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a b s t r a c t 

New interactive video applications are increasingly emerging over the Internet; these interactive applica- 

tions are characterized by high bandwidth requirements that fluctuates depending on end-user actions 

(e.g. less bandwidth is usually needed for stationary scenes). More importantly, this interactive class of 

services also involves a requirement for high responsiveness (i.e. low latency) from the network, in order 

to respond in real-time to end-user actions. One emerging service of this nature is 360 ° video streaming; 

another example is cloud-based gaming services. In this paper, we focus specifically on JPIP (JPEG 20 0 0 

Interactive Protocol) applications that support remote interactive video browsing with dynamic pan and 

zoom capabilities, as a highly representative example of the interactive service class. Existing network 

communication services are mostly agnostic to latency implications, and hence are not well adapted to 

such interactive applications. Meanwhile, explicit resource reservation protocols have not been widely de- 

ployed, and do not consider the time-varying dependencies that naturally arise in interactive applications. 

In this work, we leverage software defined networking (SDN) principles to support a proposed “interac- 

tive service” class. The main contributions of this work are a network-exposed application programming 

interface (API) that provides visibility into the state of the network, an SDN-assisted congestion control 

algorithm that utilizes network state information to achieve the desired low latency and high bandwidth 

utilization requirements, and a fair resource assignment algorithm that shares available bandwidth among 

interactive and non-interactive traffic dynamically – all without a reservation protocol. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

We are witnessing an emergence of on-line interactive video

applications. The requirements of interactive video differ from con-

ventional video streaming; while both are amenable to optimiza-

tion of the received data, they have different requirements on

pre-fetching, round trip time, and retransmissions. For cloud-based

gaming services, such as PlayStation Now, round trip time should

be kept to a minimum, such that the player feels that the system

is responding to his/her actions, and therefore pre-fetching is not

desirable, since it increases the round trip time. Similar considera-

tions apply to interactive video streaming based on the JPEG 20 0 0

Interactive Protocol (JPIP) [1] , where a client interactively browses

and retrieves remotely stored video, based on one or more in-

teractively controlled windows of interest (WOI), governing both
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cale/zoom and spatial support. For viewport adaptive streaming

f 360 ° immersive video for head-mounted displays, keeping round

rip time to a minimum is of great importance, because this keeps

he end-user feeling immersed in the video when he/she moves

is/her head. To address this problem in part, Gudumasu et al.

2] explore a variety of tiling strategies to hide network latency,

t the expense of wasting bandwidth in sending content that the

nd user may not view. Augmented reality applications also share

any of the same properties. 

All of these applications belong to an interactive class of ser-

ices that is addressed by the methods proposed in this paper. The

andwidth required for an interactive stream is time varying, and

epends on end-user actions as well as the contents being deliv-

red. Less bandwidth is usually needed in stationary portions of

 scene, but also when the end-user pauses, reduces the play-

ack rate or navigates over previously visited content that may

e partially held in a local cache. Additionally, retransmission of

ost packets is only worthwhile if these packets are delivered in

ime for them to be used in the reconstruction of yet to be dis-
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layed frames, and then only if the packets are relevant to a pos-

ibly modified window of interest or viewpoint. 

In summary, these interactive video applications demand a con-

iderable amount of network bandwidth, just like other video

treaming applications, but more importantly they also need low

atency to maintain real-time responsiveness. The low latency re-

uirement of interactive video flows cannot be guaranteed when

hese flows are intermixed with other flows, since other flows

such as TCP) can queue up data over the bottleneck link, causing

igh latency. Therefore, in this work, we partition traffic originat-

ng from interactive and non-interactive services into two differ-

nt queues at each switch. Such an approach has been successfully

mployed by Podlesny and Williamson [3] , where they utilize one

ueue for TCP NewReno (loss-based latency-agnostic) flows and

nother queue for TCP Vegas (delay-based latency-sensitive) flows

o prevent TCP NewReno from dominating the available bandwidth

nd causing high latency. It is also the approach adopted by the

ewly proposed L4S [4] protocol for low latency traffic. 

Our goal is to leverage SDN to provide a highly responsive

nd bandwidth-efficient mechanism for serving interactive traf-

c, while fairly allocating bandwidth for other traffic, without the

eed for reservation or static allocation of resources. The contribu-

ions of this work are as follows: We develop an SDN-based sys-

em architecture with a RESTful API that exposes network state

nformation to interactive applications on short time scales (tens

o hundreds of milliseconds). We also develop a low-delay high-

hroughput congestion control algorithm that utilizes information

rovided by the SDN controller for responsive and bandwidth-

fficient delivery of interactive traffic. Additionally, we develop a

ynamic service policy scheme for interactive applications that ad-

usts the minimum bandwidth available to interactive flows based

n network conditions and the state of non-interactive flows.

astly, we evaluate the benefits of our proposed scheme via exper-

ments in the mininet environment with real JPIP endpoints; JPIP

s chosen because it exemplifies interactive video applications and

s already well-defined and in use. We argue that the proposed

cheme offers a viable solution for a richer interactive video ex-

erience. 

A good approach for congestion control is to employ a con-

estion window mechanism. Most if not all of TCP variants em-

loy such a window, relying on end-to-end probing to adjust the

ize of this window. A commonly accepted size for this window,

hich meets the low latency requirement, is the product of avail-

ble bandwidth and the minimal round trip delay; a congestion

indow larger than the bandwidth-delay product buffers data in

he network (imposing delay), while a smaller window does not

tilize enough of the available bandwidth. For this approach to

ork efficiently, reasonable estimates of bandwidth and round trip

ime are important. While it is possible to estimate available band-

idth using packet pair probing [5–7] , it is not clear, when video

ontent is being served, how much of an observed round trip delay

esults from queuing delay; in order to get an accurate measure of

he delay, conventional techniques need to let the link between the

nteractive endpoints go idle at times. This reduces overall utiliza-

ion of the available capacity. In this work, we employ software-

efined networking (SDN) techniques to expose network state in-

ormation via a RESTful API; interactive applications can utilize this

tate information to obtain estimates of available bandwidth and

atency that are current and more accurate than what can be ob-

ained by probing, since they are measured in real-time by the SDN

ontroller. 

The proposed RESTful API uses SDN only as a passive monitor-

ng tool. In this work, we also employ SDN to dynamically adapt

he service policy for the two service classes under consideration:

nteractive and non-interactive. In this case, SDN is used to actively

djust queue service rates at the individual switches based on the
umber of flows and bandwidth utilization of each queue. Both the

assive and active uses of SDN are important to the delivery of a

air, efficient and appropriate communication infrastructure for in-

eractive and non-interactive flows, as envisaged here. 

Other researchers find it useful to expose a network API

o video applications [8–10] , but their main focus is on re-

uest/control of bandwidth reservation per video stream over a

hort period of time. In our proposed approach, neither clients nor

ervers make any explicit request for resources. They are assigned

o the interactive or non-interactive class by the SDN controller.

hile a differential charging model might be imposed by network

roviders, there is no fundamental reason why this should be re-

uired, since the benefits of being assigned to the interactive ser-

ice class apply only to actual interactive streaming applications. 

The rest of the work is organized as follows: Section 2 sum-

arizes relevant prior work. The proposed system architecture

nd API are explained in Section 3 . We present the SDN-assisted

ongestion control mechanism and related experimental results

n Section 4 for a single provider network. Section 5 explains

ur dynamic service policy algorithm with experimental results.

ection 6 extends the proposed approach to federated networks,

nd Section 7 concludes the paper and gives directions for future

ork. 

. Related work 

In this section, we cover three areas of related research; namely,

uality of service, quality control, and congestion control. 

.1. Quality of service 

Several techniques have been proposed to maintain quality of

ervice for on-line video delivery. Video content providers employ

echniques such as TCP instrumentation [11] and video rate adapta-

ion (using real-time probing of available bandwidth). These meth-

ds are not so helpful for interactive videos, especially when the

etwork is congested, since they primarily aim at bandwidth pro-

isioning with latency being out of their concern. We note that the

etworking research community has also developed a variety of

ervice quality control solutions ranging from ATM switched vir-

ual circuits (SVC) to RSVP and IntServ/DiffServ with limited suc-

ess. These techniques mainly require fairly static configurations,

ffer “soft” assurance of quality, and do not expose control to ap-

lications in the process of fair network resource provisioning. 

.2. Quality control 

There is a large body of research that advocates an application-

ware networking paradigm for improving application performance

nd network utilization. The work in [12] explores utilizing an

ntegrated network control and configuration for big data appli-

ations, performing bulk transfers. Our focus in this paper is on

elay-sensitive interactive video that demands low RTT and high

hroughput. Many SDN-based frameworks have been proposed to

xplicitly control network services. PANE [8] proposes a set of net-

ork programmable interfaces that enable applications to query

he network state and request a specialized treatment (e.g., band-

idth reservation). Similarly, the system in [10] allows users and

ontent providers to request provisioning special lanes for certain

ows (e.g., application-specific or device-specific) over the bottle-

eck access link from the broadband network operator. By contrast,

n the approach proposed in this paper, the video application does

ot specify or exercise network control; instead, an SDN controller

xposes network state information to application endpoints, and

ynamically adapts provisioning in the network. 
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Fig. 1. System architecture. 
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2.3. Congestion control 

Numerous congestion control mechanisms have been developed

in the past; examples include [13–15] . OpenTCP [13] is the first at-

tempt to employ SDN to dynamically adapt TCP, improving its per-

formance. TIMELY [14] and DX [15] use delay measurements to de-

tect congestion in datacenter networks. In L4S [4] and DCTCP [16] ,

network devices use packet marking as a soft indicator for con-

gestion; end-points notice these markings and reduce their trans-

mission rate, easing congestion, while maintaining low delay high

throughput transmission. In this work, we leverage the visibility

provided by an SDN controller, which sits at a central vantage

point, to obtain quicker and more accurate estimate of the network

state. Section 3.2.2 gives a detailed description of the exposed net-

work state. 

3. System architecture design 

In this section, we describe our solution for enhancing the

delivery of interactive flows (e.g. JPIP video) in an SDN-enabled

network. We begin by outlining our major architectural deci-

sions in Section 3.1 . This is followed by the proposed network

API in Section 3.2.1 and the proposed network quality control in

Section 3.2.3 . 

3.1. Architectural decisions 

Fig. 1 shows the proposed system architecture; the aim is to

enhance the performance of interactive video applications and to

efficiently utilize network resources. We rely on the SDN to pro-

vide network visibility to interactive video applications and to dy-

namically control bandwidth provisioning for them. Since delay-

sensitive applications tend to compete poorly with aggressive TCP

traffic [14] , we propose to isolate interactive flows from the rest of

the traffic by using an application-specific queue, which we iden-

tify as the interactive queue, at each hop, where a guaranteed frac-

tion (slice) of a hop’s bandwidth is provisioned for that queue.

This slice of bandwidth is adjusted dynamically, as explained in

Section 5 . The SDN controller detects interactive flows and as-

signs these flows to the interactive queues, without the need for

any reservation of resources. A registration API call is employed

to assist in the identification of interactive flows, as explained in

Section 3.2.1 . In Sections 3 –5 of this work, we focus on a single do-

main network, extending the proposed approach to federated net-

works in Section 6 . 

The SDN controller in this work has good knowledge of the net-

work topology, including link capacities and physical delays. It also

knows the network path between any two endpoints (video server

and client in our case), since it manages data flows in the network.

Our controller runs an application that is capable of probing the

state of the data-plane elements (network switches and routers)

several times a second (e.g. every 50 ms) to collect network in-

formation such as queue lengths and cumulative bytes transferred.
his information is stored by the SDN application as entries in a

ata table, which we identify as the network state table (NST);

ach reading in the NST is associated with an index. It is sufficient

or this table to store a few seconds’ worth of data (e.g. in a circu-

ar buffer), since older data become of little use for the estimation

f the current network state needed by the interactive video end-

oints, which are the JPIP servers and clients in the context of this

ork. 

The data thus collected by the SDN application from network

lements is exposed via a RESTful (REpresentational State Transfer)

PI; this way interactive endpoints can poll the SDN application for

etwork state using standard HTTP commands over TCP. The use of

 binary format for state information, which is more efficient but

ess flexible, might be explored in a future work. 

.2. Network exposure and control 

.2.1. Network visibility 

The SDN controller in the proposed architecture provides a

ESTful API that accepts two types of calls: 

• Registration : This call aims at providing the SDN controller

with attributes of the interactive video application. In registra-

tion, an application specifies (a) the identity of the caller ap-

plication requesting the special treatment; and (b) the 5-tuple

flow information; a flow’s 5-tuple information is the source IP

address and port number; the destination IP address and port

number; and the protocol in use. This API is called by the ap-

plication at the start of the video session and prior to querying

the network. 

• Network Query : This call provides the caller application with

network state information. The reply includes (a) the number of

hops (and their physical delay) between application endpoints;

(b) the number of waiting (or queued) bytes in the interactive

queue at each hop; (c) the minimum bandwidth of the inter-

active queue at each hop; and (d) the throughput of the inter-

active queue at each hop. In practice all these parameters are

estimates, since exact information may not be discoverable and

cannot generally be current. 

This query API is employed by interactive video server(s) and

clients. Network state information is then utilized by the con-

gestion control algorithm of the interactive application; the ob-

jective of the proposed congestion control algorithm is for each

flow to approximately maintain a target number of bytes on the

queue of its most congested hop (i.e. bottleneck link), minimiz-

ing the overall RTT. A detailed description of this call is given

in Section 3.2.2 . 

Note that the above API calls need to authenticate the caller ap-

lication, but in this work we mainly focus on our proposed con-

estion control algorithm and dynamic bandwidth provisioning. 

.2.2. Detailed description of the network query call 

To request data from the NST, the interactive client or server

ends a GET request of the form: 

GET /stats/ < MyIP > / < PeerIP > / < LastIdx > / 
 MaxEntr > / specifying its IP address ( MyIP ), its peer IP

ddress ( PeerIP ), the last NST entry index it has received

 LastIdx ), and the maximum number of entries that it is willing

o receive ( MaxEntr ). The first two values, myIP and PeerIP, help

he SDN controller identify the two network endpoints and a

irection along the path between these two endpoints. The value

f LastIdx prevents the SDN controller from sending entries that

ndpoints already know about. The MaxEntr value serves to limit

he amount of response data in cases when there is no previous

equest (in this case LastIdx is 0) or there is no request for a long

ime. 
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The SDN controller replies with a concatenation of network

tate entries of the form: 

 ns _ entry, ns _ entry, . . . ] 

here each entry is of the form: 

 i, L, link _ entry i 1 , link _ entry i 2 , . . . , link _ entry i L ] 

ere, i is the entry index, and L is the number of links on the path

etween a client and its server; these links can be within one or

ultiple service providers. A link entry for a link l , where 1 ≤ l ≤ L ,

as the form: 

�i 
l , b i l , q i l , R 

i 
l , d i l ] 

here �i 
l 

is the acquisition interval (seconds) between entry i and

ntry i − 1 for link l ., b i 
l 

is the number of bytes transmitted through

ink l in that interval, q i 
l 

is the number of bytes that are queued at

he buffer before link l when this entry is created, R i 
l 

is the mini-

um data rate allocated to the interactive queue at link l , and d i 
l 

s the physical delay on link l . We choose to communicate the link

ate and physical delay with each entry, since it is possible that

he SDN controller changes the path 

1 between the endpoints. This

s also useful when the SDN controller changes bandwidth provi-

ioning for interactive streams, as explained in Section 5 . Commu-

icating a time duration �i 
l 

for each link l , instead of one time

uration for each index i , is useful when multiple SDN controllers

re employed along a path, within one network provider or mul-

iple providers; in this case, each controller can have its own set

f state acquisition intervals. We explore this scenario further in

ection 6 . 

The API above is designed to provide minimal yet sufficient in-

ormation (bytes transmitted and queued on each link) to interac-

ive endpoints, without revealing per-flow information. The latter

an impose significant burden on the network and the controller

n terms of data collection and communication. Our implementa-

ion (in Sections 4 and 6 ) demonstrates feasibility, though we defer

arger-scale deployment to future work. In order to use the API ef-

ectively, interactive endpoints need to supplement the aggregate

nformation that they receive with properties of their own flow,

stimated separately, as described below. 

In the current implementation, each request receives a reply

hat describes the path from MyIP to PeerIP. If the information for

he reverse path is needed, a separate request must be issued. In

his work, we always pipeline the request for MyIP to PeerIP with

he request for PeerIP to myIP, and we refer to them as a forward-

ackward request. 

Interactive endpoints post requests to the SDN controller to

btain the network state that is of importance to them. The ar-

angement used for experimental results is for the client to send

 forward-backward request, and wait for the reply, before send-

ng a new forward-backward request. The server posts forward-

ackward requests for all the clients of interest, and waits for all

he replies, before issuing new requests. 

.2.3. Network quality control 

The objective is to maintain the performance of interactive

ideos, while being fair to other flows in the network. The SDN

ontroller achieves this “fairness” by periodically running a dy-

amic service policy that sets the minimum rate for the interactive

ueue to a fraction of the link capacity that is equal to the ratio of

he number of interactive video flows to the total number of flows.

ection 5 details this service policy. 
1 The proposed approach requires some path stability; e.g., it is not clear if it can 

ork with link load balancing. 

q  

fl

q  

b  
. SDN-assisted congestion control 

Both interactive endpoints need to estimate network bandwidth

nd delay attributes while serving or receiving video content. An

nteractive client uses delay information to estimate when to re-

uest subsequent frames’ data, such that this data can be deliv-

red in time for rendering at the client. The client also needs band-

idth information to choose an ideal number of bytes to request

or each frame; requesting too little data does not utilize enough of

he available bandwidth, while requesting too much data increases

elay, since some of this data needs to be buffered in the network.

n interactive server uses available bandwidth to decide how many

ytes to send in given period of time (for throttling). Further explo-

ation of the operation of JPIP is beyond the scope of this work. In

his work, the server and client use SDN-supplied information to

btain accurate and timely estimates of available bandwidth and

elay. 

.1. Using network state at the interactive server 

Using the state information received from the SDN controller,

he interactive server estimates the average stream bandwidth go-

ng through each link along the communication path, using an ex-

onential smoothing strategy, which is also known as Exponential

eighted Moving Average (EWMA). For the purpose of this section,

e consider that the bandwidth allocated to the servicing of the

nteractive queues is fixed, as this allows for better investigation

f the proposed approach; a more realistic policy is explored in

ection 5 , where the bandwidth allocated to the interactive queues

s dynamically adjusted. We write �S → C for the set of all links in

he path from the server to the client; we similarly write �C → S 

or the set of links in the path from the client to the server. This

ay, the average bandwidth λ̄i 
l 

going through link l at time index

 is given by: 

¯ i 
l = λ̄i −1 

l 
+ α ·

(
b i 

l 

�i 
l 

− λ̄i −1 
l 

)
, l ∈ �C→ S , �S→ C (1)

here α controls how fast bandwidth estimates respond to

hanges in the observed bandwidth b i 
l 
/ �i 

l 
. We set the smoothing

ime constant �i 
l 
/α to 1s in this work. However, for exponential

moothing, 0 < α < 1; therefore, we use α = min (1 , �i 
l 
) . The aver-

ge number of queued bytes, q̄ i 
l 
, at the buffer of link l is similarly

stimated using : 

¯
 

i 
l = q̄ i −1 

l 
+ α · (q i l − q̄ i −1 

l 
) , l ∈ �C→ S , �S→ C (2)

his average is for queued bytes at link l from all flows; next,

e explore how an interactive endpoint can estimate the average

umber of queued bytes associated with its own flow. 

In the following discussion, we assume that the path from the

nteractive server to the client carries more data than the client to

erver path, which is the case in all video streaming applications.

oth endpoints estimate this server-to-client bandwidth 

ˆ λi 
f 
; the

erver monitors acknowledgments from the client and counts how

any bytes are associated with these acknowledgments, while the

nteractive client keeps track of the number of bytes received from

he server in a given period of time. Both use a moving average

pproach with a window size of 0.5 seconds. 

Naturally, the bandwidth estimate of interactive flow 

ˆ λi 
f 

should

e no larger than the bandwidth λ̄i 
l 

experienced at each link

 ∈ �S → C . It is also fair to assume that the number of bytes ˆ q i 
f,l 

ueued at any link l ∈ �S → C and associated with server-to-client

ow f is no larger than the estimated total number of bytes q̄ i 
l 

ueued at the same link. With that in mind, we estimate the num-

er of queued bytes associated with flow f at the buffer of link l
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3 The client may receive fewer bytes in response to any request than its request 

limit would suggest, since the server models the client’s cache and only sends in- 

formation that the client does not already have. 
4 Mininet version 2.1, http://mininet.org . 
5 An Intel Xeon W3520, 4 cores/8 threads, with 12GB RAM. 
6 Two additional switches are inserted on the path between the two switches of 

Fig. 2 ; these inner switches are used to emulate the 50ms propagation delay, while 

the outer switches are used to emulate the change in data rate between 5 Mbps 
using: 

ˆ q i f,l = 

⎧ ⎨ 

⎩ 

ˆ λi 
f 

λ̄i 
l 

· q̄ i 
l 
, λ̄i 

l 
≥ ˆ λi 

f 
and λ̄i 

l 
> 0 

q̄ i 
l 
, otherwise 

, l ∈ �S→ C (3)

The congestion control policy in this work is based on the in-

teractive server attempting to maintain a certain number of bytes

S from its flow f at the most congested (bottleneck) link for that

flow, so long as it has something to send; if it has nothing to send

to a client, then it can let the link go idle for that flow f . This is

similar to delay-based TCP Vegas [17] and FAST TCP [18] conges-

tion control algorithms in that the transmitter attempts to main-

tain a small number of packets queued in the network by allow-

ing a correspondingly small increase in observed delay over the

idle case (or BaseRTT); in these algorithms, the exact number of

queued packets cannot be controlled as accurately as we can in

this work. We assume that all interactive flows are characterized

by the same value for S . The server estimates the rate λi 
f,l 

that

achieves S queued bytes at the buffer of link l using: 

λi 
f,l = 

S 

S + ( ̄q i 
l 
− ˆ q i 

f,l 
) 

· R 

i 
l , l ∈ �S→ C (4)

That is, at the steady state, we should have S bytes from flow f and

q̄ i 
f,l 

− ˆ q i 
l 

from other flows. The corresponding data rate is decided

by the most congested link l , as: 

λi 
f = min 

l 

{
λi 

f,l 

}
, l ∈ �S→ C (5)

To find the congestion window, we need to estimate the round

trip time, which is the sum of the network delay δi 
f 

experienced by

server-to-client flow f and the network delay δi 

f̄ 
experienced by its

associated client-to-server flow f̄ . We estimate the server-to-client

delay δi 
f 

using: 

δi 
f = 

∑ 

l 

(
S + q̄ i 

l 
− ˆ q i 

f,l 

R 

i 
l 

+ d i l 

)
, l ∈ �S→ C (6)

That is, a packet from flow f experiences an expected delay due

to buffering of q̄ i 
f,l 

− ˆ q i 
l 

bytes from other flows and to storing and

forwarding its S bytes. 2 We find the client-to-server delay δi 

f̄ 
using:

δi 

f̄ 
= 

∑ 

l 

(
q̄ i 

l 

R 

i 
l 

+ d i l 

)
, l ∈ �C→ S (7)

The congestion window is then set, following Little’s Law [19] , to

 

i 
f = λi 

f · (δi 
f + δi 

f̄ 
) (8)

The main regulator of traffic flow in our proposed model is the

server’s congestion window W 

i 
f 
, as calculated above, representing

the total number of unacknowledged bytes that the server is pre-

pared to have outstanding within the network. Additionally, how-

ever, the server shapes its outgoing traffic to a maximum data rate

of 1 . 25 · λi 
f 
, so as to minimize the impact of sudden changes in W 

i 
f 

on the intermediate link buffers. 

4.2. Using network state at the interactive client 

The interactive client maintains a request window, constraining

the number of bytes that might still be received in response to
2 In experimental results, we ignore this S bytes store and forward delay, using 

δi 
f 
= 

∑ 

l (( ̄q 
i 
l 
− ˆ q i 

f,l 
) /R i 

l 
+ d i 

l 
) instead of (6) , as the Mininet tool appears to ignore the 

store-forward delay for packets. This might be legitimate for switches that do not 

require a packet to be fully buffered before transmission can commence. 

s

i

a

utstanding requests, based on these requests’ byte limits. 3 To es-

imate this request window, the client could use its estimate of the

erver-to-client bandwidth 

ˆ λi 
f 
, together with an estimate of the

inimum round trip delay δmin derived directly from the proposed

DN API, setting the request window to 1 . 5 · ˆ λi 
f 
· δmin . However, for

ore accurate estimates, the client employed in this work uses the

xact same procedure as that used by the server; in particular, the

lient’s request window is set to 1 . 5 · W 

i 
f 
, obtained via (8) . 

.3. Performance evaluation of SDN-assisted congestion control 

We now evaluate the performance of the interactive application

n an SDN-enabled network using our JPIP video streams and end-

oints. 

.3.1. Test setup 

The various results of this section are produced using the test

etup shown in Fig. 2 . The network is emulated inside the Mininet

ool 4 [20] , which is run on an Ubuntu Linux platform 

5 Inside

ininet, we have two switches, 6 one server with an IP address of

0.0.0.2, and one SDN Controller with an IP address of 10.0.0.254,

hich works as a DHCP server as well. A separate machine runs

he JPIP server. To obtain accurate results, all servers inside Mininet

re configured to disable using “jumbo” frames. The Linux machine

s physically connected to an OSX machine 7 with a DHCP-assigned

P address; the OSX machine runs JPIP clients. There are also two

osts with IP addresses 10.0.0.3 and 10.0.0.4 that can be used to

imulate non-interactive traffic; these host are useful for the ex-

eriments in Section 5 . 

The traffic control command, tc , is run every 50 ms on the

inux machine to collect the state of the different switches and

etwork interfaces inside Mininet. This data is stored in the NST

able, and made available for serving by an HTTP server. We use a

ython-based HTTP server running on 10.0.0.254. 

We set the number of queued bytes S in (4) to 1500. The ex-

eriment is not an exact emulation of reality; for example, the 4

ctet FCS field of each Ethernet frame is not included in the re-

orted rates. Also, the experiment ignores the 7 octet preamble,

he 1 octet at the start of each delimiter, and the 12 octet gap that

xists between each pair of Ethernet frames. For convenience, we

lso ignore these fields in calculating byte counts and estimated

ates. 

For testing, we employ a very high quality video with a highly

calable representation. In particular, we use the “Sintel” sequence

21] with a resolution of 4096 × 1744 and a frame rate of 24 frames

er second. The first 30 0 0 frames of the “Sintel” sequence are

ompressed using JPEG20 0 0 Part 2 with 20 quality layers, 7 lev-

ls of DWT decomposition, 32 × 32 coefficient codeblocks, 4 × 4

odeblock precincts, and 8 bits per color component. The 9/7 CDF

avelet is used in the irreversible path of JPEG20 0 0. 

This highly scalable representation enables the JPIP server to

elect and serve the best available quality for the client’s view-
and 10 Mbps. We do so to overcome Mininet’s behavior of using egress buffers of 

witches to emulate delay, which interferes with the number of queued bytes used 

n this work; we are interested here in data bytes that are buffered in egress buffers 

due to change in data rate between ingress and egress links, and not in those that 

re used to emulate delay. 
7 An Intel i7-3667U machine, 2 cores/4 threads, with 8GB RAM. 

http://mininet.org
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Fig. 2. The test setup used to obtain the experimental results. A Ubuntu Linux ma- 

chine is used for running Mininet; inside Mininet, a network of two switches is em- 

ulated. This Ubuntu machine is physically connected to an OSX machine that runs 

an interactive client and any interactive-class clients. Non-interactive client (Iperf) 

and server are shown in the lower half of the figure. 

Fig. 3. JPIP-based video bandwidth over traditional network and over SDN, where 

the network state supplied by the SDN controller is used for congestion control. 

Video bandwidth over SDN uses all of the bottleneck link’s 5 Mbps bandwidth. The 

first peak, which happens at the 5th second corresponds to first access to video, 

while the actual playback started around the 10th second. 
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t  

l  

f  

o  

w  

i  

u  

t  

T  
ort, given network conditions and the client’s cache state, without

layback stalls, and without re-encoding the already compressed

odestream [22] . The playback system used for experimental re-

ults adopts a viewport size of 1024 × 436, which is the extent of

he window of interest requests forwarded to the JPIP client; this

iewport is a portal into the full content that is being zoomed and

anned. 

.3.2. Performance improvement on SDN 

This section explores the performance improvement of our pro-

osed SDN-assisted approach compared to JPIP over traditional

etworks. The JPIP server 8 implementation used in this work em-

loys the packet pair approach to estimate the available bandwidth

ver conventional networks; this implementation also lets its com-

unication link to the client go idle at times in order to correctly

stimate network delay, as discussed earlier. 

Fig. 3 shows that over SDN a JPIP server can use more of the

vailable capacity, up to the full 5 Mbps, which is available on

he link between the JPIP endpoints. Fig. 4 shows that using SDN

lso lowers the number of bytes queued inside the network; this

elps improve responsiveness, because data buffered in the net-

ork needs to be delivered before any new data, which corre-

ponds to the client’s new WOI, can arrive, as explained before.

ig. 5 shows video quality improvement that is obtained from the

roposed approach. 

.3.3. Fair sharing among interactive flows 

To facilitate testing the proposed congestion control approach

or a large number of clients, we developed synthetic JPIP clients

nd servers, which follow the proposed approach, but have a low

omputational cost; to emulate traffic, a synthetic server sends

ero-filled packets of desired size to synthetic clients. It is impor-

ant to stress that these synthetic clients and servers are used as

dditional clients and servers beside one real JPIP server and one

r more real JPIP clients. 

Fig. 6 shows the behavior of the proposed approach as multi-

le clients share a limited-capacity link. The figure shows that the

umber of queued bytes is proportional to the number of clients

haring the link; each client has approximately the same number

f queued bytes, and therefore each client gets a fair share of band-

idth. Additionally, the link is fully utilized most of the time. 

An important feature of JPIP is that the server needs only

o send data that the client does not already have within its

ache. Since interactive navigation may involve forward or back-

ard traversal of the video, with changing window of interest,

his introduces substantial user-dependent dynamics into the traf-

c. To simulate this behavior within our emulated JPIP servers also,

e use a two-state Markov model for each client, where the ON

tate refers to the server having something to send and the OFF

tate refers to having no data to send. The model is character-

zed by the transition probability, which we set to 0.1; that is,

 ( ON | OFF ) = P ( OFF | ON ) = 0 . 1 , and P ( OFF | OFF ) = P ( ON | ON ) = 0 . 9 .

his model is evaluated for a transition once every 250 ms. 

Fig. 7 shows that the number of queued bytes increase lin-

arly with the number of clients receiving data; this is because

he server attempts to queue up S bytes (1500 bytes in this work)

or each client flow. This way each client flow gets a fair share of

andwidth because the server queues up the same amount for that

ow. Fig. 7 also shows little disruption to the server’s throughput

hen the server resumes or stops sending to clients; in fact, full

tilization of the link’s capacity is achieved most of the time. 
8 Kakadu Software v7.4, http://www.kakadusoftware.com/ . 

f  

fl  

w  

S

. Dynamic service policy using SDN 

In the previous section, we proposed an SDN-assisted conges-

ion control algorithm that can achieve high throughput with low

atency. In that section, however, we took the available bandwidth

or interactive traffic at each link to be fixed. This is reasonable

nly if all traffic belongs to the interactive class. In this section

e investigate how interactive traffic can be intermixed with non-

nteractive traffic. We show in Section 5.1 that the widespread

se of loss-based TCP traffic can dominate delay-sensitive in-

eractive traffic, degrading the latter’s throughput and latency.

hen, in Section 5.2 , we present an SDN-based approach for

airly dividing bandwidth between interactive and non-interactive

ows. In Section 5.3 , we examine the robustness of this band-

idth partitioning approach. Experimental results are presented in

ection 5.4 . 

http://www.kakadusoftware.com/
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Fig. 4. In JPIP-based video browsing over traditional network, more data is buffered 

in the network compared to the proposed approach which uses information from 

the SDN controller for congestion control. The time axis here corresponds to that in 

Fig. 3 . 

Fig. 5. A JPIP server using SDN, as proposed in this work, can deliver higher quality 

video by around 1.1 dB compared to a JPIP server over a traditional network. 

Fig. 6. Fair sharing among multiple clients sharing the 5 Mbps link of Fig. 2 . (a) The 

figure starts with one synthetic client. At point (i) a JPIP client is connected; this 

point is the first video access. At (ii) video playback starts. At (iii) another synthetic 

client starts using the link. At (iv) the JPIP client leaves. At (v) one synthetic client 

leaves. The upper part of the figure shows fair bandwidth sharing among clients, 

and that the number of queue bytes is proportional to the number of client. The 

lower part of the figure shows that almost all the link’s bandwidth is utilized. 

Fig. 7. In an interactive session, a JPIP server can have little data, potentially zero, 

to send to a client for certain frames and a lot for others. This figure shows the 

near full utilization of bandwidth as the number of clients for which the server 

sends data changes over time. 

Fig. 8. Performance of an interactive JPIP video flow over a best-effort network 

with congestion. 

5

 

e  

f  
.1. Interactive flows in a traditional network 

To examine the performance of interactive traffic in the pres-

nce of non-interactive traffic, we employ one best-effort queue

or all traffic, interactive and non-interactive. Fig. 8 (a) shows the
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hroughput of a JPIP video flow 

9 (solid blue line) and an Iperf TCP

ow (dotted red line). At time t = 0 s, we have only one JPIP video

ow; then at time t = 24 s, an Iperf TCP flow is introduced. In ab-

ence of other traffic (i.e. when t ∈ [0, 24]), JPIP video throughput

s close to the full link’s capacity. During this time, we also notice

hat the round-trip time experienced by the JPIP video flow, shown

n Fig. 8 (b), is around 106 ms, only 6ms larger than the 100 ms

ound-trip propagation delay. Unsurprisingly, a high quality video

PSNR of above 40 dB) is delivered to the client during this time,

s shown in Fig. 8 (c). 

On the other hand, once an aggressive TCP flow is introduced

t time t = 24 , the bandwidth consumed by the interactive video

ow drops significantly; JPIP video throughput falls below 1 Mbps

nd the aggressive TCP flow dominates the link’s capacity, receiv-

ng more than 4 Mbps of throughput, as shown in Fig. 8 (a) when

 ∈ [24 , 70] s. Concurrently, the JPIP flow witnesses an increase in

TT to above 10 0 0 ms, reaching as high as 2400 ms, as shown in

ig. 8 (b). Naturally, the decrease in JPIP throughput is accompanied

y a decrease in the quality of delivered video down to a PSNR of

round 10dB, as depicted in Fig. 8 c; this extremely low PSNR indi-

ates that none of the data sent to the client arrives in time for it

o be used in rendering. 

This behavior can be understood by remembering that loss-

ased TCP flows aggressively fill up queuing buffers, while delay-

ensitive interactive traffic attempts to minimize delay by buffering

 small number of packets. Thus loss-based TCP flows cause high

atency and take a large proportion of available bandwidth because

hey dominate queuing buffers. 

.2. Interactive flows over a network with SDN-controlled dynamic 

ervice policy 

To maintain the performance of interactive video flows, and

t the same time, provide other traffic with a reasonable portion

f a link’s capacity, we propose using two queues for each link,

n interactive queue for interactive flows and a non-interactive

ueue for other traffic, together with a dynamic service policy that

ims at fairly adjusting the minimum available rate to each of the

ueues. We note that this service policy is utilized by the network

rovider for quality control and will be independent of the conges-

ion control mechanism that is run by the application provider. 

We write Q I and Q NI for interactive and non-interactive queues,

espectively. The SDN controller is able to track active flows in each

ueue, where we write f I and f NI for the number of flows in Q I 

nd Q NI . 

In this work, we consider a fair distribution of a link’s capac-

ty C between these two queues to occur when each queue gets

 share of the capacity that corresponds to the number of flows

tilizing it. In practice, we use the ratio ( f I + 1) : ( f NI + 1) for this

urpose; this ratio is the MAP (maximum a posteriori probability)

stimate of the ratio of the flows, given unscaled counts f I and f NI ,

nd no prior information is available concerning the actual distri-

ution of flows. Other definitions of fairness are conceivable, and

e may explore some of them in future work. 

The SDN controller uses this definition of fairness to provi-

ion a long-term available rate ˆ R L for the interactive queue Q I at

ll switches along the interactive flow path. It also provisions the

on-interactive queue 10 Q NI with the rest of the available capac-
9 A JPIP server over a traditional network uses the packet pair approach to esti- 

ate the available bandwidth, letting its communication link to the client go idle 

t times to correctly estimate network delay. This is the same JPIP server used over 

onventional networks in Section 4.3.2 . 
10 It is conceivable that the SDN controller provisions other queues, but all these 

ther queues belong to the non-interactive class, and therefore the SDN is free to 

hoose how to partition the available bandwidth C − ˆ R L among them. 

N  

e  

c  

l  

t  

o

λ

ty, given by C − ˆ R L . The SDN controller updates these provisioned

ates sufficiently frequently to adapt to the changing state of the

etwork. The value of ˆ R L is computed using an exponential aver-

ge with a small parameter αL , and is given by: 

ˆ 
 

i 
L = (1 − αL ) · ˆ R 

i −1 
L 

+ αL · C · f I + 1 

f I + f NI + 2 

(9) 

he use of exponential averaging helps smooth sudden transitions

n the provisioned rate. The network provider may choose to use

ther criteria for the long-term rate, such as putting a lower limit

n the rate allocated to interactive flows. 

Here, we are also interested in enabling interactive flows to uti-

ize any spare bandwidth that may occur in the non-interactive

ueue, but we do not want interactive applications to resort back

o probing, since, as we have seen, probing is inefficient. For this

urpose, the SDN controller also estimates a short-term rate ˆ R S ;

his is the rate communicated to interactive application endpoints

e.g. a JPIP server) as is described in Section 3.2.2 . The short-term

ate represents a short-time guarantee of what rate interactive

ows can potentially achieve. 

The short-term rate ˆ R S gradually decreases to the long-term

ate ˆ R L when there are queued packets q NI in the non-interactive

ueue Q NI , and gradually increases to C − M in their absence,

here C is the link’s capacity and M is a small bandwidth mar-

in chosen by the network operator. The bandwidth margin M en-

bles the SDN controller to check if the non-interactive queue is

eing utilized; i.e., there is non-interactive traffic on the network.

he short-term rate ˆ R S is given by 

ˆ 
 

i 
S = (1 − αS ) · ˆ R 

i −1 
S 

(10) 

+ αS ·
([

1 − I(q NI ) 
]

· (C − M) + I(q NI ) · ˆ R 

i −1 
L 

)
here I is a binary indicator function; that is, it is equal to 1 when

 is nonzero and 0 otherwise. The parameter αS controls how fast

he short term rate ˆ R S responds to packet queuing in the non-

nteractive queue Q NI ; to make this short-term rate ˆ R S responds

aster to changes than the long-term rate ˆ R L , the short-term rate

arameter αS should be larger than the corresponding long-term

arameter αL . 

.3. Robustness to overstating the short term rate ˆ R S 

For interactive endpoint applications, the congestion window

 

i 
f 

of (8) depends on the short term rate ˆ R S through (4), (5), (6) ,

nd (7) . In this section, we show that an interactive queue is not

ongested when the short-term rate ˆ R S , communicated by the SDN

ontroller, temporarily exceeds the actual rate available to that in-

eractive queue; this can occur when the utilization of the cor-

esponding non-interactive queue increases suddenly, keeping in

ind that an interactive queue is provisioned to guarantee a rate

f at least ˆ R L , not ˆ R S . 

Consider the case of N interactive flows passing through one

uch interactive queue. The server or servers of these flows at-

empt to queue an average of S bytes of data per flow in this

ueue; thus, this interactive queue should have N · S bytes queued,

s we have seen before. If the actual available bandwidth for this

ueue is temporarily lower than the value reported by the SDN-

xposed API (i.e. ˆ R S ), packets will accumulate within the queue, say

 ·α · S bytes are queued, where α > 1. Using the SDN-exposed API,

nd-point servers notice this increase in data packets; each server

orrectly identifies, using (3) , that a fraction 1/ N of the accumu-

ated bytes belong to it, i.e. α · S bytes. The subsequent computa-

ion of available rate, via (4) , is based on the assumption that each

ther server has queued only S bytes, yielding 

i 
f,l = 

S 

S + (N − 1) · α · S 
· ˆ R S 
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Fig. 9. Network performance of an interactive JPIP video flow over an SDN-enabled 

network with congestion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Application performance of an interactive JPIP video flow over an SDN- 

enabled network with congestion. Note that for (b) different y-axis scales are used 

for different colors. 
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which is always lower than 

ˆ R S /N, approaching ˆ R S / (N · α) as N be-

comes large. This effectively means that the congestion control al-

gorithm substantially compensates for inaccuracies in the rate ˆ R S ,

avoiding large increases in latency, especially in the critical case

where many servers are competing for the available bandwidth. 

We remind the reader that ˆ R S will be larger than 

ˆ R L only when

the SDN-controller considers that the non-interactive traffic is tem-

porarily under-utilizing its fair share of available bandwidth. Once

the SDN-controller responds to the sudden increase in utilization

by non-interactive traffic, it should report a lower short term rate
ˆ R S , approaching the long term rate ˆ R L if the increased utilization

persists. 

5.4. Performance evaluation of the dynamic service policy 

We evaluate the proposed dynamic service policy on the same

test setup shown in Fig. 2 . To test the performance of the proposed

scheme, we start a JPIP flow at t = 14 s and stop it at t = 104 s.

During that time, we also employ Iperf flows following the pattern

0, 1, 2, 1, 0; Fig. 9 (a) shows the number of flows on the link be-

tween S1 and S2 of Fig. 2 . We expect the long-term bandwidth,

which is the minimum bandwidth available to interactive flows, to

converge to 2.5 Mbps when there are no flows, 3.3 Mbps when

JPIP flow is the only flow, 2.5 Mbps when we have one JPIP flow

and one Iperf flow, and so on, as given by (9) . The solid line in
ig. 9 (b) shows that the experimental results corroborate this ex-

ectation. The dotted line in Fig. 9 (b) shows the short-term band-

idth; this is the rate exposed to interactive applications by the

DN controller via the query API call. 

Fig. 9 (c) shows that JPIP flow throughput (dotted line) quickly

racks the reported short-term bandwidth, and the rate of the in-

eractive queue (and JPIP flow throughput accordingly) is adapted

s the number of TCP flows changes. For example, at about t = 30 s,

PIP throughput is approximately halved after introducing an Iperf

CP flow and after ten seconds it again slightly drops when the

econd Iperf TCP arrives. This behavior is a result of the SDN-

ontroller reducing the minimum available bandwidth allocated to

nteractive queue as more flows enter the default queue. The net-

ork controller may choose a policy whereby the bandwidth allo-

ated to interactive flows cannot drop below a certain fraction of

he total link capacity, but this is not the case here. 

Fig. 10 shows the performance of the interactive video appli-

ation under the proposed approach by a number of metrics. The

TT, shown in Fig. 10 (a), is minimal at 101 ms or less, compared

o a round trip propagation delay of 100 ms; a minimal RTT en-

bles interactive end-points to quickly respond to client changes,

nd as such improves responsiveness. In Fig. 10 (b), we see that the

nteractive queue holds around a kilobyte of JPIP data during video

layback, because the SDN-assisted congestion control, presented

n Section 4 , attempts to have 1500 bytes per flow of interactive

ata (e.g. JPIP data), even when the interactive queue buffer is con-
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gured to hold a thousand packets. For the default non-interactive

ueue, even a single Iperf TCP flow can quickly fill up this queue’s

uffer, as shown by the dotted red line in Fig. 10 (b) between

 = 35 s and T = 40 s, where around 1.5 MB are queued. Finally,

ig. 10 (c) shows the high-quality of the delivered JPIP video, aver-

ging around 40 dB and never falling below 35 dB; most impor-

antly, it is not significantly harmed by other traffic as is the case

n Section 5.1, Fig. 8 (c). These results are considerably better for in-

eractive applications, compared to the results of Section 5.1 , and

n particular Fig. 8 (b). 

Summary: With the help of an SDN-controlled dynamic service

olicy, interactive JPIP flows can achieve the desired low-latency

nd high-throughput, while other traffic still experiences a decent

hare of a link’s capacity. 

. Extending SDN-assisted congestion control to federated 

etworks 

In Section 4 , we presented an SDN-assisted congestion control

lgorithm; all discussions and results in that section are limited

o one domain, suitable for one network provider. In this section,

e explore how the approach can be extended to multiple service

roviders. 

.1. The proposed approach 

To employ the proposed SDN-assisted congestion control algo-

ithm through multiple service providers, these providers need to

xchange their network state information that is necessary for the

peration of this algorithm. The pricing mechanisms that might be

sed in such a federated service are beyond the scope of this work.

In this work, a provider’s SDN controller 11 collects network

tate information from other providers for all interactive flows

riginating from or terminating into its own network, consoli-

ates this information with its own network state information, and

akes this information available to its own interactive end-points

nd other providers’ SDN controllers; thus, a provider’s SDN con-

roller also acts as a proxy for other providers’ state information,

ut only for interactive flows that originate from or terminate into

ts network. This way, it is sufficient for an SDN controller to only

uery the SDN controller of the immediate network provider on

he path of an interactive flow. 

To see how this works, consider the interactive end-point

hown in Fig. 11 , represented by the JPIP server in ISP1. This end-

oint needs to only query its own SDN controller about the net-

ork state information for its interactive flow to ISP4; the SDN

ontroller of ISP1 should be able to supply this end-point with

he state information corresponding to its flow, from data it al-

eady has. The SDN controller of ISP1 obtains relevant state infor-

ation for other providers’ networks by querying its adjacent net-

ork (i.e., the SDN controller in ISP2) about the state of relevant

nteractive flows between ISP2 and ISP4 and from ISP2 to itself;

he SDN controller of ISP1 consolidates this state information with

hat of its own network, and makes it available to its clients and

DN controllers of other network providers. 

The advantage of this approach is that communication of net-

ork state information is done only at the local level; switches and

nd-points communicate only with their local controller, and con-

rollers communicate only with the nearest adjacent controller. In-

errogating all controllers along the path of a flow would incur sig-

ificantly more bandwidth, even though it might allow more im-

ediate (lower latency) responses. 
11 Conceptually, every provider has one SDN controller; if more than one con- 

roller exists within a provider, then these controllers can exchange network state 

nformation using the proposed approach. 

6

 

n  

i  
An SDN controller does not issue network state information

equests until an interactive flow is established; it then contin-

es to issue state requests until all such flows are closed. In this

ork, a polling mechanism is employed, using the RESTful API

f Section 3.2.2 , to obtain state information, but it is also con-

eivable that other more efficient mechanisms might be used,

uch as streaming telemetry, whereby network state information

s streamed from an SDN controller to other SDN controllers that

ave enrolled (or subscribed) to receive this information. 

To allow interactive flows to mix with other flows, each net-

ork provider needs to implement the dynamic service policy of

ection 5 ; this policy does not need any network state information

rom other providers, so each network implements the policy in-

ependently, reporting the short-term rate for its switches as part

f its network state information. 

An SDN controller does not have to reveal network state infor-

ation for all of its internal switches; instead, it is sufficient to

rovide visibility into switches that can delay traffic or limit the

apacity available to interactive flows. 

.2. Consolidation of network state information 

When an SDN controller generates a new network state entry,

he entry has a new index, and a concatenation of link entries from

ts own network and from other networks; the format of a network

tate entry is described in Section 3.2.2 . 

It is possible that SDN controllers collect, and possibly consoli-

ate, network state information at different frequencies. Therefore,

hen a network state entry is created in one controller, it is possi-

le that no new information is available for a link l that lies within

 different network provider; it is also possible that multiple new

ink entries are available from the other provider’s controller. If

here are multiple entries, indexed by j ∈ J , then the combined en-

ry indexed by i has �i 
l 
= 

∑ 

j∈ J �
j 

l 
, b i 

l 
= 

∑ 

j∈ J b 
j 

l 
, q i 

l 
= q k 

l 
, R i 

l 
= R k 

l 
,

 

i 
l 
= d k 

l 
, where q k 

l 
, R k 

l 
, and d k 

l 
are the most recently known num-

er of queued bytes, rate, and propagation delay for link l . In the

bsence of any new entry for link l , we generate an entry indexed

y i that has �i 
l 
= 0 , b i 

l 
= 0 , q i 

l 
= 0 , R i 

l 
= R k 

l 
, d i 

l 
= d k 

l 
. 

The interactive end-points ignore entries that have �i 
l 

equal to

ero, because such entries carry no recent information; they con-

inue using their latest estimates of the average bandwidth λ̄i 
l 

and

umber of queued bytes q̄ i 
l 
. For the other entries, (1) and (2) are

sed as in Section 4 . 

.3. Experimental results 

In this section, we show that the proposed SDN-assisted con-

estion control algorithm can successfully provide low latency and

igh throughput across multiple network operators. We emulate

ach ISP in the federated network shown in Fig. 11 using an

buntu virtual machine; these machines are run inside an instance

f VMWare Workstation Pro. Each ISP’s network is emulated using

ininet, with three routes, a few switches, and multiple hosts. We

onfigure each peering link to have a 50 ms delay, and a 5 Mbps

apacity, giving a minimum RTT delay of 300 ms; links within a

etwork provider are assumed to have sufficient capacity, not to

nterfere with results. Network state information is collected and

xchanged every 100 ms. 

.3.1. Experiment 1 

At time t = 0 s, one interactive client at ISP4 starts commu-

icating with an interactive server at ISP1. At t ≈ 18 s, another

nteractive client at ISP3 starts communicating with the interac-
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Fig. 11. Interactive flows over a federated network. 

Fig. 12. Bandwidth for two interactive clients and the number of queued bytes at 

P1 of Fig. 11 when east-west link propagation delays match that of the peering link 

delays. Flows from these two interactive clients compete with an Iperf flow at P1, 

starting at t = 25s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Bandwidth for two interactive clients and the number of queued bytes at 

P1, and P2 of Fig. 11 when east-west link propagation delays match that of the 

peering link delays. Flows from these two interactive clients compete with an Iperf 

flow at P2, starting at t = 58 s. 

 

w  

c  

o  

a  
tive server at ISP1. At t = 58 s, an Iperf client 12 connected to

ISP1 starts communicating with an Iperf server connected to ISP3.

Fig. 12 shows results at port P1, which is the interface between

ISP1 and its peering link to ISP2, when east-west link delays match

the peering link propagation delay of 50 ms. In this scenario, P1 is

the buffer at which flows compete for bandwidth; network state

information from P1 can be up to 100 ms old or slightly more. 

6.3.2. Experiment 2 

At time t = 0 s, one interactive client at ISP4 starts communi-

cating with an interactive server at ISP1. At t ≈ 18 s, another in-

teractive client at ISP3 starts communicating with the interactive

server at ISP1. At t = 58 s, an Iperf client connected to ISP2 starts

communicating with an Iperf server connected to ISP3. Fig. 13

shows the bandwidth observed by the two interactive clients. It

also shows the number of queued bytes at port P1 and P2, which

is the interface between ISP2 and its peering link to ISP3. 
12 For interactive flows, the server generates data streams, while, for Iperf, it is the 

client. 

T  

d  

i  

o  
It can be seen that, during the period t ∈ [58, 98], the band-

idth utilized by interactive clients fluctuates, with an average per

lient bandwidth of 1.25 Mbps, which is lower than the ideal case

f 1.5 Mbps. Moreover, the number of queued bytes is peaky with

n average of around 2kB per client instead of ideally being 1.5kB.

his occurs when the network state information for P2 is of the or-

er of 200 ms old. The reason behind this fluctuation is explored

n Section 6.4 ; additionally, that section discusses the implications

f larger network delays and proposes approaches to reduce band-
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Fig. 14. Experimental results when the minimum number of queued bytes are lim- 

ited to S. The same setup of Section 6.3.2 is used. 
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idth fluctuations. In any case, the presence of these bandwidth

uctuations in high delay configurations such as this one, does not

ndermine the efficacy of the proposed methods, but it does sug-

est an opportunity for future research and mathematical model-

ng for federated systems. 

.4. Network delay and interactive applications 

For the interactive applications considered in this work, the

atency between a user’s action and the response to this action

hould be small. Pantel and Wolf [23] experimental results for in-

eractive real-time racing show that it is best to keep latency at

o more than 150 ms; at 200 ms, the racing experience becomes

nrealistic. Similar results are obtained by Waltemate et al. [24] ;

hey found that “simultaneity,” which is the feeling that the action

nd its response are occurring at the same time, starts declining

etween 125 ms and 210 ms. This latency includes network de-

ay and any data processing performed at the server and client;

herefore, for truly interactive applications, such as virtual reality

nd 360 ° video streaming, network delay should be of the order of

50 ms or less. 

The bandwidth fluctuations in Section 6.3.2 occur because

f a rather aggressive policy for adjusting the congestion win-

ow (4) and (8) . For modest network delays, as considered in

ection 6.3.1 , the server can observe the response to its adjust-

ent of the congestion window in a short period of time, and

herefore can adapt these adjustments to the new network state.

or the rather long network delay considered in Section 6.3.2 , the

erver can only observe the network state after a longer period of

ime, and therefore it can only provide a rather late response. To

educe fluctuations, the server should make smaller adjustment to

he congestion window; i.e., it should be less aggressive. We next

resent a couple of modifications that reflect this strategy. 

.4.1. Limiting the smallest number of queued bytes to S 

A simple strategy to limit the maximum size of the congestion

indow is to make the number of queued bytes q̄ i 
l 

no smaller than

 , which is the smallest meaningful value; that is, we change (3) to

ˆ 
 

i 
f,l = 

{ 

ˆ λi 
f 

λ̄i 
l 

· max { ̄q i 
l 
, S} , λ̄i 

l 
≥ ˆ λi 

f 
& λ̄i 

l 
> 0 

max { ̄q i 
l 
, S} , otherwise 

, l ∈ �S→ C (11) 

nd (4) to 

i 
f,l = 

S 

S + 

(
max { ̄q i 

l 
, S} − ˆ q i 

f,l 

) · R 

i 
l , l ∈ �S→ C (12)

n the case where there are two sources sharing the bottleneck

ink, with 

ˆ λi 
f 
/ ̄λi 

l 
≈ 0 . 5 , this modification has the effect of limit-

ng λi 
f,l 

to at most R i 
l 
/ 1 . 5 , which significantly reduces excursions

n the congestion window, considering that the ideal value for λi 
f,l 

ould be R i 
l 
/ 2 in this case. Fig. 14 shows the experimental results

hen q̄ i 
l 

is limited to S for the same setup used in Section 6.3.2 .

vidently, both the bandwidth and number of queued bytes have

ecome substantially closer to their ideal values. We also observe

hat bandwidth fluctuations reduce over time. We stress the fact

hat these experimental results involve two interactive sources that

hare a common path. In applications where many sources interact

ncoherently, we expect the number of queued bytes to be both

arger and more stable. The modification represented by (11) and

12) would have no impact in such cases. Fig. 7 shows the case

hen flows from many clients interact. 

.4.2. Limiting the changes to the congestion window 

The modification above imposed an entirely justifiable lower

ound on the value of q̄ i 
l 

used in the derivation of each flow’s rate
nd hence window size, with the effect that the window size for

ny given flow is bounded above in a manner that depends on the

bserved flow ratio ˆ λi 
f 
/ ̄λi 

l 
. We can take this idea further by impos-

ng both lower and upper bounds on the window size, dynamically

djusted based on the observed flow ratio, as well as the network

elay. We write τ l for the time it takes for the interactive server

o observe the influence of the changes it made to the congestion

indow on the number of queued bytes at link l ; this includes

ropagation delays and any processing delays for the network state

nformation. Then, the upper bound on the congestion window is:

 

i 
f,l = 

ˆ λi 
f 

λ̄i 
l 

· R 

i 
l + max 

{ 

0 , (R 

i 
l − λ̄i 

l ) ·
ˆ λi 

f 

λ̄i 
l 

} 

+ 

n · S 

τ i 
(13)

he first term represents a fraction of the link’s capacity R i 
l 

that

s suggested by the observed flow ratio, noting that this flow ra-

io may have been based on a different value for the capacity R i 
l 
,

n periods when the SDN controller is changing the distribution

f bandwidth between interactive and non-interactive flows, as ex-

lained in Section 5 . The second term enables the server to utilize

ny available spare capacity on the link in the same proportion;

he maximum operator prevents this term from becoming nega-

ive. The last term limits how many additional bytes the server

an queue during τ l , the time needed by the server to observe the

ewly queued bytes at link l . Choosing a high value for n enables

aster response to the increase in available capacity but the num-

er of queued bytes becomes more “peaky”; thus, n is a tunable

arameter that might be determined by the network operator. 
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Fig. 15. Experimental results when the change in the congestion window is limited. 

The same setup of Section 6.3.2 is used. 
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A lower bound can also be deduced using similar reasoning.

Here, we use 

 

i 
f,l = 

ˆ λi 
f 

λ̄i 
l 

· R 

i 
l + 

S − q̄ i 
f 
− m · S 

τl 

(14)

The first term is similar to that above while the second term limits

the drop in the number of queued bytes during τ l ; the drop is lim-

ited to S − q̄ i 
f 
− m · S. When m is zero the number of queued bytes

can drop to S bytes. When m is greater than zero, the drop can

be larger. Larger m enables faster drop of the rate, such as when

a new client joins the queue. Similar to n , the choice of m can be

left to the network operator. 

For both the upper and lower limits, we can see that larger

changes to the congestion window are possible when τ is small. 

Fig. 15 shows the experimental results for the approach of this

section for the same setup used in Section 6.3.2 with the conser-

vative choice of n = 2 and m = 2 . The figure shows that when the

second client joins the interactive server at t = 18 s, we have a

slower change towards equal bandwidth sharing between the two

clients. The figure also shows that when the iPerf flow starts at

 = 58 s, there is almost no fluctuation in client bandwidths. 

It is useful to keep in mind that these results represent worst

case scenarios, because, for realistic deployment of the proposed

approach, we expect to have many clients. In the presence of many

clients, congestion window changes that are made to accommo-

date a single client should have a relatively smaller effect. We also

expect that a link’s bandwidth is shared among many clients from

many servers, and therefore, they pose requests that are tempo-
ally incoherent; i.e., it is very unlikely that a large portion of these

equests occur or disappear at the same time. 

. Conclusions 

There is an emerging need for the management of high

hroughput real-time traffic, with JPIP as the prima facie example

n this paper. 

In this work, we have proposed an SDN-based architecture

hat offers real-time network services to interactive applications,

uch as remote media browsing. Interactive applications need high

andwidth with low latency; however, their required bandwidth

uctuates, depending on the end-user’s action and the amount of

ata that needs to be delivered to satisfy the response to this ac-

ion. 

We have also presented a RESTful API that exposes the network

tate to interactive applications. These applications can employ this

PI in a congestion control algorithm that achieves full or near full

tilization of bandwidth and fair sharing among interactive client,

ll while having a minimal number of queued data packets in the

etwork (i.e. minimal latency). 

The work also presents an SDN-controlled dynamic service pol-

cy that aims at dynamically and fairly sharing network resources

etween interactive flows and other traffic, without a reservation

rotocol. 

We have evaluated the efficacy of our architecture and algo-

ithms using real JPIP endpoints in a Mininet environment. Our

esults show that low-latency high-throughput interactive applica-

ions are possible on an SDN-enabled network while other traffic

till experience an appropriate share of throughput. 

We have also shown how the approach can be extended to fed-

rated networks, where we have presented experimental results to

how the viability of the approach. 

One area of future work is to replace the proposed RESTful API

ith a more efficient protocol, such as streaming telemetry infor-

ation. Another area of future work lies in the development of

ven more effective strategies to control flow rates and queue sizes

n high latency federated networks. 
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