
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

Enhancing Security Management at
Software-Defined Exchange Points

Himal Kumar, Hassan Habibi Gharakheili, Craig Russell, and Vijay Sivaraman, Member, IEEE

Abstract—Distributed Denial-of-Service (DDoS) attacks con-
tinue to escalate in size and scale, and there is growing need for
security management at network-level that can restrict a service
to a geography (aka geo-blocking) and prevent the victim’s
IP address from being faked (aka IP-spoof protection). The
former reduces the attack surface on the victim, while the
latter reduces liability on the organization from which the attack
originates. Unfortunately, these solutions are hard to implement
in today’s networks, requiring expensive hardware appliances
and/or manual configuration. This was exemplified in the recent
attack on the Australian government census website, which had
to be brought down for weeks in order for security configurations
to be applied.

In this paper, we first argue that an Internet Exchange Point
(IXP) is an appropriate place for managing security of an
enterprise, and then design, implement, and evaluate a geo-
blocking and IP-spoofing protection solution for a Software
Defined IXP. Our first contribution is to define a grammar for op-
erators to specify their high-level security intents, and a compiler
that automatically synthesizes these to low-level flow rules for
insertion to the interconnect fabric. Our second contribution is to
develop a mixed integer linear program optimization framework
for distributing flow rules across switches with limited table
size, while minimizing carriage costs of malicious and extraneous
traffic. Finally, we evaluate the cost benefits of our scheme via
simulation of a large IXP network, and demonstrate its practical
utility in blocking attacks via implementation over the open-
source ONOS controller and experimentation in an SDN testbed.

Index Terms—Security Management, Software-Defined Ex-
change Point, Geo-Blocking.

I. INTRODUCTION

D ISTRIBUTED Denial-of-Service (DDoS) attacks are
growing at an alarming rate of 60% by volume and

150% by frequency annually [2], and 2017 saw news web-
sites (Al Jazeera, Le Monde), government web-sites (US FCC,
Australian ABS), and financial institutions (Bitcoin exchange,
South Korean banks) attacked among many others. Our par-
ticular motivation for this work comes from the meltdown of
the Australian Census web-site in August 2016 [3], which is
believed to have been caused by large-scale off-shore DDoS at-
tacks, leaving millions of Australians unable to take the census
and causing national embarrassment for the Australian Bureau
of Statistics (ABS). When the ABS in response sought to geo-
block site-access to Australians, the complexities of manual

H. Kumar, H. Habibi Gharakheili and V. Sivaraman are with the School
of Electrical Engineering and Telecommunications, University of New
South Wales, Sydney, 2052 Australia. (e-mails: himal.kumar@unsw.edu.au,
h.habibi@unsw.edu.au, vijay@unsw.edu.au)

C. Russell is with CSIRO Data61, Sydney, NSW 2015, Australia (e-mail:
craig.russell@data61.csiro.au).

This submission is an extended and improved version of our paper presented
at the EuroSys 2017 XDOMO Workshop [1].

configuration (black-listing and white-listing of IP address
blocks) became apparent, with necessary support services (like
DNS) failing and the site being down for several more days.
This paper aims to demonstrate that such security attacks can
be managed in an automated and error-free manner using the
powerful paradigm of Software Defined Networking (SDN).

We focus specifically on two requirements of security man-
agement: geo-blocking and IP-address spoofing. We believe
that the combination of these two provides an effective (though
not comprehensive) way of protecting critical web-services.
Geo-blocking refers to the ability to restrict access to the
service (e.g., website) to a geographical boundary, such as a
set of countries. Typically, the country codes are converted
to a set of Autonomous System (AS) numbers, which are
then mapped to a set of IP prefixes. These prefixes are then
configured into the enterprise’s border router access control
lists (ACLs) or border firewall rules (e.g., PacketViper [4]), so
that packets arriving from these prefixes are allowed/dropped.
These configurations are manual, slow, and error-prone, since a
single country may have anything from hundreds to thousands
of prefixes. Further, care has to be taken to not disable essential
services (like DNS) that may need to use mirrors and caches
in different geographical regions in order to function properly.
The complexity of configuration, coupled with the expense
of border routers and firewalls with appropriate capability,
deters many organizations (including governments) from using
geo-blocking to protect their services. Even when configured,
geo-blocking can be defeated by an attacker who hides their
source IP address by spoofing or use of VPN (proxy) ser-
vices. Therefore, mitigating IP address spoofing is important
while masking IP addresses by VPN and proxy may not be
prevented.

Indeed, an organization (e.g., a University with high-
bandwidth network connectivity) can (unknowingly) become
the source of a DDoS attack, and it is important for them
to block such spoofed traffic as they may otherwise be held
liable for the damages caused. Again, current practice requires
manual configuration of ACLs on the egress border router
to detect and drop packets with spurious source IP address,
something that enterprises seldom do, since it requires time
and skills, in addition to expense and performance penalties
on their border device.

We argue that the geo-blocking and IP-spoof security
management capabilities are best offered by the enterprise’s
peering provider. This will typically be at an Internet Exchange
Point (IXP), which might be operated either by a transit
provider (like AT&T or Telstra) or an inter-connect provider
(like Equinix or Megaport). The reasons for having these

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2

security services hosted at the peering exchange rather than
the enterprise premises are two-fold: (a) IXPs can drop attack
traffic before it hits the enterprise border device, thereby
protecting the (expensive) peering link from volumetric attacks
that can cripple availability of the enterprise’s services; and (b)
the IXP has greater skills and resources to perform and manage
configurations to prevent attacks, since their equipment and
effort is amortized across their many enterprise customers;
further, since the IXP carries both the data-plane packets
and control-plane messages for the enterprise, it has requisite
visibility needed to “scrub” the traffic in its fabric in-line with
the BGP (Border Gateway Protocol) prefixes relevant to the
enterprise. Also, IXPs have the opportunity to monetize their
infrastructure by offering security management as a value-
add service where they can charge the customer enterprise for
providing geo-blocking and IP-spoofing services. The pricing
model is left to the individual IXP, and can be dynamic
depending on policies, number of rules, etc.

We further argue that Software Defined Networking (SDN)
is the ideal paradigm for the realization of the above se-
curity capabilities. It allows the operator to specify security
requirements in terms of high-level policies, which can then
be automatically synthesized into low-level flow rules on
switches, thereby reducing provisioning time; it allows data-
plane forwarding rules to be made consistent with control
plane advertisements, thereby reducing errors; and it enables
the modular development of security capabilities on rapidly
maturing open-source platforms such as ONOS [5], thereby
allowing operators to avail of community support.

Our objective in this paper is to design, optimize, and eval-
uate an SDN-based geo-blocking and IP-spoofing protection
solution that IXPs can offer to enterprises. We outline our
system architecture, and make three specific contributions. Our
first contribution is to define a grammar that allows operators
to specify the policies in a simple and abstract way, and a
compiler that synthesizes these policies into flow-rules, using
live BGP information and online geo-mapping services. Since
each policy can compile into thousands of flow-rules, our
second contribution determines the best placement of rules
across switches in the distributed fabric, such that carriage of
unwanted traffic is minimized while staying within the table
size limitations at each switch. For our third contribution,
we evaluate the efficacy of our rule placement algorithm via
simulation on a small illustrative topology and a large real
IXP topology, and prototype our solution (specifying high-
level security intents, synthesizing and inserting low-level flow
rules without optimization) on the open-source ONOS-based
SDN interconnect platform and demonstrate its ability to block
attacks in a laboratory testbed.

Our solution builds upon our preliminary work in [1]
by developing rules placement optimization algorithm and
evaluating via simulation on real IXP topology under various
scenarios, and to the best of our knowledge is the only geo-
blocking and IP-spoof protection solution for IXPs built upon
SDN technology. We emphasize that this work is limited
in scope to geo-blocking and IP-spoof protection, and does
not as such cover all types of DDoS attacks. A web-site
that needs to be accessible to all customers across the world

cannot be geo-fenced, and hence may not benefit from our
solution. However, there are many instances where services
do need to be restricted geographically, such as the example
of the ABS census in Australia discussed earlier. Further, IP-
spoofing remains a major source of DDoS attacks, as stated
in the Global Threat Landscape report by Arbor Networks
[6]. Our solution provides a baseline protection at Internet
Exchange Points against IP-address spoofing by enterprise
networks, greatly reducing the attack surface – note that
protection against insider attacks, sourced from the same
enterprise or domain, in beyond the scope of this work since
their traffic does not traverse Internet Exchange Points (to
prevent attackers inside the same country/area, our solution
needs them to be on a different AS and peer at an exchange
point). The focus of our work is on showing the feasibility of
implementing the protection mechanisms at an IXP using SDN
techniques; further, this is done in a scalable way with low
cost of rules placement in switches, also consistent with prior
empirical studies [7] showing that the geo-spatial distribution
of sources for recent DDoS attacks is often limited to a set of
prefixes rather than being random across the globe.

The rest of this paper is organized as follows: §II describes
prior related work. In §III we describe our system architecture
and develop the policy grammar and compiler, while optimal
placement of flow rules amongst switches is studied in §IV.
We implement and evaluate our scheme in §V, and the paper
is concluded in §VI.

II. RELATED WORK

In this section we briefly review prior works in the areas of
geo-blocking / IP spoof-protection, SDN-based IXP architec-
tures, SDN policy intent frameworks, and SDN rule-placement
that are relevant to our work.

Geo-blocking, where deployed today, is largely based on
commercial solutions such as Packet Viper [4] and Next-
Generation Firewall (NGFW) [8]–[10]; these are however
custom-hardware solutions that tend to be very expensive and
are hence outside the reach of most enterprises. Further, geo-
filtering may need to be tuned at run-time depending on the
attack patterns [11], which is not always easy with embedded
hardware solutions. IP source address spoof protection is rec-
ommended best-practice by the IETF in the form of Network
Ingress Filtering [12], but is highly manual and is again not
implemented by most enterprise network operators.

SDN-based IXP architectures have become an area of
active research in recent years – Software Defined eXchanges
(SDXes) [13], [14] have been proposed as a means of over-
coming the shortcomings of BGP in order to do better traffic
engineering and load balancing. Work in [13] aims to opti-
mize composition of policies from participants (enterprises)
connected to an IXP by compressing the forwarding table of
switching fabric. Authors further enhanced their method of
reducing both forwarding table size and the time to compute
these entries by several orders of magnitude in [14]. SDN-
based architectures were deployed in production IXPs in New
Zealand in 2013 [15] and France in 2015 [16], demonstrating
feasibility and innovative capabilities not possible before for
IXP operators as well as customers. However, none of them

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

optimize the number of rules installed in the switching fabric.
Recently, Google revealed their SDN-based edge peering
architecture [17] that enables application-aware routing using
fine grained traffic engineering capabilities, and currently
serves 22% of Google’s total traffic to Internet. In our previous
work we have built an OpenFlow-based interconnect called
CaSToR [18] that is now part of the standard release of
the ONOS open-source SDN controller. While our previous
work focused on more flexible interconnects for enterprises to
seamlessly peer with cloud providers across public and private
fabrics, the focus of the current work is on security. Since IXPs
are a central entity where large amounts of Internet traffic are
exchanged across a large number of domains, they are an ideal
location for implementing security solutions including black-
holing [19]–[21].

The maturation of SDN has also witnessed a rise in frame-
works that allow network policy to be specified at a high level.
Intent Frameworks [22]–[26] have been proposed to allow
specification of high-level policies related to connectivity,
ACLs, YANG models, etc., which are then compiled down
to low level network configurations – this automation reduces
manual complexity and human errors. A recent framework
called Propane [27] provides constructs to automate BGP
configurations in network devices using high level abstract
language.

Rule placement in SDNs has been studied under various
contexts. iSDX [14] aims to overcome the limited capacity
of flow tables in Openflow devices by implementing multi-
table pipelining and packet encoding to compress and reduce
the number of rules requiring installation. The authors in
[28] talk about trading routing paths with limited flow space,
and distribute the rules in a separate path with flow space
availability – the resulting changes in routing paths may
however not always be feasible or desirable. Difane [29] uses
integer linear programming to optimize the rule placement
by classifying rules and caching the most important ones at
authority devices, thereby reducing the load on the controller
and the number of rules required. Palette [30] decomposes
large SDN tables into smaller ones and distributes them across
the network, while OneBigSwitch [31] uses multiple paths
along with routing policy to produce efficient rules placement
that distribute forwarding policies across SDN networks.

The most closely related works are [13], [14] which pri-
marily focus on connectivity rules while this paper focuses
on blocking rules for security management. Also, these prior
works optimize the number of SDN rules pushed into switches
to avoid explosion of flow-tables, whereas our scheme opti-
mizes the placement of rules to reduce the cost of carrying
malicious traffic. We believe that our solution complements
these relevant proposals where they compress rules and our
method optimizes the placement of rules.

III. SYSTEM ARCHITECTURE AND
POLICY GRAMMAR

A. System Architecture

The high-level architecture of our geo-blocking and IP-
spoof protection solution at the IXP is shown in Fig. 1.

!"#$

%&'()&('#*+,-.&/(#012&'#"32',-2&/#4.5)2,

6(10)1'(,' !77

0182,9#

0.):()
;1<728()

6(1=81,> %&'(&':

;."?1@

!77

!"!#$

%&'()&**+)

!"#A !"#B

@C8(D08.,(<(&'#

E7'2<2F()

"GH#I=

,-./&'

I.'.#78.&(#J813:

@1C'(#"()K()

=60#C7L.'(:

=60#.LK()'2:(<(&':#

M#.&&1C&,(<(&':

Fig. 1. GeoProtect architecture including geo-blocking and IP spoof-
protection.

The base IXP platform consists of the data-plane, which is
a switching fabric comprising (a potentially large number of)
Layer-2 switches, and a control-plane, which comprises (a
redundant set of) route-servers that perform BGP peering with
the various inter-connecting domains in order to redistribute
the routes. Our implementation (detailed in V-C) uses the
NoviFlow NS1132 switches with full OpenFlow 1.3 support
in the data-plane, and the open-source SDN controller ONOS
[5] in the control-plane; we note that ONOS is carrier-grade
with full redundancy, provides an intent framework [23] for
topology abstraction, and is well-supported in the community.
Further, we use the CaSToR inter-connect application we have
developed in previous work [32], which allows the operator
to provision and manage inter-connect customers, sets up
the BGP sessions in the control-plane, and creates the inter-
connectivity rules in the data-plane. We note that our CaSToR
SDN application is fully open-source, and is bundled into the
standard ONOS release. We have deployed our CaSToR plat-
form in two production exchange networks namely Amlight in
Florida, and CENIC in California. The operational trial of our
CaSToR was demonstrated at International GLIF workshop
with participants of National Research and Education Network
(NREN) operators [33].

The “GeoProtect” app (shown as a green box in Fig. 1)
developed in this paper provides the geo-blocking and IP-spoof
protection capabilities. It takes policies from the operator in
the form of “intents”, shown by arrows in the right-top of
the figure. The grammar used for these policies, and their
automated parsing and compilation into ONOS intents and
switch flow-rules, will be described next. The compilation
process requires the GeoProtect app to access a geo-location
database (we use the Maxmind [34] and Hurricane [35]
services), as well as a feed of the BGP udpates in order to
know the IP prefixes belonging to each connected organization
(we use BGPmon [36] that peers with the route server and
outputs BGP updates in easy to parse XML format). The
GeoProtect app locally caches this information in an SQLite
database, and passes the resulting flow-rules on to CaSToR for
insertion into the data-plane.

The flow-rules to be inserted into the data-plane can be large
in number, and since the SDN switches have limited table-
size, it may in general not be possible to fit all rules into the
first switch along the path of the traffic. This entails a penalty
since traffic may be unnecessarily carried across switches only

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 4

to be dropped later. In §IV we develop a method to optimize
rule-placement (pink box in Fig. 1) so as to minimize this
penalty subject to flow-table size limitations. A comprehensive
evaluation of our scheme, both via simulation of small/large
IXP networks and a full implementation with lab trials, will
be presented in §V.

B. Policy Grammar

In order to reduce provisioning time and human error, we
envisage that geo-blocking and IP-spoof protection policies
will be specified by the operator in an abstract and succinct
manner, and these will be automatically synthesized into the
large number of flow-rules required at network switches. In
this section we define the high-level grammar for the policies,
and design a compiler that dynamically converts these to flow-
rules by leveraging openly available IP prefix geo-location
databases along with the enterprise’s own BGP advertisements.

1) Geo-Blocking: Geo-blocking allows a service to be
geographically restricted. A geo-block policy is defined with
the following grammar:

def geoblock (Policy Id) {
Source = [Country (Codes), AS (AS no.),

IP (IP prefixes)]
Destination = [Domain (e.g., www.example.com),

AS (AS no.), IP (IP prefixes)]
Classifier = [Port (e.g., 80), Protocol (e.g., tcp)]
Exceptions = [e.g., DNS, amazon.com, google.com]
Time = []
Action = ALLOW / BLOCK }

The def keyword is used to define the policy with a unique
associated ID. The policy contains the following attributes:
• Source: can be a combination of standard country codes

(e.g., US, UK, AU), AS numbers, and IP prefixes, all
separated by commas. They represent the places from
where the traffic is originating.

• Destination: refers to the domain, AS number, or IP
prefixes of the services to which the traffic is destined.
This is typically whole or a part of the network of the
enterprise seeking geo-fencing for its service.

• Classifier: (optional) restrictions on source or destination
space, such as specific port numbers or protocols (e.g.,
port 80 web-traffic).

• Exceptions: (optional) essential services, domains, or
areas which should not be blocked. Examples include
global DNS servers, and trusted cloud services like Ama-
zon or Microsoft Cloud that interact with the enterprise
service (e.g., for analytics). Specific IP prefixes which are
being used to manage or control the service should also
be enumerated here.

• Time: (optional) duration for which the geo-block policy
should remain active; defaults to infinite if not specified,
and will remain in effect till the policy is manually
withdrawn.

• Action: specifies the action for traffic matching the source,
destination, and classifiers specified in the policy. Speci-
fying action ALLOW makes this a white-list policy (i.e.,

!"#$!"#%

&$ &%

&'

!(#

&) &*

Fig. 2. IP Spoofing scenario.

connectivity rules are created), whereas action BLOCK
makes this a black-list policy (i.e., blocking rules are
created).

Referring back to the example of the Australian census site,
a simple geo-block policy that restricts access to the site
to Australians can be specified using the above grammar
as: {source=AU, destination=www.abs.gov.au, exceptions =
DNS, action = ALLOW}. As another example, a video
streaming entity (e.g., Netflix) that does not want its ser-
vice to be reachable from Country “X” (for legal or com-
pliance reasons) can specify a policy {source=X, destina-
tion=www.netflix.com, action = BLOCK}. We will soon
see how this policy gets translated to flow-rules by leveraging
existing geo-location databases.

2) IP-Spoofing Protection: Geo-blocking relies on the
source IP address in a packet being correct. An attacker can
circumvent geo-blocking by spoofing their source IP address.
For example, consider Fig. 2 in which customers C1 and
C2 are in the same country, inter-connecting at IXP1, while
C3 is in a different country, and connects to the IXP1 via
a transit ISP. If C1 has geo-blocked its service to its own
country, an attacker in C3 can spoof the address of C2 to
circumvent the geo-block and directly attack C1’s service.
Equally concerning, an attacker in C4 (connected to another
IXP2) can also launch an indirect attack on C1 by spoofing
C1’s address to send request traffic to a service such as DNS
that can amplify and reflect the response attack back on to C1.
Spoofing can therefore not only bypass security measures and
enable reflection attacks, but also create liability for the entity
whose IP address was illegitimately used.

The two IXPs in the above example are well positioned
to block IP spoofing, by ensuring that packets entering their
fabric from a connected entity carry a source IP address that
is part of the prefixes advertised (in its BGP messages) by
the connected organization. This is a particularly cost-effective
way of dropping spoofed packets from stub ASes (as opposed
to multi-homed transit ASes), and is hence suitable for most
enterprises.

An operator can specify an IP-spoofing protection policy
using the following grammar:

def spoof_protect (Policy Id) {
Customer = [IP address of the Border Router] }

The policy above requires only one parameter – the IP address
of the connected entity’s Border Router. This allows the IXP
to use the BGP advertisements from that router to dynamically
deduce the legitimate source IP addresses for that entity, and
is robust to changes in IP addresses over time. Ensuring the
authenticity of BGP advertisements [37] is beyond the scope
of this paper.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 5

!"#$"#%

&'(%$()*+,#('-#*./0$"%

1$%/23$*4567*8/9"#(:7*;< &($=>,$%*

?@

A'B*#/*2/CD2$3$2*B/2>-:

%$#E!&B($=>,F*DDD82'%%>=>$(DDF*%$#E!&B($=>,F

&'(%$*&/2>->$%)*G$/&/2>->$% H*+,-$B#>/"%

G$/@2/-0 &/2>->$%*

5-#>/"*45IIJK7*@IJ8L<

+,-$B#>/"%

5IIJK

5-#>/"

8($'#$*

8/""$-#>3>#:*

192$%

8($'#$*

@2/-0>"M*

192$%

I/-'#>/"*

!"=/

!&*6B//=>"M*

N>2#$(>"M

!%*?$%#O*

-/PB2$#$*

56Q

I>3$*@G&*

.(>MM$(

R%$*?$%# !&*P'#-S

8($'#$*

@2/-0>"M*

192$%

R%$*?$%#

A58*P'#-S

8($'#$*

8/""$-#>3>#:*

192$%

N>">%S

8/""$-#>3>#:*

&(/3>%>/"$T

N>2#$(>"M*N2/C*

JUV$-#>3$%*'#*

#S$*+TM$
W$%

X/

?(/BB$T*'#*+M($%%

@2/-0

522/C

Y9$(:*?@

&($=>,$%*'%*Z6JX

8
/
"
"
$
-#
$
T

Fig. 3. Compiler algorithm.

C. Compilation

We now design and implement a compiler that translates
the high-level geo-blocking and IP-spoof protection “intents”
above into low-level network flow rules which can be installed
into the switching fabric. Fig. 3 shows a detailed flowchart
of the compilation process of the geo-blocking rules, and
relies on interaction with: (a) a geo-mapping database that
associates country codes, AS numbers, and IP prefixes; (b) an
SDN controller (ONOS is our case) that converts connectivity
intents into topology-specific flow objectives; and (c) an SDN
inter-connect application (CaSTOR in our case) that manages
basic connectivity at the IXP.

In the first step, a Policy Parser receives the intents and
parses them into useful tokens; we use the ANTLR [38] tool
that maps tokens to JAVA classes and objects. The source and
exception arguments are extracted, and used to query the Max-
mind [34] geographical IP prefix ownership database via REST
APIs to obtain their corresponding address blocks. Lower-level
policies are formulated using the IP prefixes which contains
the set of sources, destinations and network classifiers. From
here, exceptions are separated from the policies and are treated
separately. Exceptions are always allowed. Therefore, they are
converted into ONOS connectivity intents and are ultimately
translated to network flow rules.

If the default action was ALLOW, connectivity flow rules
are created to allow traffic from the specified sources to

the specified destinations that match the specified (if any)
classifier. If the default action was BLOCK, the sources
specified needs to be blocked from accessing the specified
destinations, and appropriate blocking rules need to be inserted
in the data-plane fabric. In case of conflicting policies (one
specifying ALLOW and another one specifying BLOCK for
a given prefix), BLOCK overrides ALLOW. The appropriate
placement of these blocking rules in the fabric is the subject of
the next section Information about the location of the sources
and destinations is provided by CASToR based on customer
provisioning and BGP prefix exchanges. A suitable destination
match for the flow-rules is selected based on whether the
destination is a subset of customer’s network, in which case
IP prefixes supplied in the destination are used as a match,
or if the destination is the entire customer network, in which
case a smaller number of flow rules are required that match on
customer destination MAC address. Source IP filtering rules
for spoofing protection are created using the BGP information
received through BGPMon. These IP spoofing filtering rules
are regularly updated whenever there is a new BGP update
which is shown in the flow chart as “Live BGP Trigger”.

IV. OPTIMIZING THE BLOCKING RULES

As discussed in the previous section, geo-blocking and IP-
spoofing protection policies result in three types of Openflow
rules: 1) Connectivity rules – these are created to allow the
traffic from certain prefixes and are installed along the path.
The position of these rules is fixed, and strictly depends on
traffic paths. 2) IP spoofing protection filtering rules – these
rules filter traffic entering the exchange and are only placed
at the edge nodes where a customer connects to the fabric. 3)
Blocking rules – these rules are created to block the traffic
originating from certain prefixes and can be placed anywhere
on the path to drop the traffic. Connectivity rules are required
to be placed along the path of the flow, while filtering rules
are required to be placed at the switch where the customer
traffic enters the IXP fabric. Therefore, blocking rules (which
can number in the thousands) are the only ones for which the
IXP operator has the freedom to move amongst the switches in
the exchange fabric so as to drop the traffic wherever feasible
along the path.

The best possible placement of blocking rules is at the
edge, as close as possible to the source, blocking malicious
traffic before entering the exchange fabric. In the event that the
edge switch does not have enough flow-table space, overflow
rules can be placed at the next switch along the flow path. A
“greedy" approach for placing blocking rules might therefore
first sort all flows in descending order of volume, and place
them one-by-one at the first node along the path where space
is available. However, as we will show, the greedy approach
is short-sighted since it does not have a global view that
considers correlations amongst flow paths. In what follows
we formulate the placement of blocking flow rules as a mixed
integer linear program (MILP) that can be solved to obtain a
globally optimum solution. We first describe the factors that
affect rule placement:
• Path: Each rule is associated with a definite path in the

fabric starting from the source peer (i.e., the closest IXP

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 6

customer originating the traffic) to the destination peer
(IXP customer who is passing the geo-block policy). A
rule can only be placed at a node which happens to be on
the path associated with it. The path is the route which
will be taken by the traffic being matched by this rule if
it were not to be dropped or blocked.

• Volume: Each flow matching a specific rule carries a
certain volume of traffic, which unnecessarily consumes
network bandwidth as it traverses each link in the ex-
change fabric. It is therefore sensible to prioritize higher
volume flows over lower volume flows so they can be
dropped earlier along the path. Since traffic rates can
be dynamic, our method keeps track of average flow
volume over an epoch (or pre-defined duration), and will
re-optimize the placement of rules at the end of each
epoch.

• Flow Table Space: This corresponds to the number
of entries available in the flow table to accommodate
blocking rules at each node or switch. This is hardware-
specific and can be in the hundreds or thousands, and
is further shared between connectivity rules and filtering
rules of our application, along with rules from other
possible SDN applications.

We mathematically model the impact of the above inputs on
rule placement, so as to minimize the carriage of unwanted
traffic in the IXP fabric.

A. Problem Formulation

Our objective is to optimize the placement of flow rules at
IXP switches, given network topology and flow rates. Let R
denote the blocking rules to be placed after the geo-blocking
compilation, each rule corresponding to a single flow in the
switching fabric matching on a source IP prefix. The rule set
R is denoted by:

R = {r1, r2, r3, ..., rR} (1)

Let F be the set of average traffic volumes matched by
each rule in a time period. This is measured in our CaSToR
platform by harvesting flow table statistics from the switches
in real-time.

F = {f1, f2, f3, ..., fR} (2)

Let the number of nodes/switches in the IXP network be
denoted by N , and the set of nodes is denoted by V , where:

V = {v1, v2, v3, ...vN} (3)

The table size at a node j, representing the available flow
table capacity of each node, is given by Tj . Note that this
is the available flow table space for blocking rules only, and
excludes the flow table space used up by other rules (e.g.,
connectivity rules and rules from other SDN applications).

Let a path P corresponding to a rule be defined as a
sequence of given nodes belonging to V , and is written as:

P = 〈vn | vn ∈ V〉 (4)

An example path Pi of a flow corresponding to rule ri can
be written as a vector:

Pi = 〈v1, v5, v4〉 (5)

We define hop-length hij as the number of hops to node vj
on the path of the flow associated with rule ri. Following on
from the example path in (5) above, the hop-lengths for this
flow are: hi1 = 0, hi5 = 1, and hi4 = 2. The hop-length is
related to the cost of placing a rule at a node on the path of a
flow, since placing the blocking rule at a node with higher hop-
length requires carrying the flow traffic over a larger number
of hops. The cost of placing the rule at the first node is zero, as
the traffic does not use any link capacity inside the exchange
fabric, and the cost increases by one with every hop on the
path. In this case, the cost of placing the rule at node v4 is 2
as it is the third node on the path and the blocked traffic has
traversed two links on the path.

The optimization is performed over the variables xij , which
indicate whether or not the rule ri is placed at node vj , namely:

xij =

{
1 : if rule ri is at node vj

0 : otherwise
(6)

The cost of placement of rules can now be obtained by
summing over all rules the flow volume for that rule multiplied
by the hop-length of the rule along the flow path:

C =

R∑
i=1

[∑
vj∈Pi

xij ∗ hij

]
∗ fi (7)

This equation defines the objective function of our optimiza-
tion problem. Minimizing this cost function yields values of
xij which specifies the node vj where rule ri should be placed.
The optimization has to account for the following constraints:
For a given rule, it should only be present at one node on the
path:

N∑
j=1

xij = 1, ∀i ∈
{
1, 2, . . . , R

}
(8)

The number of rules placed at a node vj should not exceed
the flow-table capacity Tj at node vj , i.e., :∑

i

xij ≤ Tj , ∀j ∈
{
1, 2, . . . , N

}
(9)

Finally, xij can have a non-zero value only if node vj is on
the path of the flow corresponding to rule ri:

xij = 0, ∀j /∈ Pi and i ∈
{
1, 2, . . . , R

}
(10)

B. Solving the optimization and interpreting the results

We now convert our optimization formulation into a Mixed
Integer Linear Program (MILP) form, so we can solve it using
MATLAB. A general MILP problem structure minimizes an
objective function subject to a series of equality, inequality,
and upper/lower bound constraints. We are easily able to
map our problem to the MILP structure, with (8) and (9)
becoming the equality and inequality constraints respectively,
the variables xij lower and upper bounded by 0 when node vj

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 7

Fig. 4. Experimental Exchange topology.

is not in the path for flow corresponding to rule ri as per (10),
and lower and upper bounded by 0 and 1 otherwise, and the
objective function used as is. Solving the MILP optimization
yields optimal node of placement for each rule. We now talk
about how the optimal solution is interpreted by our geo-block
application next.

The optimization algorithm is run periodically. This period
is a configurable parameter, the shorter the more beneficial to
network management. Note that the practical value depends on
two factors namely, the speed of computing and the capability
of switches in handling frequent control messages – we chose
an “epoch” of 15 minutes as it is a reasonable time-period over
which traffic patterns vary. This is also consistent with network
management practice that uses tools like MRTG to poll inter-
face counters every 5 minutes and making judgments using
three successive values. However, we choose to reconfigure
the placement of rules only if the gains in minimizing carriage
of unwanted traffic outweighs the cost of control message
overheads needed for reconfiguration. We therefore define a
tunable decision parameter, called “benefit” that is the ratio of
the cost reduction to the number of rule replacements required:

Benefit =
CostCP, NV − CostNP, NV

Number of replacements
(11)

where NP denotes the New Placement of rules, CP denotes
the Current Placement and NV represents the New Volume
measured in the current epoch. The higher the value of benefit,
the more is the cost gain and the more likely we would like
to reconfigure our devices. The determination of the threshold
value of benefit has to be tuned to the size of the network,
number of controller nodes and the capability of devices to
handle OpenFlow updates. We note that benefit is only used
when the placement changes due to volume changes and not
policy changes. Whenever a new policy is created or a current
policy is modified, the calculated optimal placement of rules is
always used to place the new and existing rules. The role of the
benefit decision parameter is explored next in the experiments
section.

TABLE I
NUMBER OF PREFIXES

Country # Prefixes Country # Prefixes
AU 6,384 SG 1,988
US 50,827 FR 14,852
CA 10,280 IT 3,987
CN 6,419 IES 4,062
IN 4,441 NL 8,331
IE 1,832 PL 3,497
JP 4,429 HK 2,968
TR 1,063 BR 2,819
MY 750 ID 1,611

TABLE II
FLOW TABLE CAPACITIES

Node ID Available capacity
1 4,000
2 1,000
3 20,000
4 3,000
5 30,000
6 20,000
7 5,000

V. EXPERIMENTATION AND EVALUATION

We now evaluate the efficacy of our rule placement al-
gorithm via simulation on a small illustrative topology and
a large real IXP topology (in MATLAB environment on a
machine with 4 cores of CPU and 16GB of RAM), and
prototype our entire solution on the open-source ONOS-based
SDN interconnect platform and demonstrate its ability to block
attacks in a laboratory testbed.

A. Evaluation in Microscopic Topology

We start with a simplified illustrative topology to demon-
strate the intuition behind the placement of policies and their
optimal placement across the fabric. We consider three policies
over a topology consisting of seven nodes, and show how
our optimizer places/moves rules to reduce the carriage cost
of unwanted traffic. Our simplified topology is shown in
Fig. 4. Various color-coded and numbered shapes placed on the
world-map denote IXP nodes aggregating traffic from different
geographical areas and are connected together as a single
distributed exchange fabric. In this topology, there are three
nodes in Australia (i.e., nodes 4, 5 and 7), one in Asia (i.e.,
node 1), one in Europe/Africa (i.e., node 2), one in North
America (i.e., node 3), and one in South America (i.e., node
6). Networks of E1, E2, and E3 represent three enterprises (or
IXP customers) located in Australia, and are connected to the
exchange fabric at nodes 4 and 5. In our simulation, we do
not have access to live BGP advertisements, and hence we use
the shortest path to route traffic traversing between nodes.

Let’s consider following geo-block policies expressed by
E1, E2, and E3:
• P1: def geoblock (Policy 1) Source = [Country (AU)]

Destination = [E1] Action = ALLOW
• P2: def geoblock (Policy 2) Source = [Country (CN,

IN)] Destination = [E2] Action = BLOCK
• P3: def geoblock (Policy 3) Source = [Country (US,

CA)] Destination = [E3] Action = BLOCK
P1 represents a policy where E1 allows only traffic with

source address of Australia prefixes which means that con-

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 8

nectivity rules need to be created only for Australia. These
connectivity rules from Australia are installed at nodes 4, 5,
and 7. Enterprise network E2 intends to block traffic sources
from China and India that attempt accessing its services, hence
expresses the policy P2 – In this topology, E2 represents a
streaming content provider who does not offer services to users
in China and India. Lastly, enterprise network E3 requests the
policy P3 to deny service access from prefixes of US and
Canada.

Blocking rules compiled from the policy P2 are associated
with the path: 1→2→3→4 (starting at node 1 for China and
India, terminating at node 4 for E2 in Australia). Similarly,
blocking rules compiled from the policy P3 are associated
with the path: 3→6→5 (starting at node 3 for US and Canada,
terminating at node 5 for E3 in Australia).

Table I shows the number of IPv4 prefixes for selected
countries (AU: 6384; CA: 10280; US: 50827; CN: 6419; IN:
4441) as per Maxmind database [34] during our experiments.
For blocking policies (i.e., P2 and P3), every prefix becomes
a rule that is installed at a node along the respective paths
mentioned above. We note that the number of blocking rules
generated for policy P2 and P3 equals to the total number of
prefixes in corresponding source countries. Therefore, P2 and
P3 collectively translate into 71,967 Openflow rules (i.e., total
number of prefixes in CN, IN, US, and CA).

Table II shows the available capacity of flow table at each
node to accommodate blocking rules. Based on our simulated
policies, traffic paths, and prefixes count we have customized
available capacity in each switch to impose restrictions, and
hence illustrate the need for optimization. For an optimal
placement, we only focus on blocking rules resulted from
policies P2 and P3. As discussed earlier in §IV, we can only
change the placement of blocking rules – no control is applied
to connectivity rules and their placement. Once our geo-protect
application translates the policies into Openflow rules, they
are fed to our optimizer which then computes the optimal
placement of each and every rule considering the capacity of
flow tables and the rate of traffic associated with individual
flows. Our optimization algorithm runs every fifteen minutes
to recompute new placements. In what follows we demonstrate
the performance of our optimizer in three scenarios.

1) Scenario 1: Equal Volume: We start with a baseline
scenario in which a consistent unit of volume for each rule is
used – rules are treated equally (i.e., same weight) and differ
only in their corresponding paths. Fig. 5a depicts the output
of our optimizer for placing these rules.

Rules are distributed along the respective paths satisfying
the flow table capacity constraint. We can see rules placement
at each node (shown by x-axis in Fig. 5a) for each country
source specified in the blocking policies (i.e., CN, IN, US,
CA).

We note that the aggregate traffic rate from each source
country is shown in Fig. 5f. In our first scenario (captured
by the first fifteen minutes in Fig. 5f), all rules are treated
equally thus their rate is equally set to one unit (i.e., 1 Mbps).
Rules are placed based on their paths and available table space.
Unsurprisingly, rules with source prefixes from China and
India are placed only at nodes 1, 2, 3, and 4, and from US

TABLE III
BENEFIT OF REPLACEMENTS.

Scenario # replacements Cost (NP) Cost (CP) Benefit
Scn. 1 - 83, 654 - -
Scn. 2(a) 48,150 2.68e6 3.81e6 23.63
Scn. 2(b) 22,463 2.88e6 3.38e6 22.54
Scn. 2(c) 11,354 2.91e6 2.96e6 4.43
Scn. 3 12,550 2.82e6 3.30e6 38.75

TABLE IV
RULES PLACEMENT FOR SCENARIO 2(C).

Source node 1 node 2 node 3 node4 node 5 node 6
CN 524 552 2345 2998 0 0
IN 3476 448 515 2 0 0
US 0 0 6861 0 23967 19999
CA 0 0 10279 0 0 1

TABLE V
RULES PLACEMENT FOR SCENARIO 3 (DDOS ATTACK).

Source node 1 node 2 node 3 node4 node 5 node 6
CN 200 376 2843 3000 0 0
IN 3800 624 17 0 0 0
US 0 0 6862 0 23967 19998
CA 0 0 10278 0 0 2

and Canada at nodes 3, 6, and 5. For example, according to
Fig. 4 traffic from North America (node 3) to E3 in Australia
(node 5) traverses the shortest path (node 6) and is blocked
by the policy P3. Lastly, the placement cost of this scenario
amounts to 83,654 (i.e., the sum of hop-length for individual
blocking rules).

2) Scenario 2: Volume Weighted: We now look at the
output of our optimizer when rules are weighted by their
average volume over the last epoch (i.e., 15 minutes in our
experiments) – the placement is re-optimized every fifteen
minutes. Note that we use an exponential random variable
for the volume of flows with varying mean values ranging
from 20 to 80 Mbps. In this scenario, the aggregate rate of
traffic from each country is captured by three slots of fifteen
minutes each, between [15, 60] min in Fig. 5f. Now, every rule
is weighted by the average volume of traffic seen in the past
fifteen minutes. Our optimizer prioritizes high volume rules by
placing them closer to their source, thus reducing the overall
cost.

Fig. 5b shows the rules placement computed by the opti-
mizer. We can see that there are significant changes in the
distribution of rules at all nodes compared to of scenario 1 in
Fig. 5a. We observe that more than 50% of rules from India
(i.e., 2,564 out of 4,441) are placed further down on the path
at node 4, as they carry less volume of traffic compared to
those from China. On the other hand, it is seen that majority
of large volume rules associated with Canada are placed at
nodes 3 and 6 (5171 and 4586 rules respectively) meaning
closer to their traffic source, and due to flow table capacity
constraint only 5% of rules (i.e., 523 rules) are placed at node
5.

Row Scenario 2(a) in Table III shows the number of
rules replacements required to reach this state from previous
epoch (i.e., the baseline) and the associated benefit. For our
experimental topology, we see a high benefit of 23.63 (with
48150 replacements) and therefore the GeoProtect application
accepts the optimizer’s output and reconfigures devices with

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 9

1 2 3 4 5 6 7
node ID

0

5

10

15

20

25
N

u
m

b
e

r
o

f
ru

le
s
 (

x
1

0
0

0
)

China
India
U.S.
Canada

(a) Equal volume rules placement.

1 2 3 4 5 6 7
node ID

0

5

10

15

20

25

N
u

m
b

e
r

o
f

ru
le

s
 (

x
1

0
0

0
)

China
India
U.S.
Canada

(b) Volume-weigted rules placement.

1 2 3 4 5 6 7
node ID

0

5

10

15

20

25

N
u

m
b

e
r

o
f

ru
le

s
 (

x
1

0
0

0
)

China
India
U.S.
Canada

(c) Replacement on significant volume changes.

1 2 3 4 5 6 7
node ID

0

5

10

15

20

25

N
u

m
b

e
r

o
f

ru
le

s
 (

x
1

0
0

0
)

China
India
U.S.
Canada

(d) Replacement on minor volume changes.

1 2 3 4 5 6 7
node ID

0

5

10

15

20

25

N
u

m
b

e
r

o
f

ru
le

s
 (

x
1

0
0

0
)

China
India
U.S.
Canada

(e) Replacement on major rate changes for selected
DDoS sources.

0 15 30 45 60 75
Time (min)

0

1

2

3

4

R
a
te

 (
G

b
p
s
)

China
India
U.S.
Canada

(f) Variation of traffic volume.

Fig. 5. Placement of rules and traffic rates from each country.

the new placement of rules.
Over the next epoch (i.e., [30, 45] min; Scenario 2(b)), we

change the traffic volume for flows of Canada, China, and
India while keeping the U.S. traffic fairly consistent compared
to the previous epoch. Fig. 5c depicts the new placement of
rules computed by the optimizer. Since the volume of traffic
from Canada has increased, all of its 10,280 rules are pushed
higher up along the path towards the source at node 3, while
pushing down the U.S. rules (those that have lower rates
compared to rules from Canada). We note in Fig. 5f that the
aggregate rate of U.S. traffic is higher than of Canada due to
higher number of prefixes (i.e., US: ∼51K and CA: ∼10K),
but individual rules may have higher or lower rates. Also,
due to a decrease in China-sourced traffic and an increase in
India-sourced traffic, we observe that rules for India are pushed
higher on the path with 3,779 out of 4,441 rules are placed
just at node 1. The benefit of replacement for this situation is
22.54 (as shown in the third row of Table III) which is again
high enough for the GeoProtect app to reconfigure the network
with new optimal placement.

In the last epoch of this scenario (i.e., [45, 60] min; Scenario
2(c)), we keep traffic volume from all sources fairly consistent
with the previous epoch – no significant change in traffic
volumes, except slight variations in flows sourced from China
and Canada as shown in Fig. 5f. The optimizer computes a new
placement for this epoch as depicted in Fig. 5d and Table IV.
Unsurprisingly, we do not see a noticeable change in the bar
graph of Fig. 5d compared to of Fig. 5c in scenario 2(b).
We note that the optimizer suggests 11,354 replacements due
to slight variations in some flows, however the measure of
benefit is relatively small (i.e., 4.43). Therefore GeoProtect app
does not accept the optimizer result, thus no reconfiguration is

TABLE VI
PROBABILITY OF SOURCING AN ATTACK.

Country Probability Country Probability
CN 0.7 PL 0.4
BR 0.6 FR 0.3
SG 0.6 IT 0.3
MY 0.6 ES 0.3
TR 0.5 HK 0.3
ID 0.5 NL 0.2
JP 0.4 IE 0.1

triggered. In this case, the SDN cost (cost of rules replacement
by the controller) dominates. In this scenario, the network state
has not much changed which might be the case in most of
realistic situations.

3) Scenario 3: DDoS Attack: Lastly, we emulate a DDoS
attack sourced from China by increasing the volume of se-
lected flows (i.e., for 200 prefixes) by a factor of 20. Fig. 5f
shows that the total traffic rate of China increases to more than
3 Gbps, over the epoch [60, 75] min. After re-optimization,
we observe that the rules for these 200 DDoS prefixes are
pushed higher towards the source and placed at node 1, as
shown in Fig. 5e and Table V, dropping the attack traffic at the
first node before entering the exchange fabric and protecting
the expensive bandwidth of the IXP fabric. The rest of rules
are distributed almost the same way as before. By comparing
Tables V and IV, we see that placement of rules for U.S. and
Canada is fairly consistent in two scenarios; for India, about
500 rules are placed further up at nodes 1 and 2; and for China,
only 200 rules of attack prefixes are placed at node 1 while
others are placed further down the path as they carry lower
volumes of traffic. In this case, we achieve a very high benefit
of 38.75 (with only 12,550 replacements) which triggers a
reconfiguration of the Openflow rules in the network switches
by the GeoProtect application.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 10

Fig. 6. Large-scale commercial Exchange topology.

2K 4K 6K 8K 10K 12K 14K 16K 18K 20K
Table size (K)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
[fe

as
ib

le
 s

ol
ut

io
n]

MILP
Greedy

Fig. 7. Probability of finding a feasible solution (MILP vs. Greedy).

B. Evaluation in Large Scale IXP Topology

We now evaluate the efficacy of our solution on a large
scale IXP topology inspired by Equinix [39], so as to illustrate
the performance of our optimization algorithm on a realistic
topology. The topology consists of 40 IXP nodes that are
spread across the globe connected in a redundant fashion
as shown in Fig. 6. We select 7 connected autonomous
systems (or enterprises) who express geo-block policies and
are connected at nodes 2 (San Francisco, US), 14 (New York,
US), 17 (Rio, Brazil), 20 (London, UK), 34 (Dubai, UAE), 35
(Singapore), and 40 (Sydney, Australia). In our experiment,
these ASes randomly select sources from a pool of countries
to geo-block them. Each source country has a “probability
of being chosen” associated with it, carefully selected as per
the historical statistics of sourcing Internet attacks [7], [40],
[41], and is shown in Table VI. According to security firms
[42], half of recent DDoS attacks originated from only ten

0 1 2 3 4 5 6 7
Hop count

0

1

2

3

4

5

6

7

To
ta

l v
ol

um
e

(G
B

)

6K
7K
8K
11K
14K
17K

Fig. 8. Volume traversing through nodes by hop length (using MILP).

countries having an insecure infrastructure. The attacks may
originate in another country, but are then amplified through
other environments. IT infrastructures in these countries tend
to have weaker security measures in place, which is why
computing resources located therein are used more frequently
to commit attacks.

We formulate 7 geo-block policies (for above 7 destination
ASes) by selecting a set of sources for each with a given
probability. We repeat this process 10 times to select different
“policy-sets” (each contains 7 policies), to randomize the
selection of sources. When translated into Openflow rules,
each policy-set consists of number of rules ranging from
80,000 to 150,000. We vary flow table sizes for each node
of our topology starting from a small capacity 2000 where
there is no solution from MILP, increasing it by step of 1000
till MILP certainly gives a feasible solution, and changing
the step to 3000 till there is no need for MILP due to large

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 11

80 100 120 140 160

Number of rules (K)

50

100

150

200

250

300

350
C

om
pu

ta
tio

n
tim

e
(s

ec
on

ds
)

Measured

Best-fit line

Fig. 9. Time complexity of our optimization as a function of rules count.

capacity 20000. We next evaluate the efficacy of our optimal
MILP algorithm compared to greedy algorithm in finding a
feasible solution for placement of rules.

We run both algorithms on each policy set (10 in total) with
different flow table sizes. In Fig. 7 we plot the probability of
finding a feasible solution for a given table size. The MILP
algorithm (shown by solid blue lines) starts finding a feasible
solution at table size 4,000 with a probability of 0.3 (i.e., 3
out of 10 policy-sets), while the greedy algorithm (shown by
dashed red lines) is incapable of finding a solution until the
capacity of table size increases to 10,000. The MILP is able
to find solutions for all policy-sets when table size reaches
to 6,000 and beyond, while the greedy requires table sizes
of at least 17,000 to solve the problem for all policies. The
evident reason for out-performance of an optimal algorithm
is the correlation and overlap between the various paths in
the network. Such overlap is ignored by the short sighted
greedy algorithm, but is taken care of by our optimal MILP
which considers all possibilities to place the rules. The huge
gap between the performance of MILP and greedy algorithm
signifies the need of an optimal solution to optimize the use
of fabric bandwidth.

We note that when a feasible solution is found by both
greedy and optimal algorithms, the computed cost is equal.
This means that whenever the greedy algorithm is able to
find a solution, it is equivalent to the solution determined by
the MILP optimal algorithm. This is an important observation
which means that relaxing the constraints on table sizes makes
the greedy algorithm to perform the same way as the MILP
in finding a feasible solution with equal cost.

Now, we show that how our optimal solution reduces the
carriage of unwanted traffic in the fabric and saves bandwidth
resources. Unwanted traffic is dropped at a node along their
respective path by a rule placed at a node (computed by
the optimizer). Obviously, dropping packets of an unwanted
flow earlier on its path would save link resources. In other
words, high volume traffic should be ideally dropped at lower
hop-lengths. Fig. 8 shows the amount of volume carried by
all unwanted flows (specified by combination of all policy-
sets) along their paths with increasing hop-length. Each curve
represents a given table size. Hop-length of zero means traffic
is dropped at the first node in the fabric on its path. We observe
that higher volume flows are dropped at low hop counts and the

80 100 120 140 160

Number of rules (K)

150

200

250

300

350

400

C
om

pu
ta

tio
n

m
em

or
y

(M
B

)

Measured

Best-fit line

Fig. 10. Memory complexity of our optimization as a function of rules count.

amount of unwanted traffic being carried reduces significantly
with increasing hop counts. Also, with the increasing table size
capacity, more rules can be placed at earlier nodes on the path,
reducing the carriage of traffic. It is seen in Fig. 8 that for the
table size of 17,000 (shown by circle markers and solid blue
lines), no unwanted traffic is carried beyond the hop-length of
2. Increasing the table size capacities to infinity would result
in accommodating all rules at the first node on the respective
path – achieving the ideal rules placement at zero cost (i.e.,
dropping all unwanted traffic at the first node).

Scalability of Our Algorithm: In our optimization prob-
lem, the number of variables in the objective function is N.R
– we have a total of R rules, and each rule is placed at one of
the N possible nodes in the topology. The size of inequality
and equality constrains is N2.R and 2N.R2 respectively (i.e.,
it grows quadratically by rules count). We note that the size
of constraints is significantly large, and can lead to potential
scalability issues. However, the matrices in our constraints are
sparse as they contain a large number of zero-valued elements.
Therefore, we have reduced the complexity of our algorithm
by employing sparse matrices throughout our optimization so
that we can both save a significant amount of memory and
speed up the processing of our algorithm. In Fig. 9 we plot
the computation time of our optimization as a function of
rules count. The solid blue line shows the time measured on
a machine (running the algorithm) with 4 cores of CPU and
16GB of RAM, and the dashed red line is the best-fit line
for our measured data. Note that this plot corresponds to a
scenario where the table size is 6K – our measurements for
other table sizes match this curve with negligible variations,
and are thus not shown. We can see that the time complexity
grows linearly in number of rules (i.e., proportional to R for a
fixed N = 40 in our simulation) – the actual time in seconds
depends on available resources on the machine which runs the
algorithm. It is also seen that the algorithm takes only 336.6
seconds (i.e., less than 6 minutes) for placement of 151,000
rules. Note that time to mitigate an attack (reaction-time)
depends on the epoch interval (15 min.) and the optimization
time (6 min.) – depending upon when the attack starts,
reaction-time can vary between the optimization time and the
optimization time plus the epoch interval (i.e., 6 to 21 minutes
in this case). Similarly, Fig. 10 shows that the memory usage
of our algorithm to find the optimal rule placement grows

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 12

!"#$

!"#%

%#&'()

!"#*

%#&'()

%+#&'()

,-./0#

"01201

3-4/1-5501#67/8#

&0-95-:; <4=#3!">-, !((

?-27@5-6

A@#)67/:8

%#&'()

%#&'()

Fig. 11. Experimental setup.

linearly in rules count, and we need about 371 MB of memory
for handling 151,000 rules in our simulation.

C. Prototype Implementation and Validation

We have implemented our entire solution on the open-source
ONOS-based SDN interconnect platform. In this section we
explain our prototype components and demonstrate its ability
to block attacks in a laboratory testbed.

Geo-Block Application: Our GeoProtect application con-
sists of two main components:
• Policy Parser: We have developed REST APIs for our

application to receive abstract policies in the form of our
defined grammar (discussed in §III). We have used the
ANTLR library [38] for defining and parsing our gram-
mar. Our policy parser, written in Java, extracts parsed
tokens, breaks down the abstract policies (into block-
ing, connectivity, and exception policies), and formulates
lower-level components of the policy (as described in
Fig. 3). This information is then used by the compiler
as stated next.

• Compiler: Our compiler, written in Java, takes all
parsed policies (including exceptions) and formulates
the ONOS Intents using the ONOS Intent frame-
work API (MultiPointToSinglePointIntent and
FlowObjectiveIntent). To do this, it uses the topol-
ogy information provided by ONOS controller and BGP
announcements from BGPmon. These intents are then
converted into Openflow rules by the ONOS intent frame-
work. Rules are finally installed into the switch by the
ONOS controller (as detailed in §III).

Geo-Block Database: Our GeoProtect app maintains an
essential database that holds thousands of entries used for
mapping the Geo country codes, domain names, and AS num-
bers associated with IP prefixes. We have implemented this
database in SQLite and used the Django back-end framework
[43] to support the necessary REST APIs for querying the
database. We obtained the geographical IP prefix ownership
data from Maxmind [34] and Hurricane Electric BGP toolkit
[35]. This data is synced on a weekly, or monthly basis. Our
Django back-end implementation also provides configurable
APIs that can be used to add extra data (e.g., specific to
customers) to the database manually by the administrator. For
example, exceptions such as for DNS servers can be added
manually and updated on a regular basis.

0 100 200 300 400 500 600 700
Time (seconds)

0

200

400

600

800

1000

1200

R
a

te
 (

M
b

p
s
)

inside AU
outside AU
Total

Fig. 12. Data traffic.

Prototype Validation: We test our prototype in a labora-
tory testbed as shown in Fig. 11. The testbed emulates an
SDN-enabled exchange point that consists of an OpenFlow
switch (i.e., NoviFlow NS1132), an ONOS controller with our
GeoProtect app, a route server, and three connected routers
(peers) to represent autonomous systems interconnected at the
exchange point. Our controller and route server run on two
virtual machines in our laboratory cloud environment, and we
use Cisco router 3800 series for the border routers of the three
peers (i.e., ASes 1, 2, and 3). For traffic generation, we use
the Spirent TestCenter, which is a high-precision commercial-
grade hardware with a 12-port GE Hypermetrics test module
and firmware version 4.24.1026. The capacity of each link
between the border routers and the NoviFlow switch is shown
in Fig. 11.

To emulate the Australian Census attack, we assume that
the Census website and associated infrastructure are within
AS1, and attack traffic is sourced from outside Australia via
AS3 with very large volume flows representing a form of
DDoS. The legitimate traffic (originated from within Australia)
is sourced from AS2.

Fig. 12 shows the results of our Census experiment. All
traffic originated from AS2 and AS3, and was destined to
AS1 where the Census website is located. With the Spirent, we
used a combination of public source IP addresses to emulate
hosts from inside Australia and hosts outside Australia. At
the beginning of our experiment, the traffic rate for inside
Australia (shown by solid blue lines) starts at 500 Mbps, and
for outside Australia (shown by dotted red lines) it starts at 80
Mbps. In this case, the link connecting the AS1 to the fabric is
not oversubscribed, thus no packet loss is observed. At some
time between 100s and 200s, we initiated a DDoS attack from
outside Australia by increasing the traffic rate sourced from
AS3 to 500 Mbps, thus utilizing 100% of the AS1 link. There
was still no loss on the legitimate traffic, so we increased
the DDoS rate to 1 Gbps at time about 300s. It is clearly
seen that the AS1 link became congested and consequently
the legitimate traffic streams experienced 30-35% of loss on
average.

We then invoked the Geo-Block policy (on behalf of AS1)
by which the controller sent flow table updates to the switch
dropping all packets with source addresses from outside Aus-

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 13

tralia. This resulted in 6,384 rules which were then installed
in the switch pipeline that allowed only packets with source
addresses corresponding to Australian IP prefixes and all other
packets were dropped. The result of this policy is seen in
Fig. 12 just before the 500s time marker. The DDoS traffic
from outside Australia reduced to zero, the legitimate traffic
from within Australia recovered back to 500 Mbps with no
loss and the Census service became fully available again. Our
system was responsive and scaled to thousands of flows that
were pushed to the switch.

VI. CONCLUSION

Protecting enterprises against DDoS and IP-address spoof-
ing attacks can not be implemented easily in today’s networks.
This paper proposes a viable security management solution
implemented at a software-defined Exchange Point. We have
developed an abstract grammar that allows enterprise operators
to express their security policies along with a compiler for
automatically synthesizing flow rules inserted into the inter-
connect fabric. We then employed an optimal algorithm to
determine the placement of rules across the switch fabric by
minimizing the carriage cost of unwanted traffic given the
limited table size at each switch. Finally, we evaluated the
performance of our scheme via simulation, and demonstrated
its efficacy via prototype implementation on the open-source
ONOS controller in an SDN testbed. We have deployed
our CaSToR platform in two production exchange networks
namely Amlight in Florida, and CENIC in California. We also
plan to test our geo-protect app in current deployments and
evaluate its benefits of security and filtering features.

REFERENCES

[1] H. Kumar and A. Mercian and S. Banerjee and C. Russell and V. Sivara-
man, “Implementing Geo-Blocking and Spoofing Protection in Multi-
Domain Software Defined Interconnects,” in Proc. EuroSys XDOMO
workshop, Belgrade, Serbia, Apr 2017.

[2] Arbor Networks. (2017) No end in sight for DDoS attack
size growth. https://pages.arbornetworks.com/rs/082-KNA-087/images/
WISR_Infographic_NoEndInSight_FINAL.pdf.

[3] “Australia census : Abs website crashes.” https://goo.gl/nQxgLb.
[4] “Packet viper : Advanced ip filtering solutions.” http://www.packetviper.

com.
[5] “Open network operating system,” http://onosproject.org/.
[6] “NETSCOUT Arbor’s 13th Annual Worldwide Infrastructure Security

Report,” Arbor Networks, Tech. Rep., 2018.
[7] A. Wang, A. Mohaisen, W. Chang, and S. Chen, “Delving into Internet

DDoS Attacks by Botnets: Characterization and Analysis,” in Proc.
IEEE/IFIP Dependable Systems and Networks, Rio de Janeiro, Brazil,
June 2015.

[8] Paloalto Networks. (2019) Next-Generation Firewall. [Online]. Avail-
able: https://www.paloaltonetworks.com/products/secure-the-network/
next-generation-firewall

[9] Fortinet. (2019) FortiGate: Next Generation Firewall. [Online]. Avail-
able: https://www.fortinet.com/products/next-generation-firewall.html

[10] IETF. (2018) Next-Generation Firewall Perfor-
mance Benchmarking Methodology Draft. [On-
line]. Available: https://datatracker.ietf.org/meeting/101/materials/
slides-101-opsec-draft-balarajah-bmwg-ngfw-performance-00

[11] “Next generation geo-ip filtering can be fine tuned to vastly reduce
unwanted and malicious traffic,” https://goo.gl/VfxEdj.

[12] “Network ingress filtering,” https://www.ietf.org/rfc/rfc2827.txt.
[13] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,

N. Feamster, J. Rexford, S. Shenker, R. J. Clark, and E. Katz-Bassett,
“SDX: A Software Defined Internet Exchange,” in Proc. ACM SIG-
COMM, Chicago, IL, USA, Aug 2014.

[14] A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster, J. Rex-
ford, and L. Vanbever, “An Industrial-Scale Software Defined Internet
Exchange Point,” in Proc. USENIX NSDI, Santa Clara, CA, USA, Mar
2016.

[15] J. Stringer, D. Pemberton, Q. Fu, C. Lorier, R. Nelson, J. Bailey, C. N. A.
Correa, and C. E. Rothenberg, “Cardigan: Sdn distributed routing fabric
going live at an internet exchange,” in Proc. IEEE Symposium on
Computers and Communications (ISCC), Madeira, Portugal, June 2014.

[16] R. Lapeyrade, M. Bruyère, and P. Owezarski, “OpenFlow-based Migra-
tion and Management of the TouIX IXP,” in Proc. IEEE NOMS, Istanbul,
Turkey, April 2016.

[17] K.-K. Yap et al, “Taking the edge off with espresso: Scale, reliability and
programmability for global internet peering,” in Proc. ACM SIGCOMM,
Los Angeles, CA, USA, August 2017.

[18] H. Kumar. (2017) castorlive. [Online]. Available: https://github.com/
Vijay-Sivaraman-Research-Group/castorlive/tree/onos-1.8

[19] M. Chiesa, C. Dietzel, G. Antichi, M. Bruyere, I. Castro, M. Gusat,
T. King, A. W. Moore, T. D. Nguyen, P. Owezarski, S. Uhlig, and
M. Canini, “Inter-Domain Networking Innovation on Steroids: Empow-
ering IXPs with SDN Capabilities,” IEEE Communications Magazine,
vol. 54, no. 10, pp. 102–108, October 2016.

[20] M. Chiesa, D. Demmler, M. Canini, M. Schapira, and T. Schneider, “To-
wards Securing Internet eXchange Points Against Curious onlooKers,”
in Proc. Applied Networking Research Workshop, July 2016.

[21] C. Dietzel, A. Feldmann, and T. King, Blackholing at IXPs: On the
Effectiveness of DDoS Mitigation in the Wild, March–April 2016.

[22] “Project boulder nbi (north bound interface),” http://opensourcesdn.org/
projects/project-boulder-intent-northbound-interface-nbi.

[23] “Onos intent framework,” https://wiki.onosproject.org/display/ONOS/
Intent+Framework.

[24] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “PGA: Using Graphs to
Express and Automatically Reconcile Network Policies,” in Proc. ACM
SIGCOMM, London, United Kingdom, August 2015.

[25] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Compos-
ing software defined networks,” in Proc. USENIX NSDI, Lombard, IL,
USA, April 2013.

[26] “Pyretic framework,” http://frenetic-lang.org/pyretic/.
[27] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker,

“Don’t mind the gap: Bridging network-wide objectives and device-
level configurations,” in Proc. ACM SIGCOMM, Florianopolis, Brazil,
August 2016.

[28] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “Optimizing rules
placement in openflow networks: trading routing for better efficiency,”
in HotSDN, Chicago, US, Aug 2014.

[29] S. Zhang, F. Ivancic, C. Lumezanu, A. Gupta, and S. Malik, “An
adaptable rule placement for software-defined networks,” in Dependable
Systems and Networks (DSN), Atlanta, US, Sep 2014.

[30] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in Proc. INFOCOM, Apr 2013.

[31] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the ‘One
Big Switch’ Abstraction in Software-Defined Networks,” in Proc. ACM
CoNEXT, Dec 2013.

[32] Himal Kumar et al, “A software defined flexible inter-domain intercon-
nect using onos,” in Proc. EWSDN, The Hague, Netherlands, Oct 2016.

[33] “17th annual global lambdagrid workshop,” https://www.glif.is/
meetings/2017/tech/mambretti-starlight.pdf.

[34] “Maxmind : Geoip databases,” https://www.maxmind.com/en/home.
[35] “Hurricane electric bgp toolkit,” http://bgp.he.net/.
[36] “Bgpmon : Tool for monitoring bgp updates,” http://www.bgpmon.io/.
[37] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. McDaniel, and A. Ru-

bin, “Working Around BGP: An Incremental Approach to Improving
Security and Accuracy of Interdomain Routing,” in Proc. NDSS, San
Diego, California, USA, 2003.

[38] “Antlr language parsing tool,” http://www.antlr.org/.
[39] “Equinix internet exchange global locations,” http://www.equinix.com.

au/locations/.
[40] “Top 10 ddos attack source countries,” https://mybroadband.co.za/news/

security/188774-top-10-ddos-attack-source-countries.html.
[41] “Share of global denial of service attack traffic during 4th quar-

ter 2016, by originating country,” https://www.statista.com/statistics/
440582/ddos-attack-traffic-by-originating-country/.

[42] “White paper: The Top 10 DDoS Attack Trends,” Imperva, Tech. Rep.,
2015.

[43] “Django web framework,” https://www.djangoproject.com/.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 14

Himal Kumar received his Master of Philosophy
degree from the University of New South Wales
(UNSW) in 2017 and Bachelors from the Indian
Institute of Technology (IIT Patna) in 2014. His
expertise has been in applying SDN/NFV tech-
nology in the areas of Internet Exchange Points
(IXPs), High-Speed Flow Classification and NFV
for middle-boxes. Himal has years of experience in
building production grade SDN solutions and has en-
gineered multiple SDN/NFV applications deployed
and trialled in research and production networks.

He is also a part of open-source SDN community and has contributed to
applications in ONOS and ODL.

Hassan Habibi Gharakheili received his B.Sc.
and M.Sc. degrees of Electrical Engineering from
the Sharif University of Technology in Tehran,
Iran in 2001 and 2004 respectively, and his Ph.D.
in Electrical Engineering and Telecommunications
from the University of New South Wales in Sydney,
Australia in 2015. He is currently a lecturer at the
University of New South Wales in Sydney, Australia.
His current research interests include programmable
networks, learning-based networked systems, and
data analytics in computer systems.

Craig Russell received his Ph.D. in Applied Mathe-
matics from Macquarie University, Sydney in 1997.
He is currently a Principal Research Engineer at
CSIRO Data61 and has previously held commercial
roles in the telecommunications and software indus-
tries. He has design, implementation and operational
experience in a wide range of advanced telecom-
munications equipment and protocols as well as
experience in developing software applications. His
research interests are in software-defined networking
and the application of machine learning techniques

to solve problems in network security.

Vijay Sivaraman received his B. Tech. from the
Indian Institute of Technology in Delhi, India, in
1994, his M.S. from North Carolina State University
in 1996, and his Ph.D. from the University of
California at Los Angeles in 2000. He has worked
at Bell-Labs as a student Fellow, in a silicon valley
start-up manufacturing optical switch-routers, and
as a Senior Research Engineer at the CSIRO in
Australia. He is now a Professor at the University of
New South Wales in Sydney, Australia. His research
interests include Software Defined Networking, net-

work architectures, and cyber-security particularly for IoT networks.

