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Abstract—Continued scaling of switching capacity in the Inter-
net core is threatened by power considerations: Internet Service
Providers face increased Carbon footprint and operational costs,
while router manufacturers encounter upper limits on switching
capacity per rack. This work studies the role of packet buffer
memory on the power consumption of backbone routers. Our first
contribution is to estimate from published data-sheets the energy
costs of SRAM/DRAM packet-buffer memory, showing that it
accounts for over 10% of power consumption in a typical router
line-card; we then show using empirical data from core and
enterprise networks that much of this memory is used for only
a small fraction of time. Our second contribution is to develop a
simple yet practical algorithm for putting much of the memory
components to sleep and waking them as needed, while being able
to control resulting traffic performance degradation in the form
of packet loss during transient congestion. Lastly, we conduct a
comprehensive evaluation of our scheme, via analytical models
pertaining to long range dependent traffic, using simulations of
off-line traffic traces taken from carrier/enterprise networks as
well as on-line TCP flows in ns2, and by implementing our scheme
on a programmable-router test-bed. Our study is the first to show
the feasibility of, and energy savings from, dynamic management
of packet buffer memory in core routers in the market today.

I. INTRODUCTION

The power density of modern core routers is becoming
a serious concern for Internet Service Providers (ISPs) – a
single telecommunications rack today consumes tens of kW of
power, and requires complex cooling systems to manage heat
dissipation. In addition to the large carbon footprint, the high
power consumption and cooling costs account for a significant
fraction of the ISP’s operational expenses. Though routing
equipment is becoming more power efficient, the increase
in efficiency is outpaced by annual increase in throughput
capacity [1], meaning that the problem is likely to worsen
with time.

The gravity of the problem has motivated major chip
vendors, equipment manufacturers, service providers and aca-
demic researchers world-wide to collectively [2] find ways
to manage and reduce the power consumption of telecommu-
nications networks. The problem needs solutions at multiple
levels, ranging from more efficient chips and components, to
higher-level power management techniques that turn off (or
underclock) components and sub-systems at certain times, or
even redesign the Internet for power efficiency. While several
such schemes have the potential to achieve considerable power
savings, they involve significant architectural and/or protocol
changes in the network. The cost and risk associated with such
drastic changes increase the barrier to adoption by ISPs, thus
stretching the time-horizon at which they become practical for

wide-scale deployment. By contrast, in this paper we propose
a power saving scheme that is admittedly more modest in its
energy savings (around 10%), but requires minimal changes
to existing router design, carries little risk of impacting net-
work performance, is almost entirely transparent to network
operators, and is ready for incremental deployment today.

Our specific focus is on adapting the packet buffer memo-
ries in core routers for improved energy efficiency. Today’s
backbone routers operate with Gigabytes of packet buffers
per line-card to handle worst-case congestion scenarios. We
present evidence (in §II-A) that such buffers account for nearly
10% of the power consumed by a typical router line-card.
Further, we examine data collected over several years from
nearly a hundred links in carrier and enterprise networks, and
show (in §II-B) that high link-load (indicative of congestion)
is a relatively rare occurrence, implying that it is wasteful
in energy to keep the entire packet buffer memory always-
on. We therefore propose (in §IV) that router buffer size be
adapted dynamically to track buffer usage, allowing much of
the off-chip buffer memory to be put to sleep when not needed,
thus saving energy. Putting memory to sleep creates the risk
of packet loss that could have been avoided with always-on
buffers. Our scheme can be tuned to reduce this risk at the
expense of reduced energy savings.

We validate our mechanism for dynamic buffer control by
analysis, simulation and experimentation. In §V we develop
a novel method to analytically estimate power savings and
loss rates associated with dynamic buffer control under a
fractional-Brownian long range dependent input traffic model.
We apply our scheme to off-line traffic traces from operational
networks in §VI-A, to on-line ns2 simulations of several
thousand TCP flows in §VI-B, and implement it on an FPGA-
based programmable router in §VI-C. Our evaluations show
that dynamic buffer control has the potential to save most of
the energy associated with off-chip buffering, and its impact
on traffic performance can be made close to negligible. We
hope that our study will persuade router manufacturers to
incorporate dynamic buffer adaptation in core routers, and for
network operators to trial them, as a relatively simple and safe
way of reducing router power consumption.

The rest of this paper is organised as follows: §II motivates
our study on packet buffers. Relevant background work is
summarised in §III. In §IV, we present our dynamic buffer
adjustment algorithm, while §V and §VI evaluate the algo-
rithm via analysis, simulation and experimentation. The paper
is concluded in §VII.
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II. THE CASE FOR REDUCING ROUTER BUFFER ENERGY

We now describe why it is worthwhile to reduce power
consumption associated with packet buffers in core routers.

A. Energy Cost of Packet Buffers

Line-cards in modern core routers are usually equipped with
two types of packet buffer memory: (i) a few Gigabytes of dy-
namic RAM (DRAM), which provides the bulk of the packet
storage, and (ii) several Megabytes of static RAM (SRAM),
which act as the packet cache. These off-chip memory compo-
nents are typically arranged in hierarchical configurations [3].
Focusing first on DRAM, power calculators from Micron [4],
a popular vendor of DRAM components, show that a state-of-
the-art DDR2 SDRAM chip of 1 Gigabit capacity consumes
about a Watt of power under moderate-stress conditions.
When there are few read/write operations, corresponding to
lower workloads, the power consumed is lower but still non-
negligible. It should also be noted that router manufacturers
often use specialised low-latency DRAMs such as Fast Cycle
RAM (FCRAM) and Reduced Latency DRAM (RLDRAM),
which consume about 40% more power than mass-market
DDR2 or DDR3 SDRAM.

Next, the SRAM, which implements the packet cache, typi-
cally consumes more power than the bulk DRAM buffers: for
e.g., a 4 Megabyte SRAM chip (with synchronous pipelined
burst and with no bus latency NoBL) from Cypress [5] con-
sumes around 4 Watts. More importantly, a large fraction of the
power consumption of SRAM is due to the static component
arising from leakage current, which is largely invariant to the
load (i.e. frequency of read/write operations). Based on these
power specifications, earlier works [6], [7], [8] have estimated
packet buffers to account for between 5 and 10% of the power
consumed by a router. As an example, Cisco’s CRS-1 platform
has reported that of the 375 Watts consumed by a line-card,
memory accounts for 72 Watts (19%) [9], and around 10% of
the total power of the system is attributable to buffer memory.

In addition to powering the packet buffer memory, it is
also important to consider the power required to drive the
memory controller circuitry, which implements the logic to
move packets between main memory, cache memory, and
on-chip memory. This is particularly challenging in high-
speed routers which typically have long pipelines, as shown
in [3]. Other complicating factors can include multiple output
queues (e.g. for class-of-service support), and multiple mem-
ory channels/banks across which packets are spread. Memory
controllers, which have the intelligence for managing and
moving packets across these buffers, are integrated into custom
ASICs on most routers, making it very difficult to estimate
their energy footprint accurately. Nevertheless, we be obtain a
reasonable estimate by noting that the DRAM memory con-
troller on the AMD Opteron 6100-series multi-core processor
[10]) accounts for 15-20% of the chip’s power consumption.
When used in a network processor such as EZchip NP-4
[11] (which operates at 50 Gbps and consumes 35 Watts),
the DRAM controllers would conservatively account for 5-7
Watts. Since modern routers have complex memory pipelines
across DRAM, SRAM, and on-chip buffers, and have separate
ingress/egress queueing ASICs (as in CRS-1), it would be
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Fig. 1. CCDF of link load from the Internet2 backbone network.

reasonable to expect that memory controllers consume at least
half as much power as the memory chips themselves.

Using the arguments presented above for DRAM and
SRAM memory, the power consumed by packet buffers (i.e.
memory chips and controllers) can be conservatively estimated
to be around 10% of the total power of a line-card in modern
core routers. This number is high enough to motivate this
study, particularly because buffers are meant to absorb con-
gestion, which is a relatively infrequent event in operational
networks, as discussed next.

B. Link Congestion in Operational Networks

The aim of this section is to present empirical evidence that
the buffer capacity available in routers to deal with worst-
case congestion situations are needed only rarely. Towards
this end, we obtained and analysed traces of link loads (at
granularities of seconds, minutes, hours, and days) spanning
several years, over nearly a hundred links from backbone and
enterprise networks.

We focus on the Internet2 network [12] in this section, due
to link load data it freely provides on its national long-distance
network. Load from over fifty 10 Gbps links at 10-second
granularity between the years Nov 2007 and Nov 2010 was
analysed. Fig. 1 shows the complementary cumulative distribu-
tion function (CCDF) of the link utilisation, i.e. the probability
that in a random 10-second interval, the load exceeds x% of
the link capacity. The top two curves, corresponding to links
from Washington DC to Atlanta and from Chicago to Kansas,
were found to be amongst the most heavily loaded links in the
Internet2 core. In spite of that, the chance that either of these
links had load over 60% in any chosen 10-second interval
was no more than one in a hundred. The other two curves,
corresponding to Seattle to Los Angeles and Los Angeles to
Salt Lake City, are more typical of most links on Internet2,
with load never exceeding 30%. In fact the average load on
many links was well below 20%.

The reader is referred to our earlier work in [13] for
observations using another major Tier-1 carrier ISP and two
enterprise networks. Our analysis corroborates that links in
carrier networks today typically have low load for the most
part, suggesting that large buffers in core routers are used
rarely. Note that this does not preclude transient spikes in link
loads during which times large buffers may well be put to use.
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C. Buffer Occupancy - Analysis / Simulation

We now explicitly depict buffer usage, which we derive
from analysis of the traffic load traces presented above, and
ns2 simulations.

1) Trace Analysis: We generated synthetic traffic of match-
ing load corresponding to the link load data obtained from
operational networks. This is then fed into a custom FIFO
queue simulation to generate the buffer occupancy trace. The
traffic was generated using a simple Poisson model and a more
sophisticated long-range dependent (LRD) model that uses an
underlying fractional Gaussian noise (fGn) process with Hurst
parameter H = 0.85 (the model is described in more detail
in §V). To illustrate the outcome, we consider the Internet2
link from Chicago to Kansas, and show in Fig. 2(a) the load
on that link over a 10-minute period of high load (reaching
96%) observed on 17 Sep, 2009. Fig. 2(b) shows the buffer
occupancy derived by feeding the packet trace to a FIFO queue
simulation (for computational tractability we scaled the link
speed down from 10 to 1 Gbps). As the figure shows, buffer
occupancy barely exceeds 40 KB under the Poisson model,
while the buffer occupancy shows more burstiness with the
LRD model, and is seen to spike occasionally to over 500 KB
(which corresponds to about 4 ms of buffering at the link rate).
The main point presented here is that although the traffic loads
on links in operational networks can lead to large excursions
in buffer occupancy, these occurrences are very rare, and it
is wasteful in energy to have all buffers active at all times to
deal with such rare events.

2) ns2 Simulation: To understand buffer occupancy in the
presence of closed-loop TCP traffic, we conducted tens of sim-
ulations in ns2 using various topologies, link speed settings,
number of flows and mixes of short-and long-lived flows. Due
to space constraints, we present findings from one specific
scenario that had TCP flows from 1000 users multiplexing at a
1 Gbps core link. A vast majority of the TCP flows were short-
lived – file transfer sizes were Pareto distributed and think
times between transfers followed an exponential distribution.
The scenario is described in detail in §VI-B. Fig. 3 plots the
queue occupancy for two link loads over a five second interval.
Fig. 3(a) has 5 flows per user (5000 flows in total) creating
a load of 91%, while Fig. 3(b) has 1 flow per user (total
1000 flows) creating a load of 41%. In both cases the buffer
size was set to to the delay-bandwidth product of 31.25 MB.
The heavy load scenario shows buffer occupancy to be high
much of the time (between 5-25 MB), which presents reduced
opportunity for putting buffers to sleep to save energy. The low
load scenario on the other hand shows that buffer occupancy
seldom exceeds a few tens of KB, presenting ample scope to
save energy by putting off-chip buffers to sleep for much of
the time.

III. RELATED WORK

The work in [14] suggests that choosing appropriate combi-
nations of grooming at the optical WDM layer and switching
at the IP layer can reduce overall network energy consumption,
while [15] suggests choosing the right configuration of inter-
faces and chassis to achieve the desired switching capacity and
minimise energy consumption. Other approaches recommend
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Fig. 2. 10-min link load and buffer occupancy traces on an Internet2 link.
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Fig. 3. Buffer occupancy from ns2 of 1000 and 5000 TCP flows.

selectively turning off or underclocking network elements such
as interfaces and line-cards [16] to save energy during periods
of low load. We refer the reader to a survey paper [19] for a
more comprehensive discussion of proposals for energy con-
servation in telecommunications networks. Although the above
approaches are promising, they require major architectural
and/or protocol changes to the network (e.g. delaying packets
to aggregate them into bursts, and new routing protocols).
These incur high costs and/or overhead for ISPs, making them
less likely to be deployed in the immediate future. By contrast,
our approach in this paper stands a much better chance of
incrementally being deployed in the short term.

Our work is also partially inspired from recent debates
regarding the size of buffers needed at core Internet routers.
The work in [20] shows that buffers can be safely reduced
by two to three orders of magnitude, and even reduced to as
low as a few tens of packets [21]. While the debate about
the right amount of buffering continues [22], reality remains
that vendors continue to build routers with large buffers. That
being the case, our approach, whereby router buffers are
dynamically activated only when needed (thereby conserving
energy), is likely to be more favourable to operators, since it
eliminates the risk of adverse impact on traffic performance
while still yielding a tangible benefit in terms of energy
savings. Moreover, since we adjust buffer size at run-time,
ISPs can gradually become comfortable with the idea of
operating with reduced active buffers, making them more
likely to adopt routers built with smaller buffers in the future.

IV. DYNAMIC BUFFER ADJUSTMENT

In this section, we develop a simple and practical dynamic
buffer adjustment algorithm.

A. Buffer Architecture

Different routers employ different packet buffer memory
architectures. Thus, in this paper we consider a fairly generic
three-level hierarchical model, obtained from [3], and depicted
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in Fig. 4. As shown in the figure, packet memory comprises
on-chip (within the Network Processor (NP) or ASIC) buffers,
off-chip cache (SRAM), and off-chip bulk memory (DRAM).
On-chip buffer memory has capacity BI , which is typically a
few tens or hundreds of Kilobytes; for e.g. EZchip’s 10-Gbps
NP has 256 KB of on-chip packet memory while the Metro NP
used in Cisco’s CRS-1 router can hold 188 packets on-chip.
The SRAM cache capacity is denoted by BS , which is of the
order of a few MB, while the bulk DRAM has capacity BD,
of the order of several GB. The buffer memory can support
multiple FIFO queues (per interface and/or class-of-service),
and head and tail blocks of packets for each queue are moved
between memory hierarchy levels as needed in a pipelined
fashion.

At 40 Gbps line rate a packet can arrive every 8 ns. To cater
for this speed and latency requirements, a number of memory
banks or chips are employed in parallel. Fig. 4 illustrates
the architecture. It shows four SRAM chips, each with 16
data-pins, operating in parallel to present a 64-bit data bus
to the network processor (via the controller) for increased
throughput. As DRAMs are slower than SRAMs, by a factor
of four, DRAM is accessed via a wider data bus – the figure
shows DRAM organised as a 4× 4 grid, with multiple chips
within a row operating in parallel to increase data width, while
each successive row adds to buffer depth. A packet stored in
off-chip memory will therefore straddle all chips within one
row of DRAM (or SRAM). In practice, each row (or each
column, depending on the data-bus widths inside the router)
of DRAM chips could be realised with a dual in-line memory
module (DIMM). Note that the packet memory architecture
presented here is generic and so the data-bus widths and
number of memory chips in the figure suffice to illustrate the
concept. These numbers would need to be adapted suitably
when analysing a specific router. To be generic, we use the
term NR to denote the number of rows of DRAM chips in
this memory organisation.

Custom ASICs on board a line-card typically house the
memory controllers, and it is not uncommon to have sev-
eral concurrent controllers. For ease of illustration we have
shown a single aggregated controller for DRAM and SRAM,
respectively. Our algorithm will put to sleep or activate an
entire row of DRAM or SRAM memory chips, and operates
as follows. As buffer occupancy falls, DRAM row-3 can be

put to sleep, followed by row-2, and so on, till at some point
the entire DRAM (and its controller) may be placed in the
sleep state. Conversely, when buffer size needs to grow, row-0
is activated first (along with the controller), followed by row-
1, and so on. We note that the FIFO nature of queues ensures
that successive packets can be stored in successive memory
locations – such compaction permits unused rows of memory
chips to be put to sleep. The DRAM controller is put to sleep
if and only if all DRAM memory chips are in the sleep state,
and likewise for the SRAM. Based on data-sheets of SRAM
and DRAM components, we estimate that it takes no more
than 50µs to switch on (i.e. to bring from inactive to active
state) the SRAM (controller and memory), and likewise about
500µs for the DRAM.

B. Energy Model

The power consumption of DRAM is tightly coupled with
the frequency of read/write operations. To keep our energy
model simple, we approximate the DRAM as being in one of
three states: active (i.e. high frequency of read/write opera-
tions), idle (i.e. little or no read/write operations), and sleep
(i.e. read/write disabled). Each row of DRAM (as shown in
Fig. 4) of capacity 2 Gigabits consumes 2W when active,
200mW when idle, and 20mW when asleep – these numbers
are derived from Micron [4] DDR2 specifications. As shown
in the figure, larger DRAM buffer (1 Gigabyte in this case)
is realised using multiple rows of DRAM chips (4 rows of 2
Gigabits each), and the power therefore scales linearly with
buffer size. The DRAM controller, which controls the entire
DRAM buffers, is assumed to consume half the power of the
entire DRAM memory, namely 4W when active (i.e. when
any row of DRAM is active), 400mW when idle (i.e. when no
row of DRAM is active), and 40mW when asleep (i.e when
all DRAM rows are in sleep state). We believe this model for
DRAM power consumption is simple yet realistic, and can
be customised to the architecture of the specific router whose
buffer memory is being optimised for energy.

The power consumption of SRAM comprises two parts: a
static component due to leakage current that increases with the
number of transistors, and a dynamic component that is pro-
portional to switching frequency (i.e. read/write operations).
As the static power dominates [24], for simplicity our model
assumes that the SRAM power is invariant to workload. We
therefore consider SRAM to be in one of two states: active and
sleep. For an SRAM of size 4 MB, we assume the active and
sleep state powers to be 4W and 40mW, respectively. These are
derived from Cypress [5] data-sheets. As before, the SRAM
controller is assumed to require half the power of the SRAM
(2W when active and 20mW when asleep).

In our evaluations further on in this paper, the baseline
power (i.e. one which does not employ our energy manage-
ment scheme for putting packet buffer elements to sleep) is
estimated by assuming that SRAM is always active, and a
row of DRAM is active or idle depending on whether the
buffer occupancy spills over to that row or not. Our algorithm
additionally puts both SRAM and DRAM rows into sleep state,
and the resulting power savings are expressed as a percentage
of the baseline. We only consider the power consumption of



5

off-chip buffer memory; the on-chip buffers internal to the
network processor are assumed to be always-on, and their
energy is therefore not explicitly modeled.

C. Algorithm for Dynamic Buffer Adjustment

In order to save maximum energy, active buffer capacity
should track the actual queue occupancy, and so any off-chip
buffer memory that is not needed can be put to sleep. However,
the risk in following this approach is that if a sudden burst of
traffic arrives, then packets from the burst may have to be
dropped because there may not be sufficient time to activate
the buffer memory. Thus, in order to control how aggressively
or conservatively we want to track the buffer occupancy, we
introduce a parameter α ∈ [0, 1) in our algorithm. The idea
is to make the total active buffer capacity B at any time
instant stay between the lower bound of the current queue
occupancy Q and upper bound of the maximum available
buffer space BI + BS + BD. One simple way to do this
is to use a linear combination of the two extremes, i.e. set
B = αQ + (1 − α)(BI + BS + BD). Choosing α = 0 (the
extremely conservative setting) sets active buffers to maximum
available buffers, essentially disabling the algorithm. Choosing
α = 1 (the aggressive setting), would make the active buffer
capacity track the exact queue occupancy – this would be
equivalent to saying that buffer space is created (by activating
memory) as and when a packet arrives. Since memory takes
non-zero time to become active, this would result in high loss.
Choosing α in [0, 1) allows the energy versus loss trade-off
to be controlled. Our algorithm is presented formally below,
taking into account that memory can only be activated/put
to sleep in discrete quantities (i.e. capacity of the SRAM or
DRAM row):

Algorithm 1 Determine active buffer size B (in bytes)
Inputs: Constants: α, BI , BS , BD, NR

Variable: current queue occupancy Q
Output: Buffer capacity B that should be active

1: if Q < αBI then
2: B = BI /* on-chip buffers only */
3: else if Q < α(BI +BS) then
4: B = BI +BS /* on-chip and SRAM buffers */
5: else
6: BA = (1− α)BD + αmax{0, Q−BI −BS}
7: KD = ⌈ BA

BD/NR
⌉ /* number of DRAM rows */

8: B = KD.BD/NR +BI +BS

9: end if
10: output B

The algorithm above takes as input the user parameter α
and the current queue occupancy Q (in bytes). If the queue
occupancy is found to be low, i.e. on-chip buffer occupancy is
below fraction α (step 1), all off-chip buffers are put to sleep
(step 2). Otherwise, if occupancy of the on-chip and off-chip
SRAM is below fraction α (step 4), only on-chip and SRAM
buffers are kept on. If it is deemed that DRAM needs to be
on (step 5), the desired DRAM capacity BA is computed as a
linear combination of the total DRAM capacity (weighted by
1− α) and the current DRAM occupancy (weighted by α) in

step 6. The number of rows of DRAM chips that need to be
active to achieve this desired DRAM capacity is deduced in
step 7, and the corresponding buffer size in bytes (including
on-chip, SRAM and DRAM buffers) is determined in step 8
and returned in step 10.

D. Discussion

Our algorithm is relatively easy to implement in hardware.
It is executed upon a packet arrival or departure event, i.e.
whenever the queue occupancy Q changes. Note that if 1−α
is chosen to be a negative power of 2 (e.g. α = 0.75 or 0.875),
then all steps can be performed without any multiplication or
division operations, since the product in steps 1 and 3 can
be precomputed for given α, and steps 6-8 can be realised
using shift and add operations. An additional memory row
(i.e. SRAM or a row of DRAM) is activated whenever the
algorithm returns an active buffer size B that is higher than
what is currently active, and vice versa. However, to prevent
memory components toggling between active and sleep states
in quick succession, we introduce some hysteresis protection;
specifically, our implementation (described in §VI) mandates
that any memory component, once active, should not be put
to sleep for at least 1ms.

We have intentionally chosen to keep our algorithm simple,
and have strived to have only one control parameter α. It is
easy to envisage any number of more complex algorithms for
determining the best buffer size, such as by attempting to pre-
dict how queue occupancy will evolve, but we believe they will
be too complex for real-time hardware implementation. There
are some unavoidable risks in turning buffer memory elements
on/asleep to save energy. In an exceedingly improbable case,
on-chip buffers of size BI = 100 KB can go from zero to full
occupancy within 1.25µs at input rate of 640 Gbps (if each
of the 16 CRS-1 line-cards sends traffic at 40 Gbps to the
same egress line-card), which is much faster than the SRAM
turn-on time of 50µs. Likewise, SRAM of capacity BS = 4
MB can fill within 50µs at 640 Gbps, an order of magnitude
quicker than the DRAM turn-on time of 500µs. However,
such scenarios are worst-case, and were never observed in
the traces, simulations, and experiments we describe in §VI.
To protect against typical bursts of packets that need to be
absorbed while buffer memory is being activated, we found
that using α ∈ [0.8, 0.9] ensured sufficient vacant buffer space
for such transients, while still saving significant energy. The
router manufacturer may set α at a default value in this range,
and network operators can tune it if they prefer a different
trade-off point between the benefit (of energy savings) and risk
(impact on traffic performance). The next two sections evaluate
our scheme via analysis, simulation, and experimentation.

V. ANALYTICAL MODEL

We develop an analytical model to predict loss and power
savings from our dynamic buffer adjustment scheme. Our
model is developed for the case of on-chip memory overflow-
ing into SRAM (since that is when the losses are maximum) -
the same approach can be directly applied to model overflows
from SRAM to DRAM or from one row DRAM to another,
but is not discussed here due to lack of space.



6

t

Bαb = I

BI

LceLoss

τon

τ1 τ2τb

t0

τce

τb τ iΣ=
i

Q(t)

Fig. 5. Entities required by the analytical model to estimate loss.

Our analysis uses a fluid model of traffic, consistent with the
Norros model for LRD traffic [25] (packetized traffic will be
considered via simulation in the next section). It is well-known
that Internet traffic exhibits LRD properties. Unlike traditional
queueing models, which are useful for analysing Markovian
traffic, fluid models have been shown to be tractable when
analysing systems with LRD traffic. In our fluid model, time
is discretized into small slots (of δt = 1µs in our case), and
the volume of traffic arriving in the i-th slot is given by:

Aδt(i) = m+ σxi (1)

where m is a constant traffic rate (e.g. 800 bits/µs), xi is
the i-th sample of a standard (zero mean and unit variance)
fractional Gaussian noise (fGn) random variable (with chosen
Hurst parameter H = 0.85 in our study), and σ is used to scale
the standard-deviation of the fGn (we use σ = m/2 to ensure
that no more than 2.2% of samples are truncated when the
quantity in the right side of (1) becoming negative). We use
our filtering method of [26] to generate very long sequences
(512 million samples) of high-precision normalised fGn values
xi that will be used for simulations to validate our model.

We define the following entities required by our analysis,
and depicted in Fig. 5: A busy period is defined as a contiguous
interval of time over which the queue is non-empty. We define
a congestion event as the first instant t0 within a busy period
that the buffer occupancy reaches the threshold αBI ; at this
time, off-chip SRAM turn-on is initiated, and the SRAM
becomes available for use τon = 50µs subsequently. A busy
period which has a congestion event is termed a congested
busy period. As shown in the figure, not all busy periods are
congested, and losses happen within a congested busy period if
and only if the on-chip buffer overflows during the τon = 50µs
during which the SRAM is being turned on; further, the SRAM
is turned off at the end of each congested busy period.

Our approach to estimating loss probability proceeds as
follows: we first consider an arbitrary congested busy-period,
and estimate Lce, the mean volume of lost traffic (in bits)
during the congestion event. We then compute the expected
time τce (in µs) between congestion events. Dividing Lce by
τce gives us the mean loss rate in bits/µs, which is then divided
by the mean traffic arrival rate m to obtain bit loss probability:

L = Lce/mτce (2)
A. Estimating loss per congestion event (Lce)

Let t0 denote the time instant within the congested busy
period at which the buffer occupancy reaches the threshold

αBI ; this triggers the SRAM to be turned on, which is ready
for use at t0+τon. Loss can happen only if the arriving traffic
in [t0, t0+τon] exceeds the sum of the available on-chip buffer
(1 − α)BI and the service cτon that can be provided in that
interval, where c is the service rate (1 Gbps or 1000 bits/µs
in our example). Thus the volume of lost traffic is

Lce = [A[t0, t0 + τon]− cτon − (1− α)BI ]
+

= [

τon∑
i=1

Aδt(i)− cτon − (1− α)BI ]
+

= [σX(τon) − (c−m)τon − (1− α)BI ]
+ (3)

where the arriving traffic follows the Norros model in (1),
and we use X(τon) =

∑τon
i=1 xi to denote the aggregation of

fGn samples over τon slots. It is known that the aggregation
of m standard fGn samples having Hurst parameter H is also
Gaussian with variance mH [27, pg 19], so we have X(τon) ∼
N (0, τHon).

Noting that Lce is positive only when X(τon) ≥ X
(τon)
min =

((c − m)τon + (1 − α)BI)/σ, we can now compute the
expectation of the volume of traffic lost during the congestion
event by integrating over the distribution of X(τon):

Lce =

∫ ∞

x=X
(τon)
min

Lce
1

τHon
√
2π

e−x2/2τ2H
on dx

=
σ

τHon
√
2π

∫ ∞

x=X
(τon)
min

xe−x2/2τ2H
on dx

− (c−m)τon + (1− α)BI

τHon
√
2π

∫ ∞

x=X
(τon)
min

e−x2/2τ2H
on dx

=
στHon√
2π

e−((c−m)τon+(1−α)BI)
2/2σ2τ2H

on

− (c−m)τon + (1− α)BI

τHon
Φ(

(c−m)τon + (1− α)BI

στHon
)

where Φ(x) = P (X > x) is the tail probability of the standard
Gaussian variable X . This expression allows us to estimate Lce

in closed form.
B. Estimating time between congestion events (τce)

To estimate τce, we deduce τb, the mean length of time that
the queue exceeds a level b during a congestion event, and
P [Q(t) ≥ b], the probability that the queue exceeds b, where
b = αBI . In an arbitrary time interval T , the queue exceeds
level b for a total time T × P [Q(t) ≥ b] and so the mean
number of congestion events with level b in T is P [Q(t) ≥
b]T/τb. The average time between congestion events is then
τce = τb/P [Q(t) ≥ b] giving an average loss rate of Lce/τce.

In the case of Norros (fractional Brownian) traffic, no exact
closed-form solutions are known for the required quantities τb
and P (Q ≥ b). However an approximation for τb is developed
in [28], based on the distribution of the maximum queue
length for fractional Brownian traffic and a Poisson clumping
approximation, as

τb ≈
∫ ∞

0

Φ̄

(
ct− µrb,db

(t)√
σ2
rb
(t)

)
dt (4)

where Φ(x) is the tail probability of the standard normal
distribution, c is the scaled surplus service rate and µrb,db

(t)
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Fig. 6. Comparing analytical estimates of (a) loss probability and (b) SRAM
power consumption against simulation.

and σ2
rb
(t) are the mean and variance of fBm traffic with Hurst

parameter H and conditioned on the queue increasing from
empty to a level b in the time interval rb = bH/(c(1 − H))
(the critical time scale of fBm traffic).

An approximation for the queue occupancy P (Q ≥ b) for
fractional Brownian traffic with mean net input rate m and
standard-deviation over a unit interval σ is given in [29] as

P (Q ≥ b) ≈
∫ ∞

b

cx
1−2H

H e−
x2−2H (1−H)2H−2|m|2H

2H2Hσ2 , (5)

where
c = ναβ/ν/Γ(β/ν),

α =
(1−H)2H−2|µ|2H

2H2Hσ2

and β = (1 − H)/H , ν = 2 − 2H , and Γ is the gamma
function. The integral can be carried out in closed form in
terms of the incomplete gamma function.

C. Estimating overall loss and power savings

Using the closed-form expressions for Lce and τce above,
we compute the loss probability L given in (2). Simultane-
ously, we also compute the SRAM power usage by making
the approximation that it is on whenever the on-chip buffer
occupancy is above the threshold, namely P (Q > αBI),
estimated from (5). To validate our model we wrote a slotted
simulation (with slot size 1µs) in which fluid LRD traffic
arrives as per the Norros model described in (1), for which we
generate long fGn sample paths xi (512 million samples) using
our filtering method in [26]. This fluid traffic (in bits) is served
by a link operating at 1 Gbps, with queueing occurring in the
on-chip buffer of size BI = 16 KB and (practically) unlimited
off-chip SRAM. The SRAM is triggered to turn on whenever
the on-chip buffer occupancy reaches αBI for fixed parameter
α ∈ [0, 1], and is subsequently ready for use τon = 50µs later.

Fig. 6(a) shows the bit-loss probability associated with
waking up the SRAM, when load is 80% and α varies from
0.7 to 1 (lower values of α lead to negligible loss that
cannot be measured accurately in simulation). As expected
loss increases steadily with α, since a higher threshold leaves
smaller margin of on-chip buffer capacity to absorb bursts
while the SRAM is turning on. The analysis under-estimates
the loss by about an order of magnitude; this is not surprising,
since expressions (4) and (5) are asymptotic approximations
that do not capture multiplicative factors. It should however
be noted that the slopes of the analysis and simulation curves
are very well matched, validating the analysis as a good
approximation. Further, Fig. 6(b) shows the percentage of time
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Fig. 7. Buffer occupancy and active buffers trace for α = 0.8 and 0.9.

that the SRAM is on, which is seen to fall steadily with
α. The analysis under-estimates SRAM usage, since it only
counts periods when the occupancy is above the threshold,
whereas the simulation keeps the SRAM on till the end of the
busy period; nevertheless, the two curves match well in slope,
again validating our analysis. Our subsequent evaluation will
conduct simulations and experimentation with packetized input
traffic and closed-loop TCP traffic for real-world validation.

VI. EVALUATION

We now evaluate the efficacy of our algorithm using traces
from real Internet data, on-line simulations using TCP and a
real-time implementation on a testbed of NetFPGA routers.

A. Off-Line Trace Analysis

We used time-varying traffic load traces obtained from
carrier and enterprise networks (as discussed in §II-B) and
generated synthetic Poisson and long range dependent (LRD)
traffic, which was in turn fed into our simulation of our
algorithm. The performance metrics such as power savings
and packet loss ratios were recorded.

1) Traffic Generation: We evaluated our algorithm using
both Poisson and LRD traffic. The mean rate of the generated
traffic for each link was varied as per the link load trace for
that link. Consider the Internet2 link from Chicago to Kansas,
shown in Fig. 2(a). The load on that link is measured every
10 sec, and so we varied the mean rate of the generated traffic
over each 10-sec interval to match the measured load. As
shown in Fig. 2(b), the Poisson traffic did not exhibit sufficient
burstiness to cause high queue occupancy. The rest of this
section therefore presents results from the LRD traffic model.
The burstiness generated by this traffic model reflects closely
the burstiness of Internet traffic. Our LRD traffic generator,
described in Section V, accumulates the resulting fluid volume
into packets of variable size with distribution derived from
CAIDA’s measurements over 87 million packets at the NASA
Ames Internet Exchange (AIX) [30]. We note that to generate
traffic traces for sufficiently long periods (> 10 min), we had
to scale the 10 Gbps links down to 1 Gbps.

2) Dynamic Buffer Adaptation: We fed the packet trace
discussed above into our algorithm for dynamic management
of packet buffer memory. As mentioned previously, the loads
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measured on the links were very low for the most part. Thus,
to illustrate our algorithm we choose the load on the Chicago
to Kansas Internet2 link corresponding to a 10-min window
observed on 17 Sep, 2009. As depicted in Fig. 2, despite
this 10-min interval having relatively high load, the queue
occupancy did not exceed 600 KB. Clearly, these packets
can be easily accommodated in on-chip and off-chip SRAM
memory, and there would not be any need for storing packets
in off-chip DRAM buffers. Nevertheless, to illustrate the
operation of our algorithm, we assume that the router has
capacity to buffer 16 KB on-chip, 80 KB in off-chip SRAM,
and 512 KB in off-chip DRAM (organised as shown in Fig. 4).

The buffer occupancy trace and the buffer size determined
by our algorithm over a chosen 2-sec interval are shown in
Fig. 7. It can be seen from the figure that the algorithm initially
places all off-chip buffers in the sleep state, and sets the active
buffer size to 16 KB, corresponding to the on-chip buffer size.
Then, as the buffer occupancy increases (at around 179.2 sec),
the algorithm first activates SRAM, and subsequently each
row of the DRAM. Finally, the off-chip memory is again
placed in the sleep state by the algorithm when the buffer
occupancy falls beyond 180.2 sec. The impact of parameter
α on how aggressively the algorithm tries to save energy can
also be seen: there are several instances where the α = 0.9
curve is seen to track the actual occupancy curve more closely
than the α = 0.8 curve. Two things to note here are: there
are instants where the buffer occupancy overshoots the buffer
size (e.g. at around 179.5 sec, see inset) since it takes time
to activate each memory element, and this causes loss that
could have been avoided if buffers were always-on. Second,
while we have chosen a narrow period of particularly high
load, in general loads are quite low and much of the off-chip
memory can safely be put to sleep, saving most of the off-
chip buffering energy. This trade-off between energy-savings
and loss is quantified next.

3) Power vs. Loss Trade-Off: To evaluate the power vs. loss
trade-off performance of our algorithm, we applied it off-line
to the traffic trace considered above, namely the Internet2’s
Chicago to Kansas link, and studied the impact of different
values of the parameter α. When α = 0, the algorithm
is effectively turned off. As α was increased and until it
approached 0.7, the power savings were not very significant
(typically < 50% because the SRAM was active for over 80%
of the time), and alongside there were no packet losses induced
by the algorithm. This is because at low values of α the
algorithm is very conservative, and activates off-chip memory
well in advance of the on-chip buffers overflowing. The SRAM
state transition frequency (i.e. from active to sleep and vice-
versa) varied between 5 and 10 times/sec, while it was < 1
for the DRAM rows. The performance of the algorithm when
α is in the range (0.7, 1) is depicted in Fig. 8. When α = 0.8,
the algorithm activated SRAM for only 2.66% of the time,
which is substantially lower than when α = 0.7. The four
DRAM rows were activated for only 0.83%, 0.61%, 0.20%
and 0.05% of the time. The SRAM toggled between states
62.4 times/sec, while the DRAM rows toggled states between
0.1-2.7 times/sec. Note that the baseline power consumption
was 6.66W, and the average power consumed by running

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

0.7 0.75 0.8 0.85 0.9 0.95 1

P
a

ck
e

t 
lo

ss
 r

a
ti

o

P
o

w
e

r 
(a

s 
%

 o
f 

b
a

se
li

n
e

)

alpha

Power (% of Baseline)

Packet loss ratio

Fig. 8. Power consumption (% of baseline) and loss trade-off for various α.

the algorithm was 0.34W, which is only about 5.17% of the
baseline power. However, this comes at the cost of increased
packet loss due to sudden bursts arriving when the buffer
memory is in the sleep state: for α = 0.8, there is loss for
about 2×10−5 packets (which is within the tolerance of 10−3

typical of many Service Level Agreements (SLAs), e.g. [31]).
The figure shows that as α increases to 1, power consumption
(left axis) falls, while loss (right axis) increases. The operating
point on this trade-off curve can be chosen by the operator, and
will depend on the memory configuration and size, as well as
traffic characteristics, cost of power, and criticality of traffic.

B. On-Line ns2 Simulations with TCP

In this section, we evaluate the performance of the algorithm
in the presence of TCP traffic, which is known to carry
over 90% of Internet traffic. We implemented the algorithm
in the ns2 simulator and carried out numerous simulations
comprising different topologies, link speeds, number of flows,
and mixes of long-/short-lived TCP flows. In what follows, we
present results from a small subset of scenarios to illustrate
the efficacy of dynamic buffer adaptation with a realistic traffic
mix under different loading conditions.

We consider a three-level hierarchical topology comprising
one core bottleneck link fed by 50 edge links, with each edge
link aggregating traffic from 20 access links. In all there were
1000 source hosts generating TCP traffic. The capacity of
the core and edge links was set to 1 Gbps, while the access
links had capacity uniformly distributed in [100, 300] Mbps.
The mean round-trip time (RTT) for the flows was 250 ms.
We used the TCP Reno version and varied the number of
flows from 1000 to 5000 by varying the number of flows per
user, to simulate different loading conditions. Our simulations
comprised both short- and long-lived flows. The former models
HTTP transfers with Pareto distributed file-sizes (mean 100
KB and shape parameter 1.2) and exponentially distributed
think-times of mean 1 sec, while the latter represents persistent
FTP transfers. The number of long-lived flows (50) accounted
for only a small fraction of the total number of flows. These
parameter settings are consistent with prior literature and based
on measurement studies of Internet traffic. The maximum
window size was set to a very large value so that transfers are
never limited by the window size. Our simulations ran for over
180 sec, and all links were equipped with delay-bandwidth
buffers. The simulation settings (link speeds, number of flows)
are at the limit of the memory and CPU constraints available
on our ns2 environment.



9

TABLE I
POWER SAVINGS, AVERAGE FLOW COMPLETION TIMES (AFCT) AND

PACKET LOSS FROM NS2 SIMULATIONS

Workload Load AFCT Power saved Packet loss
Low 21.5% 2.233 sec 97.4% 0

Medium 41.1% 2.244 sec 97.2% 0
High 59.8% 2.250 sec 83.4% 10−7

Heavy 78.6% 2.295 sec 52.9% 10−6

Very heavy 90.9% 2.757 sec 11.6% 10−6

We ran the simulations with our algorithm implemented at
the core link, and evaluated the performance for various values
of the parameter α in [0.75, 0.95]. The results are summarised
in Table I. When the workloads were low to medium (up to
41%), the off-chip SRAM and DRAM buffers were used for
only ≈ 0.25% of the time, thus saving over 97% of the off-
chip buffering energy. There were no packet losses as a result
of the buffers turning active/asleep, and so the average flow
completion time (AFCT) for HTTP flows was identical to the
case when all buffers were always-on. In addition, all values
of α in [0.75, 0.95] gave identical results.

Next, under high load (i.e. 59.8%), the off-chip buffers were
used about 12.3% of the time, and our algorithm saved in
excess of 83% of energy. A very small fraction of packets were
lost (of the order of 10−7), which barely increased AFCT by a
few ms. Even under heavy workload regime (78.6% load), we
found that our algorithm could save over 50% of the off-chip
buffering energy as the SRAM/DRAM buffers were used for
only 40% of the time. Increase in packet loss (of 10−6) and
AFCT (< 4 ms) were also negligible.

Finally, when the load was very heavy (> 90%), it is not
surprising to see that off-chip buffers were used nearly 82%
of the time, resulting in about 11% power savings. The loss
induced our algorithm even under this setting was very small
loss (i.e. < 10−6, which is again within the tolerance of typical
SLAs [31]), and AFCT was barely affected (by no more than
6 ms compared to low load). These results show that our
algorithm performs well across a wide range of workloads
with negligible impact on TCP traffic performance.
C. Real-Time Implementation in a Router

We use the programmable NetFPGA platform, hardware-
based traffic generators and delay emulators to demonstrate
the feasibility of deploying our scheme in hardware.

1) Implementation and Set-Up: Using Verilog, we im-
plemented the dynamic buffer adaptation algorithm in the
hardware data-plane, thus extending the gateware available at
the NetFPGA website for router buffer sizing studies [32].
Since the gateware provides 512 KB of output queue capacity
(internally implemented on off-chip SRAM), we evaluated
our algorithm by partitioning this buffer capacity (virtually)
into 16 KB of on-chip, 48 KB of SRAM, and 448 KB of
DRAM buffers respectively, organised as four rows (as shown
in Fig. 4). The algorithm is executed at every packet arrival or
departure instant to determine the buffer size that should be
active. The queue size register oq queue full thresh, whose
value determines the capacity of the output queue, is then
updated by the algorithm which takes effect after a few clock
cycles. Our implementation does not explicitly put memory el-
ements to sleep nor does it introduce delays to model memory
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Fig. 9. Buffer adjustment with 150 TCP flows.

state transition latencies. We use the energy model developed
earlier to estimate the energy savings. The objective of our
experiments is to demonstrate the feasibility of implementing
our algorithm in hardware. We tried various settings of α,
and the results described are for α = 0.8, which was found to
yield a good balance between power and loss performance. We
extended the software on the NetFPGA to extract the queue
size information and also log all queuing/dequeuing events, so
we can plot and analyse them. For our tests the focus was on a
single output link at the NetFPGA router. Since the NetFPGA
has only four ports, to emulate a large fan-in we rate-limited
the output port; this also lets us make that port a bottleneck
link for some tests.

2) Power Savings with TCP Flows: We generated 150
concurrent TCP flows using the Iperf traffic generator. These
flows share a 123 Mbps link under observation. The duration
of the experiment was 180 sec. We used a hardware-based
delay emulator from Anue Systems [34] to set the RTT to
35 ms so that the 512 KB of available buffers corresponds to
the delay-bandwidth product. To emulate network conditions
where this link may or may not be the bottleneck at all times,
we introduced on-off UDP traffic in another downstream link
so that the link under observation toggled between being and
not being a bottleneck every few sec.

With our algorithm running on the NetFPGA, the output
queue occupancy trace and the dynamically adjusted buffer
size over a 7-sec interval for a chosen run are shown in Fig. 9.
The link is a bottleneck at around 86 and 90.1 sec, when the
queue occupancy rises above 400 KB (all 4 DRAM rows are
active), while the link is clearly not a bottleneck between 87-
89 sec, when the queue occupancy is just a few KB (only
SRAM gets activated).

The outcome of the experiment are as follows: The algo-
rithm used SRAM buffers 44.3% of the time, while DRAM
rows 1 to 4 were used 38.7%, 27.6%, 17.5% and 7.6%,
respectively. This corresponds to a saving of nearly 40% of the
off-chip buffering energy. The reader may note that the 40%
energy savings for this scenario (88.7% load) are larger than
the 11% savings for the similar simulation scenario (90.9%
load, see Table I) of the previous section – this is explained by
the fact that in the current scenario the link toggles periodically
between being and not being a bottleneck link (unlike the
simulation scenario in which the link stays a bottleneck), and
this fluctuation in load (for the same mean) presents increased
opportunity for energy savings.
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VII. CONCLUSIONS

This paper posits that much of the off-chip packet buffer
energy, which by our estimates is around 10% of the to-
tal line-card energy, in backbone routers can be saved by
selectively putting to sleep memory components when not
needed. Although the savings are limited, the reduction comes
with minimal hardware/software changes needed to effect
the algorithm. We have strived for achieving this outcome
by providing only a single control parameter, i.e. α. The
scheme can be easily deployed incrementally today without
requiring any new network protocols or architectures since
the changes that need to be made for the algorithm to function
are contained within a router. Our detailed evaluations using
real traffic traces and TCP simulations show that the risk of
affecting traffic performance is very minimal, since losses will
only happen during transients when the memory components
are transitioning from sleep to active state, and these can be
mitigated to some extent by adjusting the threshold parameter
α in the algorithm. We hope our work can persuade router
manufacturers and operators to consider dynamic buffer size
adjustment as a relatively safe and easy way of reducing the
energy consumption of router line-cards.
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