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THE IOT CONNECTION

Several research groups1,2 have 
identified and reported var-
ious forms of vulnerabilities 
i n com mercia l I nter net of 

Things (IoT) devices. We experimen-
tally evaluated the privacy and security 
risks of tens of consumer IoT devices4

and demonstrated real-life threats to 
typical users posed by hackers: they can 
snoop on activities inside a building 
by obtaining unencrypted data from 
motion detectors and security cam-
eras or disable the smoke alarms by 
bombarding them with a large number 
of requests. Furthermore, most com-
mercial IoT devices can be exploited to 
reflect and amplify attacks on Inter-
net-based servers, while certain models 
of connected printers allow hackers to 
obtain recently scanned documents or 
print threatening messages remotely. 
A systematic technique3 for evaluating 
the security posture of IoT devices can 
be divided into four categories based 
on 1) the confidentiality of data they 
communicate, 2) the integrity of con-
nections they make, 3) the access con-
trol of devices, and 4) their capacity in 
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 Smart environments with many Internet of 

Things (IoT) devices are at significant risk of 

cyberattacks, putting private data and personal 

safety in danger. While IoT device manufacturers 

are putting more safeguards in their products, 

they need to be augmented with network-

level methods to detect and block anomalous 

behavior. Our approach provides a strong layer of 

runtime defense at the network layer applicable 

to large and heterogeneous IoT environments. 
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reflecting unwanted traffic to other 
Internet-connected services. Table  1 
shows sample outcome ratings ob-
tained for three devices. The smoke 
alarm properly protected confiden-
tiality (green boxes), the camera had 
poor access control protection (red 
boxes), firmware updates were manual 
rather than automatic for the camera 
and motion sensor (yellow boxes), and 

some attributes could not be tested or 
assessed (gray unfilled boxes).

BASELINE BEHAVIOR OF IOT 
DEVICES IN THE NETWORK
Network operators today lack real-time 
visibility into connected devices: more 
than 40% of today’s endpoints are 
unknown and unmanaged by their 
organizations, leading to significant 

infrastructure blind spots, unautho-
rized access, and data leaks.5 Given 
that IoT devices exhibit limited traffic 
patterns, we believe it is possible to 
identify and profile their network be-
havior. The network traffic of tens of 
real IoT devices over a period of several 
months6 can be represented pictori-
ally using Sankey diagrams, as shown 
in Figure 1, for two representative IoT 
devices: a LIFX smart bulb and an 
Amazon Echo. Using these represen-
tations, we developed a framework7

that is able to classify IoT devices based 
on the statistical attributes of their 
network traffic, such as activity cy-
cles and volume patterns, server-side 
port numbers, Domain Name System 
(DNS)/Network Time Protocol (NTP) 
signaling profiles, and cipher suites 
exchanged in Secure Sockets Layer 
connections. This enables network op-
erators to have runtime visibility and 
the baseline behavior of operational 
IoT devices in their network.

FROM THE EDITOR

Standard security parlance often adopts a trust-and-verify model for 
working with systems. However, many emerging Internet of Things eco-
systems will often encompass untrusted devices that pose potential secu-
rity risks. Rather than simply assuming that a device behaves as expected, 
it then becomes incumbent on the supporting infrastructure to defend the 
complete system against attack. In this article, the authors consider the 
specific role of the network in securing a system to provide layers of de-
fense without inherently trusting the device. Ranging from a detailed analy-
sis of the current behavior of devices to analysis and enforcement mecha-
nisms for handling network flows, this article provides a solid end-to-end 
perspective on a secure IoT network. — Trevor Pering

TABLE 1. The security posture rating for selected IoT devices.
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 DNSSEC: Domain Name Security Extensions; TCP: Transmission Control Protocol; UDP: User Datagram Protocol; ICMP: Internet Control Message Protocol; DoS: 
denial of service; SSDP: Simple Service Discovery Protocol; SNMP: Simple Network Management Protocol.
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FORMAL BEHAVIORAL 
MODELS AND RUNTIME 
LOCKDOWN
A formal grammar for IoT network 
behavior in the form of access control 
lists (ACLs) was recently standardized 

by the Internet Engineering Task 
Force in the form of RFC Standard 
8520, Manufacturer Usage Description 
(MUD). MUD allows the manufacturer 
to specify what layer 3 servers and 
layer 4 ports may or may not be used 

by the device. For example, an Inter-
net Protocol camera may need to use 
DNS and dynamic host configuration 
protocol on the local network, con-
tact NTP servers, and communicate 
over HTTPS with a set of cloud-based 
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FIGURE 1. A Sankey diagram of daily network activity for two representative IoT devices: (a) a LIFX smart bulb and (b) an Amazon 
Echo. LAN: local area network; WAN: wide area network; IGMP: Internet Group Management Protocol.
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controllers on the Internet but noth-
ing else. Knowing each device’s re-
quirements allows network operators 
to impose a tight set of ACL restric-
tions for each IoT device in operation 
to reduce the potential attack sur-
face. We developed a tool that can au-
tomatically generate the MUD profile 
for an IoT device from its (presum-
ably clean) traffic trace and further 
translate the MUD profile into flow 
rules that can be enforced at runtime 
into the network substrate using the 
software-defined networking (SDN) 
paradigm, as shown in Figure 2. This 
lockdown of the IoT device ensures 
that conformant traffic can be let 
through without inspection, while 
unexpected packets can be either 
dropped or passed for inspection to 
an intrusion detection system to de-
tect security breach attempts.8

REAL-TIME ANOMALY 
DETECTION
The enforcement of MUD-policy-based 
lockdown using SDN can significantly 
reduce the attack surface on the IoT 
device, but certain volumetric attacks 
can still be launched. We therefore 
developed methods9 for detecting vol-
umetric attacks that are not prevented 
by the MUD profile because ACLs sim-
ply allow or deny traffic without pro-
vision to limit rates. Fending off such 
attacks requires more sophisticated 
machinery (shown in Figure 3). This 
machinery monitors the level of ac-
tivity associated with each policy rule 
compared to the baseline (deduced in 
the “Baseline Behavior of IoT Devices 
in the Network” section) to detect 
anomalies. Scalable models for de-
tecting anomalous patterns can be 
trained by intelligently combining 
coarse-grained (device-level) and fine-
grained (flow-level) flow telemetry, and 
this continues to be t he s ubjec t of 
ou r ongoi ng research.

IoT security research is still in its 
early days, but it is becoming clear 
that device-level security will by 
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FIGURE 2. An automatic translation of MUD policies and enforcement of network flow rules.
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FIGURE 3. Detecting anomalies by real-time-monitoring, MUD-compliant network flow 
rules: (a) an SDN-based system architecture and (b) a device-specific anomaly detection.
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itself not suffice and network-level 
protection measures will be needed. In 
this article we outlined our approach, 
which combines baseline network be-
havior with SDN lockdown and anom-
aly detection to identify and even-
tually mitigate security attacks on 
IoT-rich environments. In the big pic-
ture of IoT system security, these steps 
form the foundation for smarter and 
more robust networks that will enable 
more complex deployments. Without 
such systems, smart environments 
will remain at constant risk to unau-
thorized intrusions. Thus far, our ap-
proach, which has been very much de-
vice-centric, needs to be augmented by 
network-wide monitoring to capture 
interrelationships among IoT devices, 
users and servers, and controllers in 
smart environments. 
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