and the wireless sensor network, and
amortizes the high cost of an SSL handshake across multiple
data transfers.

C. Coupling Overlays and Underlays
With advancement in virtualization technologies, overlay

networks have become a popular choice for managing data
centers and enterprise networks, and successful recent ex-
amples include Midokura MidoNet [77], Nicira NVP [78],
IBM’s Distributed Overlay Virtual Ethernet (DOVE) [79] and
PLUMgrid [80]. Overlay networks enable finer customization,
differentiation in services, and remote management, but may
suffer from operational issues in larger and more complex
deployments such as wide-area networks due to the loose cou-
pling between the virtual overlay and the underlying physical
hardware.

We believe SDN provides strong impetus for deploying
overlays in wide-area networks to provide benefits for the
average Internet user. Common overlay networks used today,
including peer-to-peer networks (e.g. BitTorrent), VOIP ser-
vices (e.g. Skype), and content delivery (e.g. Netflix) have little
or no visibility into the underlying network, ISPs are unable
to provide users with performance guarantees, and the user
experience tends to suffer. For this reason the research com-
munity has advocated augmenting overlays to enhance end-to-
end performance and security of Internet applications. These
include mechanisms to proactively detect and reroute around
failed links [81], reduce network latency by strategically em-
ploying network processor subsystems [82], countering DoS
attacks [83], and restricting traffic flow to trusted regions in
the network [84]. Nakao et al. even suggest creating a separate
routing middle layer which extracts topology information from
the Internet and passes it up to the overlay, enabling it to make
path-aware routing decisions [85].

Overlay networks deployed on OpenFlow networks can use
native SDN protocols and open APIs to directly query and
configure the underlying physical network for significantly
improved performance and reliability and concrete service
guarantees. Highly efficient overlay networks can be easily
set up over SDN underlays and configured with desired prop-
erties. We are already witnessing a rapidly growing interest in
unregulated and decentralized peer-to-peer overlays to man-
age cryptocurrencies and secure anonymized communications
(such as Bitmessage [86]). In the future, we anticipate overlays
with verifiable security properties may be designed to enable
routine everyday tasks such as secure banking and online shop-
ping. More esoteric possibilities include bypassing censorship

(such as the Infranet project [87]), or constructing specialized
overlays for sensitive functions such as anonymization [88]
and decentralized electronic voting. SDN could directly con-
tribute to the health of the network by improving lower-level
path selection, enabling load-balancing solutions, and tightly
controlling access into the network.

D. Beyond OpenFlow and Network Functions Virtualization

Currently we are also witnessing a move towards instantiat-
ing sophisticated compute capabilities in the network itself.
This trend goes a step beyond the OpenFlow SDN vision
(exemplified in the work we have covered thus far) in which
switches and routers are considered minimal data forwarding
devices. In contrast, Switchblade [89] uses programmable
FPGA hardware to deploy extra features ‘on-the-fly’ in for-
warding elements, providing functions such as customized
protocol processing, path splicing, etc. Similarly, the Cisco
onePK [90] platform seeks to build greater functionality into
the forwarding path, delivering a range of functions such
as encryption, transcoding, and deep packet inspection, and
release APIs which give developers fine-grained control over
these processes.

Narayanan et al. [91] suggest an application extensibility
framework for deploying middlebox functionality (such as en-
cryption) on programmable switches which is compatible with
the OpenFlow protocol. Their solution abstracts the packet
processing modules on the switch and creates a virtual port on
the switch. Network operators desiring to use the processing
functionality can use OpenFlow rules to route traffic to the
new port.

A complementary trend is that of Network Functions
Virtualization (NFV): specialized network middleboxes (such
as firewalls, encoders/decoders, DMZs, deep packet inspection
units) also suffer from lack of innovation in that they are
typically closed black box devices running proprietary soft-
ware. Researchers have proposed that specialized middleboxes
be defined entirely as virtualized software modules and man-
aged via standardized and open APIs [92] [93]. This brings
in the benefits of reducing expenditures in purchasing and
maintaining customized hardware, and time-to-market for new
services is accelerated. However, the real value of NFV lies
in meeting economics of scaling demand. With the traditional
model, growing demand for services requires purchase and
installation of new hardware which takes time and effort. With
NFV, network services are elastic, and new resources can be
allocated to meet demand in minutes.

SDN is essential to interconnect these virtualized network
functions in a dynamic and transparent manner. Developers
can write powerful applications by stitching virtualized func-
tion modules in desired service chain configurations, and use
SDN protocols to optimize traffic flows along the chain and
maintain end-to-end QoS and policy control. Carriers can use
NFV/SDN in this manner to service flows more accurately and
efficiently.

Open research questions in this context include how to ar-
chitect and manage these middleboxes satisfactorily, to address
the inevitable increase in latency when hardware functionality
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is coded in software, and how to best distribute functions
across the network, i.e. increase ‘in-network’ capabilities for
security functionality such as firewalls, network caching, and
DRM-management in an efficient and scalable manner.

V. CONCLUSION

Research in software defined networking is still in its early
stages, and we consider it a healthy sign that there is already
significant work being done to develop innovative new security
solutions and applications for these networks.

In this paper, we have undertaken a comprehensive review
of security-oriented research in software defined networks.
We have classified current work in two main streams: threat
detection, remediation and network correctness which simplify
and enhance security of programmable networks, and security
as a service, which offers new innovative security functionality
to users, such as anonymity and specialized network manage-
ment.

Furthermore, we discuss possible challenges and future
directions for security in SDN: these include the critical
question of securing SDN itself, of orchestrating security
policies across heterogenous networks, customizing overlay
networks to provide secure environments, and extending the
OpenFlow paradigm with customized hardware and network
functions virtualization and building a richer set of features in
the forwarding path.
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