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Abstract—Access networks, largely based on DSL or cable
links, continue to be the bandwidth bottleneck between device-
rich households and high-speed core networks, causing frustra-
tion for both end-users and content service providers (CSPs).
In this paper we advocate that the scarce bandwidth resource
on the access link be managed jointly, under software control,
by the ISP, consumer, and CSP. Our first contribution is to
develop SDN APIs for bandwidth control at fine-grain (per-flow)
by the CSP and at coarse-grain (per-device) by the consumer,
and highlight the benefits of such an architecture for all entities.
Secondly, we develop an economic model to guide the ISP in
determining bandwidth allocation that balances the needs of the
CSP against those of the consumer, and demonstrate its utility
via simulation of trace data comprising over 10 million flows.
Lastly, we prototype our system using commodity home routers
and open-source SDN platforms, and conduct experiments in a
campus-scale network to demonstrate how our scheme permits
proactive and reactive improvement in end-user experience.

Index Terms—Resource management, video quality, broad-
band fast-lanes, software defined networking.

I. INTRODUCTION

Video traffic continues its inexorable growth over the In-
ternet, expected to triple in volume over the next 5 years
to constitute nearly 80% of global Internet traffic. Internet
Service Providers (ISPs) are grappling with the problem of
investment needed for their access network infrastructure to
carry this growing video traffic volume, particularly since
the economic gains are bypassing them and flowing to over-
the-top (OTT) video content service providers (CSPs) such
as Netflix and YouTube. To gain a foothold in the business
ecosystem of video delivery, ISPs have been experimenting
with the concept of “fast-lanes”, whereby certain traffic is
given higher priority over others in the network [2], [3]. This
was best exemplified by the revelation in 2014 that Netflix’s
paid-peering arrangement with Comcast led to significant
improvement in Netflix performance for Comcast subscribers
[4]. ISPs have over the past few years argued in favor of fast-
lanes, funded by deals with CSPs, as a means of sustaining
and upgrading their access network to cope with growing
traffic volumes [5], [6], [7], without increasing costs for
consumers. However, policy-makers and consumer activists
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are circumspect that such deal-making between ISPs and CSPs
can be detrimental to the best interests of the consumer, who is
not consulted in whether and which traffic streams get access
to the fast-lanes.

Consumer sentiment seems to be strongly in favor of “net-
work neutrality” that prohibits the ISP from treating (positively
or negatively) any traffic in their network differently based
on type (e.g. video) or source (e.g. Netflix) – we refer the
reader to our recent comprehensive survey on this topic [8].
The implicit assumption in this whole debate has been that
fast-lane decisions are made unilaterally by the ISP (possibly
in conjunction with CSPs), and are entirely out of the control
of consumers. We challenge this assumption, and consider an
alternative approach in which consumers are empowered to
make choices on whether and which of their traffic streams
get priority treatment in the network – consequently, one
subscriber could choose that their video streams get priority
treatment over their peer-to-peer traffic, while another house-
hold could choose to maintain neutrality of access for all
streams over their broadband link. This paper is an attempt
to show that such a system, in which control over fast-
lanes is shared with consumers, is both technologically viable
(leveraging the software defined networking paradigm) and
potentially beneficial for ISPs, CSPs, and consumers alike.

There are surprisingly few proposals that try to bring both
CSPs and consumers into the fast-lane negotiation. In Oct
2014 AT&T proposed fast-lanes that are controlled by end-
users [9]; the proposal unfortunately reveals little technical
or business detail, and it remains unclear what interfaces
will be exposed to users and how these will be priced. Our
proposal in [10], supported by some economic modeling in
[11], develops APIs by which the CSP can dynamically request
fast-lane creation from the ISP at run-time; this gives per-flow
control to the CSP without having to enter into bulk-billed
peering arrangements with the ISP. While our prior work does
not provide much control (other than an opt-in/out button)
to the end-user to control the fast-lanes, in this paper, we
seek to fill this important gap by developing and evaluating
an architecture that allows both the end-user and the CSP to
create, dimension, and use broadband fast-lanes.

The challenges in developing a two-sided fast-lane archi-
tecture are manifold: (a) End-users and CSPs will often have
different motives for traffic prioritization, leading to conflicts



2

whose resolution needs to be customized per-user based on
their desires; (b) Users typically have much lower technical
sophistication than CSPs, so the interfaces for control have to
be quite different at the two ends; (c) The economic capacity
of the two ends is again quite different, with the CSP expected
to bear the cost of the fast-lane, but the end-user still being
given some means of control over it. Any solution has to take
the above sensitivities into account, and yet be attractive to all
parties from an economic and performance point-of-view.

In this paper we develop a new architecture that addresses
the above challenges. We begin by devising appropriate APIs
that are suitable for the two ends of the fast-lanes, and
argue that they are realizable using emerging software defined
networking (SDN) technology. We then address the economic
aspect of two-sided fast-lanes by devising a model that cap-
tures the trade-off between end-user and CSP happiness, and
providing the ISP with means to control this trade-off. We
evaluate our model using simulation with trace data of over
10 million flows taken from an enterprise network.

The rest of this paper is organized as follows: §II summa-
rizes relevant prior work; §III describes our two-sided fast-lane
system architecture and APIs. In §IV we develop a model that
captures the economic gains of fast-lanes, and §V evaluates
it using real trace data. Our prototype implementation is
described in §VI along with experimental evaluation in a
campus network, and the paper is concluded in §VII.

II. RELATED WORK

Recent SDN-based approaches have proposed various
frameworks to control service quality: APIs have been devel-
oped in [12], [13] to allow applications to dynamically interact
with the network and set QoS configurations. The work in [10]
develops APIs for a content provider to dynamically negotiate
QoS with the ISP. However, none of these APIs specifically
target home networks and deal with consumer interfaces.

In the context of home networks, [14] advocates wholesale
slicing of the home broadband access network by the ISP into
independent entities for sharing by multiple content providers
such as video services and smart grid utilities. HomeVisor [15]
offers an SDN-based management tool for a home network to
enable remote administration and troubleshooting via high-
level network policies, while [16] presents interfaces and apps
(similar in spirit to ours) to allow the user to interact with
the underlying network to control service quality for different
applications. Improving home user experience using dynamic
traffic prioritization is studied in [17], which actively identifies
traffic flows of interest (by monitoring the application window)
and signals the home router to serve the flows with a higher
priority, and [18] develops a client hosted application for QoE
control. While all the above works are relevant, we distinguish
our work in this paper by considering two-sided control in
which both the end-user and the CSP simultaneously exert
influence over traffic prioritization, and develop an economic
model to support it.

Several different pricing models by ISPs, termed smart data
pricing (SDP), have been proposed in the literature, ranging
from models for pricing only the end-users [19], [20] to two-
sided pricing [21], [22], i.e. pricing both end-users and CSPs.
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Fig. 1. A typical broadband access network topology.

These models consider usage-, time-of-day- and congestion-
based pricing to affect user activity (for e.g. deterring usage by
charging users more during peak hours than off-peak hours), or
propose (semi-)static payment arrangements between ISP and
CSP to increase their utility. By contrast, our model does not
aim to charge the end-user or affect change in user behaviour,
and prices dynamic fast-lanes (at a per-flow level) initiated by
the CSP, as opposed to today’s (semi-)static payment models
between the ISP and CSP.

III. TWO-SIDED FAST-LANE SYSTEM ARCHITECTURE

Consider a representative broadband access network topol-
ogy shown in Fig. 1. As is prevalent today, each household
consists of a variety of devices (e.g. laptops, smart phones,
tablets, smart TVs, etc.) connecting to the wireless home
gateway, which offers broadband Internet connectivity via the
DSLAM at the ISP’s local exchange. The ISP peers directly
with a number of CSPs (such as YouTube, Hulu, and Netflix)
or indirectly via CDNs (such as Akamai) and other ISPs. In our
proposed architecture, the DSLAM is connected to an SDN
Ethernet switch (e.g. OpenFlow switch) which in turn connects
to the ISP’s backhaul network providing access to the global
Internet. The SDN switch is controlled by an SDN controller
which is housed within the ISP’s network and exposes the
APIs to be called – by both the end-user and the CSPs – for
the creation of fast-lanes.

A. End-user facing APIs

Consider a family of four living in a household – the father
uses his laptop at home for various work-related activities such
as video-conferencing and Skyping, the mother uses a smart
TV to watch shows or movies (e.g. Internet-TV), the son uses
his laptop for gaming and watching videos on YouTube, and
the daughter uses her tablet to spend time on Facebook and
browse the Internet. To ensure that the users in the household
get the required QoS, we permit the subscriber (e.g. the father)
to configure a minimum bandwidth (on the broadband access
link from the ISP to the household) that he deems is necessary
for each of the devices in the household. We note that the
link bandwidth is multiplexed in a work-conserving manner.
An example of such a configuration could be: 40% of the
broadband capacity is assured to the father’s laptop, 30% to
the smart TV, 15% to the son’s laptop, 10% to the daughter’s
tablet, and 5% for the remaining devices in the house. The
key tenets of this approach are as follows:
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• Device-level control: We have intentionally chosen
to configure bandwidth partitions at a device-level,
rather than at a content-level (e.g. video, documents,
HTML/images), or service-level (e.g. YouTube, Netflix,
Skype, etc.) or flow-level (e.g. specific Skype call or
video session). Flow-level control is too onerous for the
user, requiring them to interact with the user-interface
to configure fast-lane access rights for every session.
Service-level control may seem easier to conceive, for
example a subscriber could say that Netflix traffic is to
be prioritized over Bit-Torrent. However, we feel that this
approach does not capture the fact that the importance of
a service often depends on the user within the household
accessing it - for example YouTube/Netflix may be more
important if the father or mother is accessing it, but less
so if the son/daughter is accessing it; moreover, it runs
the risk that subscribers will strongly favor established
content providers (YouTube, Netflix) over smaller lesser-
known ones. We also believe that content-level control
has similar issues as service-level control. Specifically, it
does not capture the fact that the importance of a content-
type (e.g. video) often depends on the person within the
house accessing it for example Youtube/Netflix may be
more important if the family is watching TV together, but
less so if the child is watching it on their personal device.
Moreover, identification of various content types is more
expensive and requires deep packet inspection or analysis
engine. We therefore believe that device-level bandwidth
control is more in line with the subscriber’s view on how
bandwidth should be shared within the household. Of
course device-level control can be combined with service-
level control (e.g. give some bandwidth to Skype on
the father’s laptop), but this requires more configuration
on the subscriber’s part (cross-product of devices and
services), and does not add much value.
Lastly, since many users have multiple devices, a per-
user (or per-set-of-devices) allocation of bandwidth may
seem desirable. We note that a per-user bandwidth al-
location is technically achievable by mapping a group
of devices (instead of one device) to a queue. However,
the broader question is whether this is what users want.
If they are active on multiple devices at the same time,
they may want to distinguish the bandwidth requirement
of the separate devices if this is the case, the user-
interface becomes considerably more complex, as does
the queueing mechanism that has to perform some form
of hierarchical bandwidth scheduling. In order to avoid
these complexities, in this paper we tackle the simpler
per-device allocations, and leave per-user allocations for
further study.

• Single parameter: We have intentionally chosen the APIs
to have only a single control knob (i.e. the minimum
bandwidth) because a vast-majority of end-users lack the
sophistication to configure a multiplicity of parameters.
A single, but intuitive, parameter reduces the barrier for
end-users to adopt fast-lanes for improved QoS, and gives
them control over it, which has hitherto remained elusive.

• Proactive approach: The crux of the QoS problem in a

residential setting is bandwidth sharing amongst several
household devices. To combat this problem, we advocate
a set and forget device centric QoS policy, but leave the
door open for end-users to seek additional bandwidth (i.e.
create fast-lanes) as and when necessary for the duration
of the traffic stream.

• Scalability: In our architecture depicted in Fig. 1, given
the SDN access switch has p ports, each port serves
a household of average N devices. We propose that
a separate queue for each device is maintained on the
pertinent port of the switch for static fast-lanes and thus
a rule is associated with that. Therefore, we will have p.N
number of queues and rules inside an access switch for
static fast-lane provisioning. For example, given a switch
of 48 ports with average 10 devices per household, the
switch needs to accommodate about 500 static queues
and rules which can be easily achieved with todays SDN-
enabled switches in the market.

B. Content Service Provider facing APIs

In contrast to the APIs exposed to the end-user, the APIs
exposed to the CSP allow the latter to reserve access-link
bandwidth at a per-flow level. There are several reasons why
we believe such fine-grained control is the most appropriate
for CSPs:

• Economics: Instead of paying in bulk for all the traffic
they are sending via the ISP, the CSPs can exercise
discretion in selecting the subset of flows for which they
call the bandwidth reservation API into the ISP. For
example, they may choose to reserve bandwidth only
when there is congestion, or only for certain premium
customer traffic. The important point here is that the per-
flow API allows the CSP to make dynamic decisions on
fast-lane usage, allowing them to align it with their own
business models.

• Control: Unlike end-users, CSPs have the technical exper-
tise to conduct per-flow negotiations on fast-lane access
and the associated pricing, and are indeed expected to
have automated their algorithms for doing so. This gives
them the flexibility to account for various factors (time-
of-day, user net-value, etc.) in making dynamic fast-lane
decisions to maximize their returns.

• Reactive approach: The CSPs are not obliged to call
the API every time a flow request is received from
the end-user. Instead, it is left to the discretion of the
CSP; the API can be called in a reactive manner (i.e.
dynamically) such as when the QoS/QoE of the traffic
flow is unsatisfactory.

The API itself for per-flow bandwidth reservation is rela-
tively simple, and specifies the following attributes (much like
in [10]): CSP id, the identity of the CSP making the request;
Flow tuple, denotes the IP address and port number of the
source and destination, and the transport protocol; Bandwidth,
the minimum bandwidth that the flow, such as a YouTube
video, requires; and Duration, the duration for which the
bandwidth is requested.
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C. Challenges with two-sided control

When an ISP receives a request for creating fast-lanes from
the CSPs and/or end-users, the ISP has to decide whether or
not to instantiate the fast-lane. On the one hand, satisfying
all fast-lane requests from CSPs will generate greater revenue
for the ISP, because the CSP pays the ISP for the creation of
fast-lanes. On the other hand, creating a dynamic fast-lane for
the CSP may violate the minimum bandwidth fast-lanes set
by the end-users for their specific devices, causing annoyance
to the user and potentially leading to consumer churn. The
ISP therefore has to balance the revenue benefits from the
CSP against the risk of subscriber dissatisfaction whenever
the fast-lane configurations from the two ends conflict.

Consider the following possible scenario: seeing that the
video quality of a YouTube stream on the daughter’s iPad is
not adequate, YouTube calls the API into the ISP network to
create a fast-lane for this stream on this subscriber’s broadband
link. This presents an opportunity to the ISP to charge the CSP
for the dynamic fast-lane. However, suppose the bandwidth
requested by the YouTube stream is not currently available
because the father is doing a Skype session. The ISP then
has to decide whether to let YouTube access the fast-lane, in
violation of the father’s policy that his laptop gets a higher
bandwidth share than the daughter’s iPad, thereby causing
subscriber frustration, or instead to just deny YouTube the
requested bandwidth, thereby foregoing the revenue opportu-
nity. Making the appropriate decision requires a cost-benefit
analysis by the ISP, for which we develop an economic model
in the next section.

We would like to point out that the challenges associated
with two-sided control of fast-lanes is not just about resolving
the policy conflicts. Indeed, there are existing frameworks (e.g.
PANE [13]) that explore various techniques for conflict reso-
lution. Our objective is to evaluate the underlying economic
and performance incentives that influence how the conflicts get
resolved in this fast-lane architecture with two-sided control.

IV. DYNAMIC NEGOTIATION AND ECONOMIC MODEL

We now present the dynamics of fast-lane creation, and de-
velop an economic model to aid the ISP in making admission
decisions that balances the user’s needs with the CSP’s.

A. Dynamic negotiation framework

Broadband fast-lanes are created via two sets of API calls:
(a) relatively static policies configured by the end-user that
establish per-device fast-lanes, and (b) dynamic API calls
coming from the CSP for establishment of per-flow fast-lanes.
We assume that the user-facing APIs do not generate revenue,
and are given free-of-charge to the end-user. API calls from
the CSP are however revenue-generating, with the per-flow
fast-lane being associated with a micro-payment dependent on
the size and duration of the flow (detailed model to follow).
Further, the CSP’s request for fast-lane may conflict with the
user-set preferences, such as when the bandwidth requested for
a video streaming flow exceeds the user-set bandwidth portion
for the specific client device. The ISP is still permitted to
accept the CSP call, thereby generating revenue; however this

leads to violation of the user-set preferences, which can lead
to user annoyance – in what follows we will assign a monetary
cost to this annoyance by mapping it to a churn probability
and consequent loss of revenue for the ISP.

The decision to invoke a dynamic fast-lane via the API call
is entirely up to the CSP. The CSP could choose to invoke
it for every video stream, or more realistically, when network
conditions and/or user importance make bandwidth reservation
beneficial. The CSP may even involve the user in this decision,
say by embedding a “boost” button in the application that the
user can press to trigger fast-lane creation to enhance QoS for
this stream (such boosting capability may entail extra payment
from the user to the CSP, which could partly or wholly support
the cost of the fast-lane API invocation). The ISP charges the
CSP each time a call from the latter is admitted. The ISP
is at liberty to accept or reject the CSPs fast-lane request,
and we make the reasonable assumption that if accepted, the
allocation commitment is maintained over the duration of the
flow (indicated in the API call from the CSP) and not modified
mid-stream.

The ISP’s dilemma on whether or not to accept the CSP’s
dynamic fast-lane request is illustrated with a simple example:
Suppose a dynamic fast-lane of 2 Mbps is requested for a
YouTube HD video stream to be delivered to the daughter’s
tablet, while the father has configured a static fast-lane of 1
Mbps for that device and 2 Mbps for his own laptop. If the
father is doing a Skype video conference on his laptop at the
same time, accepting a fast-lane creation call for the daughter’s
video stream at 2 Mbps will reduce the father’s Skype quality
and cause him annoyance, since this does not respect his desire
to have higher bandwidth fraction for his laptop compared to
his daughter’s tablet.

To quantify this user annoyance, we track “violation” metric
v for the household, measured as the sum across all active
devices of the shortfall between the minimum bandwidth con-
figured by the user for the device and the bandwidth assigned
by the ISP at run-time for this device as a consequence of
allocating fast-lane bandwidth to other devices, this number
being normalized by the total capacity of the broadband link.
For example, in the situation explained above, the ISP creates
a fast-lane of 2 Mbps for the daughter’s video stream and
correspondingly squeezes the minimum bandwidth for the
father’s laptop by 1 Mbps – for a 10 Mbps broadband link,
this reduction of 1 Mbps corresponds to a 10% violation, that
can be computed at run-time by measuring bandwidth usage
on a per-device basis. We keep track of this violation measure
over time via exponential averaging – it rises in any time slot
in which an active device gets below its configured minimum
rate, and falls in any time slot in which all active devices are
getting at least their minimum configured rates. Based on this
measure, we propose a simple algorithm that the ISP can use
to make call admission decisions: for a specific household,
the ISP uses a target threshold (vth) to cap the violations,
and a call from the CSP is admitted if and only if the current
violation measure v is below the threshold vth. The decision to
create a fast-lane is based purely on the (historical) computed
value of v, and is independent of whether any device is active
or not. It is easy to see that an ISP that never wants to violate
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Fig. 2. Churn probability.

the user preference can choose vth = 0, whereas an ISP that
wants to accept every API call from the CSP irrespective of
user preferences chooses vth = 1. In general, an ISP could
choose an intermediate value, say vth = 0.2, that accepts CSP-
side fast-lane requests that maintain user-side violations at this
acceptable level.

We now attempt to convert the user-preference violation
metric above into a measure of damage incurred by the ISP.
Prior observations in [23], [24] show that QoE-decay is tightly
bound to user-engagement (e.g. Figures 2b, 11a, 12, 13 in
[23] and Figures 3, 4 in [24]) and violation of service-level
agreement is a key contributor to subscriber churn [25], [26],
though the relationship is not easy to capture mathematically
in a succinct way. We note that each ISP will develop its own
proprietary model of subscriber churn, based on its experience
with its customer base. Currently, there is no such model
publicly available, and therefore we resort to a simplified
mathematical expression in which the user’s probability of
churn (i.e. of changing ISP) at the end of the billing period is
an exponentially increasing function of the violation measure
(consistent with reported studies in [25], [26]), given by:

Pchurn =
eκv − 1

eκv0 − 1
(1)

Here Pchurn denotes the user’s churn probability, κ in the
exponent corresponds to the user’s level of flexibility (dis-
cussed below), v0 denotes the maximum tolerable violation
at which the user will undoubtedly leave, and v ∈ [0, v0] is
the measure of actual violation (computed by the ISP using an
exponential moving average). The expression is chosen so that
the two end-points v = 0 and v = v0 correspond to P = 0
and P = 1 respectively. Fig. 2 depicts the curve for churn
probability with three value of κ = 2, 10, 100 corresponding
to increasing levels of user flexibility: at a given violation,
churn will less likely occur with a larger κ. The user-flexibility
parameter κ can either be explicitly solicited from the user, or
learnt by the ISP based on user behaviour. Further, the ISP can
give users financial incentives to choose a larger κ, since this
allows the ISP to make more revenue from CSPs by accepting

their fast-lane API calls; however, discussion of such financial
incentives is out of the scope of the current paper.

B. Economic Model

The fast-lane service offering is free for users, but paid for
by the CSP. The pricing structure we employ for dynamic
fast-lanes is one in which the cost of the resource changes
as a continuous function of its availability. A convenient and
commonly used such function is the exponential [11], wherein
the unit price of bandwidth is a function of spare capacity
available on the broadband access link. The bandwidth cost
is therefore set high when the spare capacity (link rate minus
load) is low, and we assume it falls exponentially as the spare
capacity increases, expressed by:

C = λe−δx, (2)

where C is the spot cost of bandwidth (i.e. for 1 Mbps over a 1-
second interval), x is the variable denoting fraction of available
link capacity (computed by the ISP using an exponential
moving average), λ is a constant corresponding to the peak
spot-price (we use λ = 1, 1.5 cents-per-Mbps-per-sec in our
simulations), and δ is a constant corresponding to the rate at
which the spot price of bandwidth falls with available capacity
x. Our simulations will employ bandwidth pricing with δ = 2.

Shifting focus to the user-side, the violation of their per-
device fast-lane policies by virtue of dynamic fast-lane cre-
ation for CSPs will cause annoyance to the subscriber; to
capture the economic cost of this, we associate such annoyance
with churn, i.e. the user’s likelihood of changing ISPs, leading
to loss of revenue for the ISP. The ISP’s (monthly) change
in revenue from fast-lanes will therefore equal the revenue
generated from admission of CSP calls, minus the revenue
lost from user churn, denoted mathematically as:∑

k

(C.frate
k .fduration

k )− S.Pchurn, (3)

where frate
k and fduration

k are the rate (in Mbps) and length
(in seconds) respectively for the k-th fast-lane admitted by the
ISP. These are multiplied with the spot price C (in dollars-per-
Mbps-per-sec) of unit bandwidth (following congestion-based
pricing given in Eq. (2)), and summed over all calls k admitted
over the month; S is the subscription fee (in dollars-per-
household per month), and is multiplied by churn probability
Pchurn to derive the loss in revenue from subscribers. Our
simulations will use S = $60 for a broadband service of
10 Mbps, consistent with the typical price for a 10 Mbps
broadband link in most developed countries.

The objective for the ISP is to operate the fast-lanes in a
way that maximizes profit in Eq. (3), by tuning the violation
threshold parameter vth: a larger vth allows the ISP to admit
more CSP calls (generating revenue), but amplifies user frus-
tration leading to elevated churn probability (with consequent
revenue loss): this trade-off, and the various parameters that
affect it, are studied via simulation of real trace data next.
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V. SIMULATION EVALUATION AND RESULTS

We now evaluate the efficacy of our proposal by applying it
to a 12-hour real trace comprising over 10 million flows taken
from an enterprise campus network. We focus on how two
critical parameters – violation threshold vth chosen by the ISP,
and user-churn probability exponent κ – influence revenues for
the ISP and performance benefits for all the parties involved.

A. Simulation Trace Data

Our flow-level trace data was taken from a campus web
cache, spanning a 12 hour period (12pm-12am). Each entry
consists of flow attributes such as arrival date and time,
duration (in milliseconds), volume of traffic (in bytes) in each
direction, the URL, and the content type (video, text, image).
The log contains 10.78 million flow records corresponding to
3300 unique end-user clients. Of these flows, 11, 674 were
video flows (predominantly from YouTube, identified by the
content type field), 9, 799 were elephant flows (defined as
transfers of size greater than 1 MB), and the remaining 10.76
million flows were mice (defined as transfers of size 1 MB
or less, representative of web pages). Though mice flows
dominate by number (consistent with other measurements of
residential broadband Internet traffic [27]), the three flow types
contribute roughly equally by volume (32%, 32% and 36%
respectively) to the total traffic downloaded. We found that:
98% of video flows required less than 5 Mbps, and only 0.2%
of the flows required more than 10 Mbps; in terms of duration,
90% of the video flows last under 3 minutes, and only 1% of
the flows last for longer than 10 minutes. For completeness,
we note that the file transfer size of elephant flows exhibits a
heavy tail, with 99% of the flows transferring under 100 MB,
and the maximum file size was about 1 GB; further, 93% of the
mice flows complete their transfers within 1 second, and about
0.3% of the flows transferred more than 300 KB, consistent
with published findings such as [28].

B. Simulation Methodology

We developed a native simulation that reads the flows
information (arrival time, duration, type, rate/volume) and
injects them into the slotted simulation. Flows are serviced
slot-by-slot (a slot is of duration 1 second) over a broadband
access link of capacity 100 Mbps. For simplicity, we assume
this access link emulates a “mega-household” representing
a collection of households, each having an average DSL
connection of 10 Mbps. The mega-household is assumed to
house four premium mega-devices namely family TV, father’s
laptop, mother’s laptop and daughter’s tablet and one ordinary
mega-device (representing all IoT devices that do not generate
high volume of traffic). Each mega-device is serviced at a
statically configured minimum rate (assumed to be configured
by the user using the user-side API); for our experiments the
family TV, father’s laptop, mother’s laptop, daughter’s tablet,
and ensemble of IoT devices are respectively set to receive
at least 40%, 25%, 25%, 5% and 5% of link capacity. In
each simulation run, flows are mapped into a randomly chosen
mega-device proportionate to the weights mentioned above.
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The video flows that are accommodated by the API –
assumed to be constant bit rate – are allocated their own
reserved queue, while the other flows (mice, elephants, and
video flows not accepted by the API) share a best-effort
device-specific queue. Within the best-effort queue, the mice
flows (that transfer less than 1 MB) are assumed to obtain
their required bandwidth first (since they are typically in
the TCP slow-start phase), and the remaining bandwidth is
divided fairly amongst the video and elephant flows, which
are expected to be in the TCP congestion avoidance phase.
The scheduling is work-conserving, so any bandwidth unused
by any queues are given to the remaining best-effort queues.

C. Performance Results

1) Impact of Violation Threshold (vth): We first discuss
the impact of the ISP-knob vth on the overall experience of
both the user and the CSP. In Fig. 3 we show by a solid black
line the average violation (left-side y-axis) as a function of the
chosen violation threshold vth. As expected, when vth = 0, no
API call from the CSP is accepted, (the ISP therefore makes
no money from the CSP); correspondingly, the user’s policy
is never violated and each mega-device receives its configured
minimum rate at all times. As the ISP increases vth, the
average violation increases roughly linearly as well, saturating
at about 13.14%. That is because the average video load in our
trace data is about 13.76 Mbps. Thus, even if all video flows
are granted fast-lanes, the bandwidth deficit would be fraction
13.76% of the link capacity, which provides an upper bound
for average violation. The call admission rate for dynamic
fast-lanes (dash-dotted blue curve, right-side y-axis) increases
with threshold vth, meaning that the CSP can exercise more
control over fast-lane creation (and pay for it). At vth = 35%,
all video flows are reserved. Increasing the violation threshold
to vth = 25% leads to saturation, since at this point 99.85%
of CSP requests for fast-lane creation have been admitted; for
this reason we truncate the plot at vth = 40%.

Fig. 4 shows the temporal dynamics (i.e. behaviour over
the 12-hour span of the data) of violation and call admission
rate with two sample threshold values: (a) vth = 5%, and (b)
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12pm 2pm 4pm 6pm 8pm 10pm
0

5

10

15

20

25

30

m
e
a
s
u
re

 o
f 
v
io

la
ti
o
n
 (

%
)

Time

 

 

12pm 2pm 4pm 6pm 8pm 10pm
0

3k

6k

9k

12k

c
u

m
u

la
ti
v
e

 n
u

m
b

e
r 

o
f 

c
a

lls

violation
call arrival
call admission

(b) vth = 20%

Fig. 4. Temporal dynamics of violation and call arrival/admission.

vth = 20%. The observed violation rate (solid blue line, left-
side y-axis) oscillates around the chosen threshold value, as
expected. It is also seen that the gap between the call arrivals
(dashed-red line) and call acceptance (dotted-back line) is
much narrower when vth = 20% (Fig. 4(b)) rather than when
vth = 5% (Fig. 4(a)), since a higher threshold allows the ISP
to accept more CSP calls by violating the user-defined policy
more frequently.

2) Impact of User Flexibility (κ): We now evaluate how the
user’s flexibility, captured by the parameter κ that translates
their policy violation into a churn probability, affects the ISP’s
economics. For this study the pricing parameter δ is fixed to 2.
In Figures. 5 and 6 we show the ISP profit in units of dollars,
normalized per-user-per-month. We consider three types of
users: (a) inflexible user corresponding to κ = 2 for whom
the probability of churn rises steeply with minor increase in
average violations, (b) moderate user corresponding to κ = 10
who can tolerate violation to some extent, and (c) flexible user
corresponding to κ = 100 who is very permissive in letting
the ISP carve dynamic fast-lanes for CSPs.

For the inflexible user corresponding to κ = 2, Fig. 5(a)
shows that the ISP profit largely falls as the violation threshold
is increased (bandwidth is priced at a peak rate of λ = 1 cent-
per-Mbps-per-sec for this plot). This is because the risk of
losing the customer due to their annoyance at violation of their
policy outweighs the revenue obtained from the CSP. Fig. 6(a)

shows the situation is roughly the same when the bandwidth
peak price is increased to λ = 1.5, though the numerical profit
is less negative. An “inflexible” user therefore poses a high
economic risk for the ISP; to retain such users, the ISP has
to either reject the majority of CSP API calls pertaining to
this subscriber, or offer the customer some incentive (such as
a rebate) to increase their flexibility parameter κ.

Increasing the user’s flexibility to κ = 10 (we label such
a user as being “moderately-flexible”) results in an ISP profit
curve shown in Fig. 5(b). In this case the ISP is able to gain an
extra maximum profit of $2.2 per-month per-user by adjusting
the violation threshold to vth = 2%, when the bandwidth peak-
price is set at λ = 1 cent-per-Mbps-per-sec. Increasing the
violation threshold any higher is however detrimental, since
the user annoyance over-rides the gains from the CSP. When
the peak-price of bandwidth is increased to λ = 1.5 cents,
Fig. 6(b) shows that the ISP can maximise profit by increasing
violations for the user to about 10%, since the dynamic fast-
lanes are more lucrative, thereby nearly doubling the profits
to $4.3 per-user per-month, which could even be used to
subsidize the user’s $60 monthly bill.

Lastly, we consider an extremely “flexible” user with κ =
100, for whom the ISP profit is shown in Fig. 5(c) (for λ = 1)
and Fig. 6(c) (for λ = 1.5). As expected, we see in this case
that the ISP profit rises monotonically with threshold, since
the low chance of user churn encourages the ISP to accept
all CSP requests for fast-lanes and charge for them. The ISP’s
substantial profits in this case ($8.45 and $12.67 per-subscriber
per-month respectively for λ = 1 and 1.5 cents-per-Mbps-
per-sec) can be passed on as a rebate back to the subscriber,
though rebate mechanisms are beyond the scope of study of
the current work.

VI. PROTOTYPE IMPLEMENTATION

We have implemented a fully functional prototype of our
system that uses proposed the APIs to provide two-sided
control of fast-lanes. Our system includes the access switch
(OVS) enhancements and controller (FloodLight) modules for
the ISP network, and the service orchestrator (Ruby on Rails)
and web-GUI (Javascript/HTML) operated by the ISP. Our
ISP controller operates in the campus data-center, while the
orchestrator and GUI run in the Amazon cloud. Our imple-
mentation is currently deployed in an SDN-enabled campus
network (emulating an ISP network) spanning over 3000 WiFi
access points.

Our implemented design is depicted in Fig. 7. We assume
that the ISP’s access switches are SDN-enabled, and further
assume that the ISP has visibility of the subscriber’s household
devices. This starting point is chosen for convenience since:
(a) existing SDN controllers have better support for Layer-2
protocols, (b) MAC addresses are static unlike IP addresses
that are usually dynamic, and (c) there is a trend towards
ISPs providing managed home gateways, either by giving the
subscriber a physical home gateway or a virtual instance in
the cloud (e.g. vCPE).

ISP Access switch: Our access switch runs Open
vSwitch 1.9.0 (OVS), and as shown in Fig. 7, exposes
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(c) Flexible user: κ = 100

Fig. 5. ISP profit for λ = 1.
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(b) Moderately-flexible user: κ = 10

0 10 20 30 40
0

5

10

15

threshold (%)

IS
P

 p
ro

fi
t 
p
e
r−

u
s
e
r−

p
e
r−

m
o
n
th

 (
$
)

(c) Flexible user: κ = 100

Fig. 6. ISP profit for λ = 1.5.
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Fig. 7. Overview of prototype design.

both standard OpenFlow APIs as well as JSON RPCs for
queue management (explained below). Each home is associ-
ated with a physical port on this switch, and for each home
we create an instance of a virtual bridge within OVS that
maintains the flow-rules and queues for that household. We
found that dynamic QoS management APIs were lacking1 in
OVS, so we wrote our own module in C++ called qJump that
bypasses OVS and directly manages queues in the Linux ker-
nel using tc (traffic controller). The qJump module exposes
JSON RPC APIs to the SDN controller for queue creation and
modification.

For example the API {"cmd":"setrate",

1Very recently, similar functionality has been added via the Floodlight
QueuePusher module [29] and the code has been made available in GitHub
[30]

"type":"request","tid":<tid>,"queue":<qid>,
"rate":X} allows the controller to set a
minimum rate of X Kbps for queue qid.
Upon success the qJump module responds with
{"cmd":"setrate","type":"response", "tid":
<tid>, "rc":"ok"}, or an error code if unsuccessful.
Note that the transaction-id tid allows the response to be
correlated with the request.

ISP Network controller: We used the Floodlight (v0.9)
OpenFlow controller for operating the ISP network, and de-
veloped Java modules to implement the APIs presented in
§III (these APIs are exposed via a RESTful interface to the
service orchestrator, as shown in Fig. 7). Successful API calls
result in appropriate actions (e.g. flow table rules and queue
settings) at the respective OVS bridge serving this subscriber.
We added new modules to FloodLight to implement the API
functionalities described in §III:

1) discDev: returns the id of all devices connected to the
bridge associated with this subscriber. We use the device MAC
address as the id (recall that we operate at Layer-2), and
obtain the MAC address list per household from FloodLight’s
database.

2) bandwidthManager: manages QoE by controlling
queues, their rates, and flow-rule-to-queue mappings across
the access switches. This module supports queue creation and
rate setting by invoking the qJump module in the appropriate
switch (corresponding to the subscriber) via JSON RPC. It
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Fig. 8. Home network devices.

Fig. 9. QoE control.

then updates flow rules in the flow table of the switch so that
the chosen device maps to the appropriate queue.

Service Orchestrator: We implemented a service orchestra-
tor in Ruby-on-Rails that holds the state and the logic needed
to manage services for the subscriber. It interacts on one side
with the ISP via the aforementioned APIs, and on the other
side with the front-end portal and user apps (described next)
via RESTful APIs, as shown in Fig. 7. It uses a MySQL
database with tables for subscribers, devices, queues, policies,
user preferences and statistics. It acts upon REST commands
from the user portal/apps (described next) by retrieving the
appropriate state information corresponding to the subscriber’s
command, and calling the appropriate sequence of ISP APIs,
as discussed for each functionality next.

Web-based portal: provides the front-end for users to
customize their services, and is implemented in Javascript
and HTML. Snapshots are shown in Figures 8 and 9. Upon

signing in, the user sees their household devices listed in the
left panel, while the right panel shows a “Quality” tab. Fig. 8
shows 7 devices for this user (the subject of the experiments
described in §V), comprising laptops, desktop, iPad, TV, and
IoT devices. Each service tab is described next.

Fig. 9 depicts the Quality control provided to the user
with a slider bar to set a download bandwidth share for
each device; in this example the father’s laptop is set to
get at least 40%, the kid’s iPad to 4%, etc. When the
bandwidth share is changed via the slider, the portal calls
the REST API “POST /qos/subsID {"mac":<mac>,
"bw":<bw>}” to the service orchestrator, which checks its
internal mappings of user device to queue id, and calls the
ISP’s API to set the bandwidth for the appropriate queue, first
creating the queue if needed.

Additional to the portal (which requires proactive setting
by the user), we have also developed two customized iOS
applications, Skype+ and YouTube+, similar to the ones re-
ported in [16], that give a “boost” button to the user to react
to poor QoE by dynamically dilating bandwidth. Pressing this
button allows the user to signal the CSP, who can then in
turn call the ISP API to create a dynamic fast-lane for the
specific audio/video session. In our experiments, for Skype+
we reserve 2 Mbps for HD quality, and for YouTube+ we
hardcode a static mapping of video resolution to bitrate.
The impact of fast-lane configuration on user experience is
evaluated in the experiments described next.

A. Campus Experimental Results
We have deployed our system in a campus network emulat-

ing an ISP access network. A guest SSID was created and runs
in parallel with the regular enterprise WiFi network, giving us
coverage of over 3000 wireless access points across campus
to which any user device can connect using existing login
credentials. Additionally, several wired ports from a lab were
also added to this network. All wired and wireless traffic is
delivered at Layer-2 to a set of 8 Gigabit Ethernet ports on
our Dell PowerEdge R620 SDN switch (emulating the ISP
access switch) running OVS (with our additions). We run our
own DHCP server with a /25 public-IP address block, and
default all outgoing traffic into the campus backbone network.
Our controller (FloodLight augmented with our modules) runs
on a VM in the campus data center. For the experiments
described in this section, we throttled the access link to 5
Mbps downstream and 1 Mbps upstream, so as to represent
a typical residential broadband link capacity (these bandwidth
can be increased/descreased on-demand via our portal). The
user portal (and the underlying service orchestrator) operated
by the ISP run in the Amazon cloud, and communicate with
the network controller via the APIs described earlier.

We connected several user devices across the campus,
including PCs, laptops, a Google TV, and a handful of IoT
devices, to emulate a large household. For our experiment
illustrating QoE control, we created a scenario with con-
current access: the father is video conferencing via Skype,
the mother is watching a 1080p HD video on YouTube,
the son is playing Diablo-III online, the daughter is web-
browsing (alternating between Facebook and Google), and
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Fig. 10. Skype video call.
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Fig. 11. YouTube streaming.

0 200 400 600 800 1000
0

1000

2000

3000

4000

Time (s)

La
te

nc
y 

(m
s)

Fig. 12. Online gaming (Diablo III).
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Fig. 14. Large download using IDM.

the family PC is downloading a large file (Ubuntu ISO of
size 964 MB) using Internet Download Manager (IDM). The
experiment runs for 1100 seconds, and the performance seen
by the various household devices (depicted in Figures 10-14)

is demarcated into three regions: in [0, 200]s, all household
members except the IDM download are active, and share the
broadband capacity in a best-effort manner, namely that any
unused bandwidth by one device is used by other devices and
does not go waste. At time 200s, IDM on the family PC starts
a download, impacting QoE for all users. At 600s, the father
invokes bandwidth sharing via the portal (Fig. 9), and QoE
gradually recovers.

Fig. 10 shows the father’s Skype video call goodput (left
axis) and Round Trip Time (RTT, right axis) on log-scale
at 10s intervals. Up until 200s, he gets an average goodput
of 1.6 Mbps at 720p resolution and 29.85 fps. When IDM
kicks in at 200s, it grabs nearly 95% (4.747 Mbps) of the
broadband bandwidth (see Fig. 14). This decimates Skype,
reducing its bandwidth to below 10Kbps at 180p resolution
and 15fps, with RTT rising over 2s, resulting in very poor
experience. At 600s the father uses our portal to configure
bandwidth shares: 40% each for his and the mother’s device,
4% for each of his kids’ devices, and 10% for the family
PC. This triggers the service orchestrator to make API calls
into the network, separating the user’s traffic into multiple
per-device queues with minimum bandwidth guarantees. The
2 Mbps now available to the father’s laptop allows Skype to
slowly ramp up quality, recovering to a goodput of 1 Mbps,
at 720p resolution and 30fps with RTT below 10ms. We note
that Skype’s recovery is somewhat slow, taking about 260s
– this is because in this experiment the QoE was configured
reactively by the user; once configured, Skype’s performance
the next time around is not impacted at all by other traffic in
the house.

Fig. 11 shows the mother’s YouTube experience in terms
of bit-rate and Mean Opinion Score (MOS, computed by a
Javascript plugin [31] that combines initial buffering time with
rebuffering frequency and duration). Over the first 200s, the
bit-rate is erratic (averaging 996Kbps) and there were two
stalls, due to best-effort sharing with other devices. When IDM
starts, YouTube’s bandwidth drops dramatically to 478Kbps,
it’s playback buffers empty out, and several rebuffering events
cause the MOS to drop from 3.25 to 2.29. Once the bandwidth
partitioning is configured via the web portal, average goodput
rises to 1760Kbps and there are no further rebuffering events.

Fig. 12 shows the son’s Diablo-III gaming latency experi-
ence (reported by the game interface). Initial latencies average
192.2ms, peaking at 300ms, resulting in a perceptible slow-
down of game reaction time. Once IDM starts, average latency
degrades to 2.3s, making the game unplayable. About 50 sec-
onds after partitioning is configured via the portal, the latency
falls below 50ms, and the game experience is wonderful.
Similar observations are made for the daughter’s page-load
times (obtained from a Chrome add-on) for Facebook (1.6MB)
and Google (150KB) home-page, as shown on log-scale in
Fig. 13. Initial load-times average 3.68s and 1.65s (standard
deviation 0.47s and 0.72s) respectively. Once IDM starts, load-
times balloon to over 25s and 7s (standard deviation 9.42s
and 6.17s), but when bandwidth partitioning is enabled, load
times fall to 2.76s and 0.34s (standard deviation 0.35s and
0.03s) respectively, giving the user a much better browsing
experience. This experiment is but one of many where we
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have seen perceptible improvement in user-experience from
our scheme, and illustrates the ease with which the subscriber
can control Internet bandwidth sharing in their home. The
scenarios we could run on our testbed were limited by the
number of devices/users we could connect to our SDN WiFi
network (due to ethics and IT constraints). The point of our
experiments was to validate the system to show that it is real
and practical.

VII. CONCLUSIONS

As access networks continue to be the bottleneck between
CSPs and end-users, ISPs are best poised to manage the scarce
bandwidth on the access link. In this paper, we advocated fast-
lanes with two-sided software control for bandwidth resource
management, and argued how it benefits all the three entities
involved, namely the end-user, CSP and ISP. We developed
an architecture, powered by SDN technology, that permits an
ISP to create and allocate bandwidth to fast-lanes, provides
control of fast-lanes to the end-user on a per-device basis,
and allows fast-lanes to be initiated dynamically by a CSP on
a per-flow basis. Using simple but representative models for
fast-lane economics by ISPs, associated revenue-generation for
CSPs, and churn-rates for subscribers, we have shown that our
approach can open doors for ISPs to monetize on fast-lanes,
assure quality of flows for CSPs, and adhere to desired end-
user quality of service preferences. Using simulations from
real traffic traces comprising over 10 million flows, we showed
that dynamic-fast-lanes is an attractive revenue stream for
ISPs while limiting end-user annoyance to controllable levels.
We also prototyped our system on a campus scale SDN-
enabled testbed and demonstrated its efficacy via improved
service quality for end-users. We believe that our solution is
a candidate worthy of consideration in the continuing debate
surrounding Internet fast-lanes.
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